1092

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 34, NO. 6, JUNE 2012

Kernelized Locality-Sensitive Hashing

Brian Kulis, Member, IEEE, and Kristen Grauman, Member, IEEE

Abstract—Fast retrieval methods are critical for many large-scale and data-driven vision applications. Recent work has explored ways
to embed high-dimensional features or complex distance functions into a low-dimensional Hamming space where items can be
efficiently searched. However, existing methods do not apply for high-dimensional kernelized data when the underlying feature
embedding for the kernel is unknown. We show how to generalize locality-sensitive hashing to accommodate arbitrary kernel functions,
making it possible to preserve the algorithm’s sublinear time similarity search guarantees for a wide class of useful similarity functions.
Since a number of successful image-based kernels have unknown or incomputable embeddings, this is especially valuable for image
retrieval tasks. We validate our technique on several data sets, and show that it enables accurate and fast performance for several
vision problems, including example-based object classification, local feature matching, and content-based retrieval.

Index Terms—Similarity search, locality-sensitive hashing, central limit theorem, Kernel methods, image search.

1 INTRODUCTION

FAST indexing and search for large databases is critical to
content-based image and video retrieval—particularly
given the ever-increasing availability of visual data in a
variety of interesting domains, such as scientific image data,
community photo collections on the web, news photo
collections, or surveillance archives. The most basic but
essential task in image search is the “nearest neighbor
(NN)” problem: to take a query image and accurately find
the examples that are most similar to it within a large
database. A naive solution to finding neighbors entails
searching over all n database items and sorting them
according to their similarity to the query, but this becomes
prohibitively expensive when n is large or when the
individual similarity function evaluations are expensive to
compute. For vision applications, this complexity is
amplified by the fact that often the most effective
representations are high dimensional or structured, and
the best-known distance functions can require considerable
computation to compare a single pair of objects.

To make large-scale search practical, vision researchers
have recently explored approximate similarity search tech-
niques, where a predictable loss in accuracy is sacrificed in
order to allow fast queries even for high-dimensional inputs
[1], [2], [3], [4], [5]. Methods for this problem, most notably
locality-sensitive hashing (LSH) [6], [7], offer probabilistic
guarantees of retrieving items within (1 +¢) times the
optimal similarity, with query times that are sublinear with
respect to n. The basic idea is to compute randomized hash
functions that guarantee a high probability of collision for
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similar examples. In a similar spirit, a number of methods
show how to form low-dimensional binary embeddings
that can capture more expensive distance functions [8], [9],
[10], [11]. This line of work has shown considerable promise
for a variety of image search tasks such as near-duplicate
retrieval, example-based object recognition, pose estima-
tion, and feature matching.

In spite of hashing’s success for visual similarity search
tasks, existing techniques have some important restrictions.
Current methods generally assume that the data to be
hashed come from a multidimensional vector space, and
require that the underlying embedding of the data be
explicitly known and computable. For example, many LSH
methods rely on random projections with input vectors.
Spectral hashing [11], another recent hashing technique,
also requires the inputs to be vectors and assumes that such
vectors are drawn from a uniform distribution, an assump-
tion that is clearly violated in practice.

This is a problematic limitation, given that many recent
successful vision results employ kernel functions for which
the underlying embedding is known only implicitly (i.e.,
only the kernel function is computable). It is thus far
impossible to apply LSH and its variants to search data with
a number of powerful kernels—including many kernels
designed specifically for image comparisons (e.g., [12], [13],
[14]), as well as some basic well-used functions like a
Gaussian RBF kernel. Further, since visual representations
are often most naturally encoded with structured inputs
(e.g., sets, graphs, trees), the lack of fast search methods with
performance guarantees for flexible kernels is detrimental.

In this paper, we present an LSH-based technique for
performing fast similarity searches over arbitrary kernel
functions. The problem is as follows: Given a kernel
function x(z;, ;) = (;5(:1:7;)T¢(z]-) and a database of n objects,
how can we quickly find the most similar item to a query
object ¢ in terms of the kernel function, that is,
argmax;~(q, z;)? Like standard LSH, our hash functions
involve computing random projections; however, unlike
standard LSH, these random projections are constructed
using only the kernel function and a sparse set of examples
from the database itself. Our main technical contribution is
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to formulate the random projections necessary for LSH in
kernel space. Our construction relies on an appropriate use
of the central limit theorem (CLT) [15], which allows us to
approximate a random vector using items from our
database. The resulting scheme, which we call kernelized
LSH (KLSH), generalizes LSH to scenarios when the feature
space embeddings (¢(z), ¢(y)) are either unknown or
incomputable.

We empirically validate our scheme with several visual
search tasks. For object recognition, we present results on
the Caltech-101 [16] and a data set of Flickr images, and
show that our hashing scheme outperforms existing
hashing methods on these data sets since it can compute
hash functions over arbitrary kernels. For feature indexing
with a larger database, we provide results on the Photo
Tourism data set of local patches [17], [18]. We experiment
with the Tiny Image data set of 80 million images [19] in
order to show our technique’s ability to scale to very large
databases. Because our algorithm enables fast approximate
search for arbitrary kernels, we can now access a much
wider class of similarity functions needed for many content-
based retrieval applications. We also present experiments to
quantify how well our method approximates ideal random
projections as well as comparisons to an existing hashing
technique for embedding shift-invariant kernels via random
Fourier features [20].

