Journal Papers
-
Runtime Performance Anomaly Diagnosis in Production HPC Systems Using Active Learning
Burak Aksar, Efe Sencan, Ben Schwaller, Omar Aaziz, Vitus J Leung, Jim Brandt, Brian Kulis, Manuel Egele, and Ayse K Coskun
In IEEE Transactions on Parallel and Distributed Systems, Volume 35, Number 4, pp. 693-706, 2024.
[ieee link]
-
Dynamic Clustering Algorithms via Small-Variance Analysis of Markov Chain Mixture Models
Trevor Campbell, Brian Kulis, & Jonathan How
IEEE Transactions on Pattern Analysis and Machine Intelligence, Volume 41, Number 6, pp. 1338--1352, 2019.
[arxiv link]
-
Asymmetric and Category Invariant Feature Transformations for Domain Adaptation
Judy Hoffman, Erik Rodner, Jeff Donahue, Brian Kulis, & Kate Saenko
International Journal of Computer Vision (IJCV), Vol. 109, Numbers 1-2, pp. 28-41, 2014.
[pdf]
-
Metric Learning: A Survey
Brian Kulis
Foundations and Trends in Machine Learning, Vol. 5, Number 4, pp. 287--364, 2012.
[pdf]
-
Kernelized Locality-Sensitive Hashing
Brian Kulis & Kristen Grauman
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 6, pp. 1092--1104, 2012.
[pdf]
-
Metric and Kernel Learning using a Linear Transformation
Prateek Jain, Brian Kulis, Jason Davis, & Inderjit Dhillon
Journal of Machine Learning Research, 13 (Mar): 519--547, 2012.
[pdf]
-
Fast Similarity Search for Learned Metrics
Brian Kulis, Prateek Jain, & Kristen Grauman
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 12, pp. 2143--2157, 2009.
[pdf]
-
Low-Rank Kernel Learning with Bregman Matrix Divergences
Brian Kulis, Matyas Sustik, & Inderjit Dhillon
Journal of Machine Learning Research, 10 (Feb): 341--376, 2009.
[pdf]
-
Semi-Supervised Graph Clustering: A Kernel Approach
Brian Kulis, Sugato Basu, Inderjit Dhillon, & Raymond Mooney
Machine Learning, vol. 74, no. 1, pp. 1--22, 2009.
[pdf]
-
Weighted Graph Cuts without Eigenvectors: A Multilevel Approach
Inderjit Dhillon, Yuqiang Guan, & Brian Kulis
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 11, pp. 1944--1957, 2007.
[pdf] [code]
-
Tracking Evolving Communities in Large Linked Networks
John Hopcroft, Omar Khan, Brian Kulis, & Bart Selman
Proc. of the National Academy of Sciences, vol. 101, pp. 5249--5253, April 2004.
[pdf]
Conference Papers
-
Descriptor and Word Soups: Overcoming the Parameter Efficiency Accuracy Tradeoff for Out-of-Distribution Few-shot Learning
Christopher Liao, Theodoros Tsiligkaridis, and Brian Kulis
In Proc.Conference on Computer Vision and Pattern Recognition (CVPR), 2024.
[arxiv link]
-
Maximum-Entropy Adversarial Audio Augmentation for Keyword Spotting
Zuzhao Ye, Gregory Ciccarelli, and Brian Kulis
In Proc. International Conference Acoustics, Speech, and Signal Processing (ICASSP), 2024.
[arxiv link]
-
Prodigy: Towards unsupervised anomaly detection in production HPC systems
Burak Aksar, Efe Sencan, Ben Schwaller, Vitus J Leung, Jim Brandt, Brian Kulis, Manuel Egele, and Ayse K Coskun
In Proc. International Conference for High Performance Computing, Networking, Storage and Analysis (SC), 2023.
[acm link]
-
Supervised Metric Learning to Rank for Retrieval via Contextual Similarity Optimization
Christopher Liao, Theodoros Tsiligkaridis, and Brian Kulis
In Proc. 40th International Conference on Machine Learning, 2023.
[arxiv link]
-
ALBADross: Active Learning Based Anomaly Diagnosis for Production HPC Systems
Burak Aksar, Efe Sencan, Benjamin Schwaller, Omar Aaziz, Vitus J Leung, Jim Brandt, Brian Kulis, and Ayse K Coskun
In IEEE International Conference on Cluster Computing (CLUSTER), 2022.
[web link]
-
Substitutional Neural Image Compression
Xiao Wang, Ding Ding, Wei Jiang, Wei Wang, Xiaozhong Xu, Shan Liu, Brian Kulis, and Peter Chin
In Picture Coding Symposium (PCS), 2022.
[arxiv link]
-
Latency Control for Keyword Spotting
Christin Jose, Joseph Wang, Grant Strimel, Mohammad Omar Khursheed, Yuriy Mishchenko, and Brian Kulis
In Proc. 23rd INTERSPEECH Conference, 2022.
[arxiv link]
-
Faster Algorithms for Learning Convex Functions
Ali Siahkamari, Durmus Alp Emre Acar, Christopher Liao, Kelly Geyer, Venkatesh Saligrama, and Brian Kulis
In Proc. 39th International Conference on Machine Learning, 2022.
[arxiv link]
-
Real-Time Localized Photorealistic Video Style Transfer
Xide Xia, Tianfan Xue, Wei-sheng Lai, Zheng Sun, Abby Chang, Brian Kulis, and Jiawen Chen
In Proc. IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021.
[arxiv link]
-
Learning to Approximate a Bregman Divergence
Ali Siahkamari, Xide Xia, Venkatesh Saligrama, David Castanon, and Brian Kulis
In Advances in Neural Information Processing Systems (NeurIPS), 2020.
[arxiv link]
-
Building a Robust Word-Level Wakeword Verification Network
Rajath Kumar, Mike Rodehorst, Joe Wang, Jiacheng Gu, and Brian Kulis
In Proc. 21st INTERSPEECH Conference, 2020.
[link coming soon]
-
An Audio-Based Wakeword-Independent Verification System
Joe Wang, Rajath Kumar, Mike Rodehorst, Brian Kulis, and Shiv Vitaladevuni
In Proc. 21st INTERSPEECH Conference, 2020.
[link coming soon]
-
Metadata-Aware End-to-End Keyword Spotting
Hongyi Liu, Apurva Abhyankar, Yuriy Mishchenko, Thibaud Senechal, Gengshen Fu, Brian Kulis, Noah Stein, Anish Shah, and Shiv Vitaladevuni
In Proc. 21st INTERSPEECH Conference, 2020.
[link coming soon]
-
Joint Bilateral Learning for Real-time Universal Photorealistic Style Transfer
Xide Xia, Meng Zhang, Tianfan Xue, Zheng Sun, Hui Fang, Brian Kulis, & Jiawen Chen
In Proc. 16th European Conference on Computer Vision (ECCV), 2020.
[arxiv link]
-
Deep Divergence Learning
Kubra Cilingir, Rachel Manzelli, & Brian Kulis
In Proc. 37th International Conference on Machine Learning (ICML), 2020.
[arxiv link]
-
Piecewise Linear Regression via a Difference of Convex Functions
Ali Siahkamari, Aditya Gangrade, Brian Kulis, & Venktaesh Saligrama
In Proc. 37th International Conference on Machine Learning (ICML), 2020.
[link coming soon]
-
Protecting Neural Networks with Hierarchical Random Switching: Towards Better Robustness-Accuracy Trade-off for Stochastic Defenses
Xiao Wang, Siyue Wang, Pin-Yu Chen, Yanzhi Wang, Brian Kulis, Xue Lin, & Peter Chin
In Proc. 28th International Joint Conference on Artificial Intelligence (IJCAI), 2019.