2 RELATED WORK

In this section, we review related work in fast search
algorithms and their application for visual search problems.

Data structures using spatial partitions and recursive
hyperplane decomposition (e.g., k — d trees [21]) provide an
efficient means to search low-dimensional vector data
exactly; however, they are known to break down in practice
for high-dimensional data, and cannot provide better than a
worst case linear query time guarantee. Since high-dimen-
sional image descriptors are commonly used in object
recognition, various methods to mitigate these factors have
been explored, such as hierarchical feature quantization
[22], decision trees [23], and priority queues [24].

Tree-based search structures that can operate with
arbitrary metrics [25], [26] remove the assumption of a
vector space by exploiting the triangle inequality. However,
in practice, selecting useful partitioning strategies requires
good heuristics, and, in spite of logarithmic query times in
the expectation, metric-tree methods can also degenerate to
a linear time scan of all items depending on the distribution
of distances for the data set. Our results confirm this failure
mode for several data sources and metrics of interest for
image search.

Randomized approximate similarity search algorithms
have been designed to preserve query time guarantees, even
for high-dimensional inputs. Locality-sensitive hashing [6],
[7] offers sublinear time search by hashing highly similar
examples together in a hash table. Prior to our work, LSH
functions that accommodate Hamming distance [27], inner
products [7], ¢, norms [28], normalized partial matching [3],
normalized set intersection [5], learned Mahalanobis me-
trics [4], and particular kernel functions such as the
Gaussian kernel [20], [29] have all been developed. Vision
researchers have shown the effectiveness of this class of
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methods for various image search applications, including
shape matching, pose inference and bag-of-words indexing
[1], [2], [3], [4], [5]. However, thus far arbitrary kernel
functions remain off limits for LSH.

Embedding functions offer another useful way to map
expensive distance functions into something more manage-
able computationally. Recent work has considered how to
construct or learn an embedding that will preserve the
desired distance function, typically with the intention of
mapping to a very low-dimensional space that is more
easily searchable with known techniques [30], [8], [31], [9],
[10], [11]. These methods are related to LSH in the sense that
both seek small “keys” that can be used to encode similar
inputs, and often these keys exist in Hamming space. While
most work with vector inputs, the technique in [8] accepts
generic distance functions, though its boosting-based
training process is fairly expensive, and search is done
with a linear scan. The recent “spectral hashing” algorithm
[11] requires that data be from a euclidean space and
uniformly distributed, in contrast to our technique, which
assumes that the data are from an arbitrary kernel space
and makes no strong assumptions about the underlying
distribution of the data. Another related embedding
technique builds a low-dimensional embedding given data
and an arbitrary kernel function [32]. Whenever the data are
linearly separable by a large margin in the input kernel
space, the resulting low-dimensional embedding is guaran-
teed to be approximately separable. As with our technique,
this embedding can be applied to arbitrary kernels, but the
aim of the approach is different in that the goal is to
maintain separability of the embedded data rather than
perform fast similarity searches.

Our main contribution is a general algorithm to draw hash
functions that are locality sensitive for arbitrary normalized
kernel functions, thereby permitting sublinear time approx-
imate similarity search. This significantly widens the acces-
sibility of LSH to generic kernel functions, whether or not
their underlying feature space is known. Since our method
does not require assumptions about the data distribution or
input, it is directly applicable to many existing useful
measures that have been studied for image search.

3 BACKGROUND: LOCALITY-SENSITIVE HASHING

We begin by briefly reviewing Locality-Sensitive Hashing,
following [7]. Assume that our database is a set of data
objects z1, ..., z,. Given an input query g, we are interested
in finding those items in the database that are most similar
to the query.

The basic idea behind LSH is to project the data into a
low-dimensional binary (Hamming) space; that is, each
data point is mapped to a b-bit vector, called the hash key. If
this projection is performed appropriately, we can find
approximate nearest neighbors in time sublinear in n. The
hash keys are constructed by applying b binary-valued hash
functions hy, ..., h; to each of the database objects. In order
to be valid, each hash function h must satisfy the locality-
sensitive hashing property:

Pr[h(z;) = h(z;)] = sim(z;, z;), (1)
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where sim(x;,x;) € [0,1] is the similarity function of
interest." The intuition is as follows: If we can rely on only
highly similar examples colliding together in the hash table
(i.e., being assigned the same hash key), then at query time,
directly hashing to a stored bucket will reveal the most
similar examples, and only those need to be searched.
Given valid LSH functions, the query time for retrieving
(1 + ¢)-near neighbors is bounded by O(n!/(1%9)) for the
Hamming distance [6]. One can therefore trade off the
accuracy of the search with the query time required.

As an example, consider the well-known cosine similarity:
sim(z;, z;) = (! x;)/(|ziy]|Z;]l5). In [7], Charikar proposed
a hash function for this similarity function based on round-
ing the output of a product with a random hyperplane:

_f1, ifrTz >0
hr(2) = {07 otherwise,

where r is a random hyperplane from a zero-mean
multivariate Gaussian A (0, 1) of the same dimensionality
as the input z. The fact that this hash function obeys the
locality-sensitive hash property follows from a result from
Goemans and Williamson [33], who showed for such a
random r that

(2)

Pr [sign(zz-T'r) = sign(z]rr)] =1- %cos_1 (

ZE) @)
[EANEA

Procedurally, one chooses a random vector r from N (0, I),
then computes the sign of r” z for each z in the database, then
repeats this over the b random vectors for a total of b hash
functions. The hash table then consists of the hash keys and
their pointers to data items. Given a query vector g, one
computes its hash key by applying the same b hash functions.
A query hashes to certain buckets in the hash table, where it
collides with some small portion of the stored examples.
Only these examples are searched and returned in rank order
as the output nearest neighbors for the query.

To perform the approximate similarity searches, we use
the method in [7], which requires searching O(n!/(1+9)
examples for the k = 1 approximate nearest neighbor. Given
the list of n database hash keys, M = 2n!/0+9 random
permutations of the bits are formed, and each list of permuted
hash keysis sorted lexicographically to form M sorted orders.
A query hash key indexes into each sorted order with abinary
search, and the 2M nearest examples found are the approx-
imate nearest neighbors. Additionally, we introduce a
parameter B that is the number of neighboring bins to
consider as potential nearest neighbors when searching
through the sorted permutations (unless stated otherwise,
this is set to 0 by default). See [7] for more details.

Previously, hash functions have been designed for cases
where the similarity function “sim” refers to an ¢, norm,
Mahalanobis metric, or inner product [28], [4], [7]. In this
work, the similarity function of interest is an arbitrary
(normalized) kernel function:

1. LSH has been formulated in two related contexts—one in which the
likelihood of collision is guaranteed relative to a threshold on the radius
surrounding a query point [27], and another where collision probabilities
are equated with a similarity score [7]. We use the latter definition here.
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sim(z;, ;) = H($7j7$j)/( %(Ii,xi)ﬁ(xpzj))
= (¢(z:) o(x;)/ (I |51 ¢(2)]l,);

for some (possibly unknown) embedding function ¢(-). In
the next section, we will present our algorithm for drawing
hash functions that will satisfy (1) for any kernel.

Finally, we note that random projections arise in
formulations of LSH beyond the approach of Charikar for
cosine similarity. For instance, random projections may be
used for approximating the ¢, norm, as shown by [28], so
our approach should easily carry over to this scenario.
Beyond LSH, there are several other dimensionality reduc-
tion techniques based on the Johnson-Lindenstrauss lemma
that involve computing random projections, and our results
may additionally be of interest to those applications.

4 KERNELIZED LOCALITY-SENSITIVE HASHING

The random hyperplane hashing method proposed by
Charikar assumes that the vectors are represented expli-
citly, so that the sign of 'z can easily be computed.” We
now consider the case when the data are kernelized. We
denote the inputs as ¢(x) and assume that the underlying
embeddings may be unknown or very expensive to
compute. Since we have access to the data only through
the kernel function w(z;,x;) = ¢(x;)" ¢(x;), it is not clear
how to compute the hash functions. This is because to use
the hash function in (2) we need to reference a random
hyperplane in the kernel-induced feature space. For example,
the RBF kernel has an infinite-dimensional embedding,
making it seemingly impossible to construct r. Thus, the
key challenge in applying LSH to this scenario is in
constructing a vector r from N(0,I) such that r’¢(zx) can
be computed via the kernel function.

The main idea of our approach is to construct r as a
weighted sum of a subset of the database items. An
appropriate construction will allow the random hyperplane
hash function to be computed purely via kernel function
evaluations, but will also ensure that r is approximately
Gaussian. Consider each data point ¢(x;) from the database
as a vector from some underlying distribution D with mean p
and covariance 3, which are generally unknown. Given a
natural number ¢, we define

2= (), (4

€S

where S is a set of ¢ database objects chosen i.i.d. from D.
The central limit theorem [15] tells us that, for sufficiently
large t, the random vector

Z =tz — p) (5)

is distributed according to the multivariate Gaussian
N(0,%). By applying a whitening transform, the vector
»-1/2%, will be distributed according to N(0,1), precisely
the distribution required in (2).

Therefore, we denote our random vector as r = £"1/23,,
and the desired hash function h(¢(x)) is given by

2. Note that other LSH functions exist, but all involve an explicit
representation of the input, and are not amenable to the general kernelized
case.
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o) ={y Bz

0, otherwise.

Both the covariance matrix ¥ and the mean p of the data are
unknown, and so they must be approximated via a sample
of the data. We choose a set of p database objects, which we
denote without loss of generality as the first p items
é(z1),...,¢(z,) of the database (we will discuss the choice
of the value of p later). Now, we may (implicitly) estimate
the mean as p = % P, ¢(=x;); similarly, we can consider the
covariance matrix ¥ over the p samples, though it too
cannot be stored explicitly.