[pdf]
-
Deep Metric Learning to Rank
Kun He, Fatih Cakir, Xide Xia, Brian Kulis, & Stan Sclaroff
In Proc.Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
[pdf]
-
Conditioning Deep Generative Raw Audio Models for Structured Automatic Music
Rachel Manzelli, Vijay Thakkar, Ali Siahkamari, & Brian Kulis
In Proc. 19th International Society for Music Information Retrieval (ISMIR), 2018.
[pdf]
-
Inferring Human Traits from Facebook Statuses
Andrew Cutler & Brian Kulis
In Proc. 10th International Conference on Social Informatics (SocInfo), 2018.
[arxiv link]
-
Combinatorial Topic Models using Small-Variance Asymptotics
Ke Jiang, Suvrit Sra, & Brian Kulis
In Proc. 20th Intl. AISTATS Conference, 2017.
[pdf] [Supplementary Material]
-
Robust Monte Carlo Sampling using Riemannian Nose-Poincare Hamiltonian Dynamics
Anirban Roychowdhury, Brian Kulis, & Srini Parthasarathy
In Proc. 33rd International Conference on Machine Learning (ICML), 2016.
[pdf]
-
Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-Scale Image Retrieval
Ke Jiang, Qicaho Que & Brian Kulis
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[pdf]
See arXiv version for full proofs: [arxiv link]
-
A Sufficient Statistics Construction of Exponential Family Levy Measure Densities for Nonparametric Conjugate Models
Robert Finn & Brian Kulis
In Proc. 18th Intl. AISTATS Conference, 2015.
[pdf] [Supplementary Material]
-
Power-Law Graph Cuts
Xiangyang Zhou, Jiaxin Zhang & Brian Kulis
In Proc. 18th Intl. AISTATS Conference, 2015.
[pdf]
Earlier version presented at the NIPS 2014 Workshop on Networks: From Graphs to Rich Data.
-
Gamma Processes, Stick-Breaking, and Variational Inference
Anirban Roychowdhury & Brian Kulis
In Proc. 18th Intl. AISTATS Conference, 2015.
[pdf] [Supplementary Material]
Earlier version presented at the NIPS 2014 Workshop on Advances in Variational Inference.
-
Small-Variance Asymptotics for Hidden Markov Models
Anirban Roychowdhury, Ke Jiang, & Brian Kulis
In Neural Information Processing Systems (NIPS), 2013.
[pdf]
-
Dynamic Clustering via Asymptotics of the Dependent Dirichlet Process
Trevor Campbell, Miao Liu, Brian Kulis, Jonathan How, & Lawrence Carin
In Neural Information Processing Systems (NIPS), 2013.
[pdf]
-
MAD-Bayes: MAP-based Asymptotic Derivations from Bayes
Tamara Broderick, Brian Kulis, & Michael I. Jordan
In Proc. 30th International Conference on Machine Learning (ICML), 2013.
[pdf] [Supplementary Material]
-
Small-Variance Asymptotics for Exponential Family Dirichlet Process Mixture Models
Ke Jiang, Brian Kulis, & Michael I. Jordan
In Neural Information Processing Systems (NIPS), 2012.
[pdf]
-
Discovering Latent Domains for Multisource Domain Adaptation
Judy Hoffman, Brian Kulis, Kate Saenko, & Trevor Darrell
In Proc. 12th European Conference on Computer Vision (ECCV), 2012.
[pdf] [Supplementary Material]
-
Revisiting k-means: New Algorithms via Bayesian Nonparametrics
Brian Kulis & Michael I. Jordan
In Proc. 29th International Conference on Machine Learning (ICML), 2012.
[pdf]
-
What You Saw is Not What You Get: Domain Adaptation Using Asymmetric Kernel Transforms
Brian Kulis, Kate Saenko & Trevor Darrell
In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
Oral Presentation: 3.5% Acceptance Rate
[pdf]
-
Metric Learning for Reinforcement Learning Agents
Matthew E. Taylor, Brian Kulis, & Fei Sha
In 10th International Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2011.