Define a kernel matrix over the p sampled points,
denote it as K. For the derivation below, we assume that
the data points used to generate the kernel matrix are zero
centered; this may be achieved implicitly (in kernel space)
via the transformation

e'Ke
S—ee .

1 1
K—K--Kee —-ee’ +
p p p

If ® is the matrix of the p database objects, we can obtain the
above expression by forming a kernel matrix over the data
after transforming the data by subtracting the mean:
PP —1dee’.

In order to compute h(¢(x)), we will use a technique
similar to that used in kernel Principal Component Analysis
(kPCA) [34] to project onto the eigenvectors of the
covariance matrix. Let the eigendecomposition of the kernel
matrix defined above be K = UOUT. If the eigendecompo-
sition of ¥ is VAV7Z, then ¥~1/2 = VA~1/2VT. Therefore, we
can rewrite the hash function as follows:

h(¢(x)) = sign(¢(z) VA~V Z).

Note that the nonzero eigenvalues of A are equal to the
nonzero eigenvalues of O. Further, denote the kth eigen-
vector of the covariance matrix as v;, and the kth eigenvector
of the kernel matrix as u;. According to the derivation of
kernel PCA, when the data is zero centered, we can
compute the projection

ol o(x) = Z% (z)76(2), )
i=1

~

where the ¢(z;) are the sampled p data points.’

We complete the computation of h(¢(x)) by performing
this computation over all k eigenvectors, resulting in the
following expression:

(b(z)TVA*l/QVT Z £¢(a: 'vk Z.

Z

We substitute (7) for each of the eigenvector inner products
and expand the resulting expression: ¢(z)' VA2V 7z, =

i=1

\/Lﬁ <Z\/10—k’uk(2)¢(zl)T¢(g;)> <Z\/19—kuk(l)¢($l)TZ~t> )
=L VO =

3. For centered data, the covariance is denoted as & =15 ¢(z;)¢(z:)" .
1

To simplify the discussion, we are ignoring the ; term in our analysis,
which does not affect the resulting hash function computation.
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Now, we reorder the summations and reorganize terms

p p 1
ZZQ?/Z

i=1 j=1

(¢(zi) o(z)) (6(z))" ) (Zegl/zuk(z‘)uk(j)> :
k=1Yp

Finally, we use the fact that K;S/Q =37, gw uy(7)uy(y) and
simplify further to obtain

M= I

Dun(s) (9(z) d(x)) (6(x;)" )

1

2%

K22 (p(x:)

)

Il
M=
M=

"o(2)) (o))" %)

T
Il
N

Ly

w(i) (o(z:) ¢(x)),

Il
M=

1

where w(i) = Y0, K. o(x;)" 2.

This means that the Gaussian random vector can be
expressed as r = Y _, w(i)¢(x;)—that is, as a weighted sum
over the feature vectors chosen from the set of p sampled
database items. We now expand 2;. Recall that 2, =
VIAY s o(mi) — p) = 77 2ies ¢(:). Substituting this into
w(?) yields

ZZ K"K Kj-

j 1 ¢eS

We assume that the ¢ points selected for S are a subset of the
psampled points (i.e., the ¢ points are sampled from the set of
points used to sample the mean and covariance); this makes
computation simpler since we have implicitly centered the
data. In that case, if e is a vector of all ones and ey is a vector
with ones in the entries corresponding to the indices of S, then
the computation of w simplifies as follows:

w= K eg. (8)

Note that we are ignoring the factor of ¢ since it does not
affect the sign of the hash function.
To compute the hash function, we therefore use

h(9(x)) = sign (Z w(z‘w(zi)%(z)). )

1=1

One subtle issue remains: We assumed that the ¢(zx;)
vectors had been implicitly zero centered. That is, each of
the sampled ¢(z;) is replaced by ¢(z;) — l ’/’qu(:z:j).
Therefore, the hash function should be wrltten in terms of

the original data points as

h(é()) = sign (Z w(i) (¢<x Yo

However, the second part of the sum simplifies to zero since
> w(i) =0, and so the final hash function can indeed be
written as given above in (9).

4. We can alternatlvely reach this conclusion by noting that
P(x)"E12z = ¢(x)"®K 3207 when the data are centered, where
K = ®7®. This follows by computing the singular value decomposition of
® and simplifying.
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Putting everything together, the resulting method is
surprisingly simple. To summarize our kernelized locality-
sensitive hashing algorithm:

e  Select p data points and form a kernel matrix K over
this data.

e Center the kernel matrix.

e Form the hash table over database items: For each
hash function h(¢(z)), form eg by selecting
t indices at random from [1,...,p], then form
w= K '%e5, and assign bits according to
Wo(x)) = sign(3_; w(i)r(z, ).

e For each query, form its hash key using these hash
functions and employ existing LSH methods to find
the approximate nearest neighbors.

Computationally, the most expensive step is in the single
offline computation of K~1/2, which takes time O(p?). Once
this matrix has been computed, each individual hash function
requires O(p*) kernel function evaluations to compute its
corresponding w vector (also done offline). Once w has been
computed for a given hash function, the computation of the
hash function can be computed with p evaluations of the
kernel function. In order to maintain efficiency and to
maintain sublinear time searches, we want p to be much
smaller than n—for example, p = O(y/n) would guarantee
that the algorithm maintains sublinear search times.

5 DiscussION

Some additional care must be taken to verify that the
analysis for KLSH holds when the underlying embeddings
are infinite dimensional (for example, with the Gaussian
kernel), but in fact the general case does hold. To
summarize the main details associated with arbitrary
reproducing kernel Hilbert spaces (RKHSs): First, the
central limit theorem holds in general Banach spaces (for
which RKHSs are a special case) under certain condi-
tions—see [35] for a discussion. Second, in the infinite-
dimensional case, we whiten the data via the covariance
operator; this has been studied for the kernel ICA problem
[36]. Finally, projecting onto eigenvectors of the covariance
is performed as in kernel PCA, which holds for infinite-
dimensional embeddings. We stress that the KLSH algo-
rithm is unchanged for such embeddings.

Another potential concern is in the case when ¥ is not
full rank, that is, when the underlying data distribution lies
in a subspace of the full kernel space. In this case, the
resulting approximately random vector r will lie in a
subspace of the full kernel space. However, this is not
problematic since, for a true random vector r, we can
decompose it into a component lying in the subspace and a
component orthogonal to the subspace of the data. The
projection of the orthogonal component will always equal 0,
and so the fact that our random projections only lie on the
subspace of the data does not cause any difficulties. Since
the algorithm does not compute %7'/? explicitly, we will not
require any further change to the algorithm (as long as the
kernel matrix is full rank).

Additionally, the random vector r constructed during
the KLSH routine is only approximately distributed accord-
ing to N (0, I)—the central limit theorem assumes that the
mean and covariance of the data are known exactly,
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whereas we employ an approximation using a sample of
p points. Furthermore, it is possible that the resulting
T vectors do not approximate a Gaussian well unless p and ¢
are extremely large. This may be the case if the underlying
embeddings of the kernel function are very high dimen-
sional. As a result, it may be difficult or even impossible to
formally prove that such hash functions will produce truly
random projections in general when p and ¢ are sublinear in
n; we leave such analysis as an open problem for future
work. The good news is that empirical evidence suggests
that we do not need very many samples to compute a
satisfactory random vector for kernelized hashing; as we
will see in the experimental results, with p = 300 and ¢ = 30
we obtain good hashing results with several different
kernels and over very large data sets.

We would also like to stress the general applicability and
simplicity of our approach. Even if the underlying embed-
ding for a particular kernel function is known, our technique
may still be desirable due to its relative simplicity. For
instance, kernels such as the pyramid match kernel [37] or
the proximity distribution kernel [38] have known sparse,
high-dimensional embeddings [3], [39] for which standard
LSH methods can be applied; however, in such scenarios the
computation of the hash functions is dependent on the
kernel embeddings, requiring separate (and sometimes
intricate) hashing implementations for each particular kernel
function. In contrast, our approach is general and only
requires knowledge of the kernel function. As a result, the
KLSH scheme may be preferable even in these cases.

6 EXPERIMENTAL RESULTS

To empirically validate the effectiveness of the proposed
hashing scheme, we provide results on several data sets.
Our primary goal is to verify that the proposed KLSH
method can accommodate kernels with incomputable
feature embeddings, and use them to perform searches
that are fast but still reliable relative to a linear scan. We
demonstrate the algorithm’s flexibility with respect to
kernel choice by including a number of useful kernel
functions, including the x2-kernel, Gaussian RBF, and
several learned kernels.”

To summarize our empirical findings: We will show that
our method can be applied effectively on a number of data
sets and using a number of common image kernels, with
results that are comparable to a linear scan (Sections 6.2-6.4).
We will also demonstrate that the method can be applied on
a database of 80 million images, demonstrating the potential
of the method to be applied in large-scale scenarios (Section
6.5). Further, we will quantify how well our method
approximates true random vectors using a common normal-
ity test (Section 6.6). Finally, we will compare our method to
the random Fourier features method for hashing developed
in [20] for the class of shift-invariant kernels, and show that
our approach is favorable on several data sets (Section 6.7).

6.1 Evaluation Criteria and Computational

Considerations
Throughout, we present results showing the percentage of
database items searched with hashing as opposed to the

5. Our KLSH code is available at http://vision.cs.utexas.edu/projects/
Kklsh.
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linear scan baseline; this format is more direct than
reporting raw runtime results, which are dependent on
the particular optimizations of the code. In terms of
additional overhead, finding the approximate nearest
neighbors given the query hash key is very fast, particularly
if the computation can be distributed across several
machines (since the random permutations of the hash bits
are independent of one another). The main computational
cost is in taking the list of examples that collided and
sorting them by their similarity to the query; this running
time is primarily controlled by e. Specifically, since we use
Charikar’s search procedure for the hashing stage [7], at
query time we need to perform a binary search on each of
M =2n"/(1%9 sorted orders. Some specific timing and
overhead results are discussed for the Tiny Image data
set, where we see that searching the approximate nearest
neighbors is indeed the most time-consuming step of the
procedure. This holds in general in our experience.