[pdf]
-
Inductive Regularized Learning of Kernel Functions
Prateek Jain, Brian Kulis, & Inderjit Dhillon
In Neural Information Processing Systems (NIPS), 2010.
[pdf]
-
Adapting Visual Category Models to New Domains
Kate Saenko, Brian Kulis, Mario Fritz & Trevor Darrell
In Proc. 11th European Conference on Computer Vision (ECCV), 2010.
[pdf]
-
Implicit Online Learning
Brian Kulis & Peter Bartlett
In Proc. 27th International Conference on Machine Learning (ICML), 2010.
[pdf]
-
Learning to Hash with Binary Reconstructive Embeddings
Brian Kulis & Trevor Darrell
In Neural Information Processing Systems (NIPS), 2009.
[pdf] [code]
-
Kernelized Locality-Sensitive Hashing for Scalable Image Search
Brian Kulis & Kristen Grauman
In Proc. 12th International Conference on Computer Vision (ICCV), 2009.
[pdf] [webpage and code]
-
Convex Perturbations for Scalable Semidefinite Programming
Brian Kulis, Suvrit Sra, & Inderjit Dhillon
In Proc. 12th Intl. AISTATS Conference, 2009.
[pdf]
-
Online Metric Learning and Fast Similarity Search
Prateek Jain, Brian Kulis, Inderjit Dhillon, & Kristen Grauman
In Neural Information Processing Systems (NIPS), 2008.
Oral Presentation: 2.7% Acceptance Rate
[pdf], Longer version: [pdf]
-
Fast Image Search for Learned Metrics
Prateek Jain, Brian Kulis, & Kristen Grauman
In. Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008.
CVPR 2008 Best Student Paper Award
[pdf]
-
Information-Theoretic Metric Learning
Jason Davis, Brian Kulis, Prateek Jain, Suvrit Sra, & Inderjit Dhillon
In Proc. 24th International Conference on Machine Learning (ICML), 2007.
ICML 2007 Best Student Paper Award
[pdf] [code]
-
Fast Low-Rank Semidefinite Programming for Embedding and Clustering
Brian Kulis, Arun Surendran, & John Platt
In Proc. 11th Intl. AISTATS Conference, 2007.
[pdf]
-
Learning Low-Rank Kernel Matrices
Brian Kulis, Matyas Sustik, & Inderjit Dhillon
In Proc. 23rd International Conference on Machine Learning (ICML), 2006.
[pdf]
-
A Fast Kernel-Based Multilevel Algorithm for Graph Clustering
Inderjit Dhillon, Yuqiang Guan, & Brian Kulis
In Proc. 11th ACM SIGKDD Intl. Conference on Knowledge Discovery and Data Mining, 2005.
[pdf] [code]
-
Semi-Supervised Graph Clustering: A Kernel Approach
Brian Kulis, Sugato Basu, Inderjit Dhillon, & Raymond Mooney
In Proc. 22nd International Conference on Machine Learning (ICML), 2005.
ICML 2005 Best Student Paper Award
[pdf]
-
Kernel k-means, Spectral Clustering, and Normalized Cuts
Inderjit Dhillon, Yuqiang Guan, & Brian Kulis
In Proc. 10th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2004.
[pdf]
-
Natural Communities in Large Linked Networks
John Hopcroft, Omar Khan, Brian Kulis, & Bart Selman
In Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining, 2003.
[pdf]
Preprints, Workshop Papers, and Technical Reports
-
Towards Practical Machine Learning Frameworks for Performance Diagnostics in Supercomputers
Burak Aksar, Efe Sencan, Ben Schwaller, Vitus J Leung, Jim Brandt, Brian Kulis, Manuel Egele, and Ayse K Coskun
In Proc. First Workshop on AI for Systems, 2023.