In terms of memory usage, the value of e directly
determines the number of hash permutations required. For
large data sets, such as Tiny Images, a large number of hash
permutations can result in substantial memory overhead for
storage of the hash tables. To counter this, there are various
techniques that have been explored for reducing the
memory overhead. One is to use a linear scan in the
Hamming space and thus only store a single hash
permutation. This can be implemented quickly since the
Hamming distance between two binary vectors is simply an
XOR followed by a bit count; for example, on the Tiny
Image data, nearest neighbors can be retrieved in just a few
seconds. Another option is to reduce the number of hash
permutations stored. We explore one such option for the
Tiny Images where we use a larger ¢ and then increase the
B parameter, which we discuss in further detail below.

6.2 Example-Based Object Recognition

Our first experiment uses the Caltech 101 data set, a
standard benchmark for object recognition. We use our
technique to perform nearest neighbor classification, cate-
gorizing each novel image according to which of the
101 categories it belongs. This data set is fairly small
(~ 9 K total images); we use it because recent impressive
results for this data have applied specialized image kernels,
including some with no known embedding function. The
goal is therefore to show that our hashing scheme is useful
in a domain where such kernel functions are typically
employed, and that nearest neighbor accuracy does not
significantly degrade with the use of hashing. We also use
this data set to examine how changes in the parameters
affect accuracy.

We employ the correspondence-based local feature
kernel (CORR) designed in [12], and learn a kernel on top
of it using the metric learning algorithm given in [40]. The
learned kernel basically specializes the original kernel to be
more accurate for the classification task, and was shown in
[4] to provide the best reported single kernel results on the
Caltech-101 (when using linear scan search). We train the
metric with 15 images per class. To compute accuracy, we
use a simple k-nearest neighbor classifier (k = 1) using both
a linear scan baseline and KLSH.
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Fig. 1 compares our accuracy using hashing versus that
of an exhaustive linear scan, for varying parameter settings.
The parameters of interest are the number of bits used for
the hash keys b, the value of € (from standard LSH), and the
values of ¢t and p (from our KLSH algorithm). When varying
one of the parameters, the others remain fixed at the
following: b =300, ¢ = 0.5, t =30, and p = 300. Since the
algorithm is randomized, we ran KLSH 10 times and
averaged the results over the 10 runs. The results of
changing e and the number of hash bits are consistent with
the behavior seen for standard LSH (see, for example, [3],
[4]). From the plots, it appears that the KLSH parameters
(t, p), are reasonably robust (see Figs. 1c and 1d).

The parameter e trades off accuracy for speed, and thus
has a more significant impact on final classifier performance
(see Fig. 1a). Our best result of 59 percent hashing accuracy,
with € = 0.2, is significantly better than the best previous
hashing-based result on this data set: 48 percent with the
pyramid match, as reported in [4]. Note that hashing with
the pyramid match was possible in the past only because
that kernel has a known explicit embedding function [3];
with our method, we can hash with matching kernels for
which the embedding function is unknown (e.g., CORR).
This 11-point accuracy improvement illustrates the impor-
tance of being able to choose the best suited kernel function
for the task—which KLSH now makes possible.

In terms of the speed, the percentage of database items
searched was uniform as ¢t and p changed. On average, KLSH
searched 17.4 percent of the database for ¢ = 0.2; 6.7 percent
for € = 0.5, and 1.2 percent for € = 1.5. As we will see in
subsequent sections, even lower percentages of the database
are searched once we move on to much larger data sets.

As a baseline, we also ran this experiment using the
metric-tree (M-tree) approach developed in [26], using the
implementation provided online by the authors. This is a
well-known exact search algorithm that accepts arbitrary
metrics as input. To map the CORR kernel values x(z,y) to
distance values, we compute: D(z,y) = (r(z, %) + £(y, y)—
25(x, y))*.

While accuracy with this method is consistent with a
linear scan, its search time was quite poor; of the
n database items, the M-tree required searching n + 30
examples to return the first NN. The speed was unchanged
when we varied the splitting function (between the
generalized hyperplane and balanced strategies), the
promotion method used to promote objects in the parent
role (random, maximum upper bound on distances, or
minimum maximum radius policies), or the minimum
node utilization parameter (which we tested for values
from 0 to 0.5 in increments of 0.1). The likely problem is
that the distribution of distances between the indexed
objects has relatively low variance, making the tree-based
measure less effective. Thus, even though the M-tree can
operate with arbitrary metrics, KLSH has a clear perfor-
mance advantage for this data.