[acm link]
-
Pick up the PACE: Fast and Simple Domain Adaptation via Ensemble Pseudo-Labeling
Christopher Liao, Theodoros Tsiligkaridis, and Brian Kulis
Arxiv: 2205.13508, 2022.
[arxiv link]
-
Convolutional Neural Network Denoising of Focused Ion Beam Micrographs
Minxu Peng, Mertcan Cokbas, Unay Dorken Gallastegi, Prakash Ishwar, Janusz Konrad, Brian Kulis, and Vivek Goyal
In IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2021.
[link coming soon]
-
Tiny-CRNN: Streaming Wakeword Detection in a Low Footprint Setting
Mohammad Omar Khursheed, Christin Jose, Rajath Kumar, Gengshen Fu, Brian Kulis, and Santosh Kumar Cheekatmalla
In IEEE AUtomatic Speech Recognition and Understanding (ASRU) Workshop, 2021.
[arxiv link]
-
Learning Bregman Divergences
Ali Siahkamari, Venktaesh Saligrama, David Castanon, & Brian Kulis
Arxiv: 1905.11545, 2019.
[arxiv link]
-
W-Net: A Deep Model for Fully Unsupervised Image Segmentation
Xide Xia and Brian Kulis
Arxiv: 1711.08506, 2017.
[arxiv link]
-
Stable Distribution Alignment using the Dual of the Adversarial Distance
Ben Usman, Kate Saenko, and Brian Kulis
Arxiv: 1707.04046, 2017.
[arxiv link]
-
Dynamic Clustering Algorithms via Small-Variance Asymptotics of Markov Chain Mixture Models
Trevor Campbell, Brian Kulis, and Jonathan How
Arxiv: 1707.08493, 2017.
[arxiv link]
-
Combinatorial Topic Models using Small-Variance Asymptotics
Ke Jiang, Suvrit Sra, & Brian Kulis
Arxiv: 1604:02027, 2016.
[arxiv link]
-
A Sufficient Statistics Construction of Bayesian Nonparametric Exponential Family Conjugate Models
Robert Finn & Brian Kulis
Arxiv: 1601.02257, 2016. (Follow-up to the AISTATS paper, with full proofs and further results on conjugacy.)
[arxiv link]
-
MAD-Bayes: MAP-based Asymptotic Derivations from Bayes
Tamara Broderick, Brian Kulis, & Michael I. Jordan
Arxiv: 1212.2126, 2012.
[arxiv link]
-
Revisiting k-means: New Algorithms via Bayesian Nonparametrics
Brian Kulis & Michael I. Jordan
Arxiv:1111.0352, 2011.
[arxiv link]
-
Learning to Hash with Binary Reconstructive Embeddings
Brian Kulis & Trevor Darrell
UC Berkeley EECS Techical Report #UCB/EECS-2009-101, July, 2009.
[pdf]
-
Fast Similarity Search for Learned Metrics
Prateek Jain, Brian Kulis, & Kristen Grauman
UTCS Techical Report #TR-07-48, September 2007.
[pdf]
-
Scalable Semidefinite Programming using Convex Perturbations
Brian Kulis, Suvrit Sra, Stefanie Jegelka, & Inderjit Dhillon
UTCS Technical Report #TR-07-47, September 2007.
[pdf]
-
Online Linear Regression using Burg Entropy
Prateek Jain, Brian Kulis, & Inderjit Dhillon
UTCS Technical Report #TR-07-08, February 2007.
[pdf]
-
Information-Theoretic Metric Learning
Jason Davis, Brian Kulis, Suvrit Sra, & Inderjit Dhillon
In NIPS 2006 Workshop on Learning to Compare Examples, 2006.
[pdf]
-
A Unified View of Kernel k-means, Spectral Clustering and Graph Cuts
Inderjit Dhillon, Yuqiang Guan, & Brian Kulis
UTCS Technical Report #TR-04-25, July 2004.
[pdf]
|