6.3 Indexing Local Patches for Efficient

Correspondences
Our second experiment uses the patch data set [18]
associated with the Photo Tourism project [17]. It consists
of local image patches of Flickr photos of various landmarks.
The goal is to compute correspondences between local
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Fig. 1. Results on the Caltech-101 data set. The plots illustrate the effect of parameter settings on classification accuracy when using KLSH with a
learned CORR kernel. When varying a parameter, the others are fixed at ¢ = 0.5, ¢t = 30, p = 300, and b = 300. The value of ¢ controls the accuracy
versus speed tradeoff, and most influences results; the more examples we are willing to search, the more closely we can approximate the linear
scan. When searching only 6.7 percent of the data (¢ = 0.5), accuracy is nearly 58 percent, versus 59 percent with a linear scan. Overall, accuracy is
quite stable with respect to the number of bits and our algorithm’s p and ¢ parameters.

features across multiple images, which can then be provided
to a structure-from-motion algorithm to generate 3D
reconstructions of the photographed landmark [17]. Thus,
one critical subtask is to take an input patch and retrieve its
corresponding patches within any other images in the
database—another large-scale similarity search problem.
We use the n = 100,000 image patches provided for the
Notre Dame Cathedral. Since the goal is to extract ideally all
relevant patches, we measure accuracy in terms of the recall
rate. We consider two measures of similarity between the

patches” SIFT descriptors: euclidean distance (L;), and a
Gaussian RBF kernel computed with a metric learned on
top of L, (again using [40] to learn the parameters). For the
first measure, standard LSH can be applied. For the second,
only KLSH is applicable since the underlying embedding of
the data is not easily computable (in fact, its dimension is
technically infinite).

Fig. 2 shows the results. The two lower curves (nearly
overlapping) show the recall results when using either a
linear scan or LSH with the SIFT vectors and euclidean

' Query
1 patch
0.8}
R
0.75F
3 Patch
g database
0.7+
RBF Kernel Linear Scan
=—4— RBF KLSH
0,55< = ®=1-2 Linear Scan B
—he— [ -2 LSH Images |
y 2
recalled [z
0'%300 200 300 400 500 600 700 800 900 1000

Number of nearest neighbors (k)

Fig. 2. Results on the Photo Tourism data set. The lower two curves show LSH or linear scan applied for L, search on SIFT descriptors; the upper
two curves show KLSH or linear scan applied for a Gaussian RBF kernel after metric learning is applied to the SIFT vectors. For both, recall rates
using hashing are nearly equivalent to those using linear scan search. However, now that our KLSH algorithm enables hashing with the RBF kernel,

more accurate retrieval is possible in sublinear time.
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distance. The two higher curves show recall using a
Gaussian RBF kernel on top of the learned SIFT features.
In both cases, the recall rate relative to a linear scan is
hardly affected by the hashing approximation. However,
with KLSH, a stronger kernel can be used with the hashing
(the RBF), which improves the accuracy of the results. For
this data set, KLSH requires searching only 0.26 percent of
the database on average, a significant improvement.

Again, the M-tree baseline offered no better performance
than a linear scan on this data set; as earlier, we suspect this
is because of the high dimensionality of the features, and
the low variance in the interfeature distances.

6.4 Example-Based Scene Recognition

To further demonstrate the applicability and flexibility of
KLSH, we next consider hashing with the y?-kernel. The
x?-kernel is defined as a generalized Gaussian kernel
parameterized by the x? distance between two histograms
h; and h;:

1 (i) — hy(k))’

Kl ) exp( T wmrm )
where H denotes the number of histogram bins and ~ is a
scaling parameter. This kernel is a favored similarity
measure for object recognition and image and video
retrieval. In particular, it is repeatedly found to be very
effective for the popular bag-of-visual-words representa-
tion, which is used to encode the distribution of local spatial
or spatiotemporal appearance patterns (e.g., [41], [42], [43]).
As with the experiments above, to our knowledge no
previous hash functions can support this specialized kernel
with guaranteed sublinear time retrieval.

To test this kernel with bag-of-words descriptors, we
perform experiments with a data set previously studied in
[39]. It contains 5,400 images of 18 different tourist
attractions from the photo-sharing site Flickr. The data set
was composed by taking three cities in Europe that have
major tourist attractions: Rome, London, and Paris. The
tourist sites for each city were taken from the top attractions
in www.TripAdvisor.com under the headings Religious
site, Architectural building, Historic site, Opera, Museum,
and Theater.® We downloaded the first 300 images returned
from each search query to represent the data for each class.
We manually fixed the ground truth labels.

All images were scaled down to have moderate width
(320 pixels). To extract local image features at interest
points, we detect corner and blob-like regions using the
Harris-affine [44] and Maximally Stable Extremal Regions
(MSER) [45] detectors, and represent all regions with SIFT
descriptors [46]. Following standard procedures, we use
k-means to form the visual word codebook, and set the
number of visual words to be k = 200.

We again pose a nearest neighbor classification task, and
compare results of a linear scan with the KLSH algorithm.
We randomly split the data into database and test queries via
a 50/50 split. As with the Caltech experiment, we choose
p = 300, ¢ = 30, and 300 hash bits, and vary e. We compared a

6. Overall, the list yielded 18 classes: Arc de Triomphe, Basilica San
Pietro, Castel SantAngelo, Colosseum, Eiffel Tower, Globe Theatre, Hotel
des Invalides, House of Parliament, Louvre, Notre Dame Cathedral,
Pantheon, Piazza Campidoglio, Roman Forum, Santa Maria Maggiore,
Spanish Steps, St. Paul’s Cathedral, Tower Bridge, and Westminister Abbey.
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Fig. 3. Results on the Flickr data set. The plot shows k-nearest neighbor
accuracy of a linear scan and the KLSH algorithm as a function of e.
Here, p = 300, t = 30, and b = 300 hash bits are used. We see that the
accuracy of hashing approaches the accuracy of a linear scan as e
decreases. Note that chance accuracy on this 18-way classification
problem would be only 0.05.

k-nearest neighbor classifier for the test queries (k = 5) using
a linear scan with the kernelized hashing method.

Fig. 3 shows the results. As expected, the accuracy of the
k-nearest neighbor classifier approaches the results of
the linear scan as e goes to 0. These results share the same
characteristics as the results over the Caltech data set, and
demonstrate another valuable kernel that was previously
inaccessible with hashing algorithms. Fig. 4 shows some
example retrievals to qualitatively compare KLSH's results
to those of a linear scan; we see that the results of KLSH
typically match well with the results of the linear scan.

6.5 Large-Scale Image Search with Tiny Images
Next, we provide results using a very large-scale data set of
80 million images, provided by the authors of [19]. Here, the
task is content-based image retrieval. The images are “tiny”:
32 x 32 pixels each. Following [11], we use a global Gist
descriptor for each image, which is a 384-dimensional vector
describing the texture within localized grid cells. We apply
KLSH to a Gaussian RBF kernel over the Gist features. This
experiment clearly demonstrates the practical scalability of
our hashing approach for very large image databases.

Given that the images were collected with keyword-
based web crawlers, the data set does not have definitive
ground truth to categorize the images. However, we can use
the data to qualitatively show the kinds of images that are
retrieved, to quantitatively show how well KLSH approx-
imates a linear scan, and to confirm that our algorithm is
amenable to rapidly searching very large image collections.

Fig. 5 shows example image retrieval results. As in the
Flickr image figure above, the leftmost image in each set is
the query, the top row shows the linear scan results, and the
row below it shows our KLSH results. Ideally, linear scan
and KLSH would return the same images, and indeed they
are often close and overlap. The Gist descriptors appear to
perform best on images with clearly discernable shape
structure—sometimes the descriptors are insufficient, and
so both the linear scan and hashing results do not appear to
match the query.

Fig. 6 quantifies the relative accuracy for the images
retrieved using our KLSH keys with a linear scan with the
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Fig. 4. Example queries and retrieved neighbors for the Flickr data set. Each column shows eight queries; the leftmost image in each group is the
query image and to its immediate right are the five nearest examples according to a linear scan with the x> kernel (the ideal result). Just under each
of those are the neighbors retrieved with KLSH. Note the similarity between those found exhaustively and those found with our algorithm, and the
strength of the x2-kernel for this scene matching task.
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]
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Fig. 5. Example results for the Tiny Image data set. For each example, the query appears as the leftmost image. The top row corresponds to results
of a linear scan with the Gist vectors; the second row corresponds to the KLSH results. Our method often retrieves neighbors very similar to those of
the linear scan, but does so by searching only 0.98 percent of the 80 million images.
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Fig. 6. Results on the Tiny Images data set. The plot shows how many
linear scan neighbors are needed to cover the first 10, 20, or 30 hashing
neighbors. The ideal curve would reach the top left corner of the plot.
The 10-hashing nns curve shows, for example, that 100 percent of the
neighbors in KLSH’s top 10 are within the top 50 returned with an
exhaustive linear scan.

Hamming distance versus an exhaustive linear scan in the
original Gist feature space. The curves show how many of
the top-ranked exhaustive linear scan neighbors must be
included before the top 10, 20, or 30 KLSH results are all
accounted for. For example, they show that for the top 10
KLSH neighbors, 100 percent will be within the top 50 linear
scan neighbors on average. Similarly, for the top 30 KLSH
neighbors, 80 percent will be within the top 50 linear scan
neighbors on average.

We have also evaluated the Tiny Images search using
Charikar’s LSH hashing algorithm with the KLSH keys for
this large-scale database, as reported in [47]. We use only
130 hash key permutations (which corresponds to € ~ 2.74)
in order to restrict the memory overhead when storing the
sorted orders. To counter the accuracy loss that a higher
value of € may entail, we increase the B parameter to 100 so
as to search nearby hash buckets and thereby explore more
hashing matches. We use b =300 bits per image and
randomly select 100 images as queries. The KLSH para-
meters are fixed at t = 30 and p = 300, as before.

In this setting, KLSH searches only 0.98 percent of the
entire database on average in order to produce the top 10
approximate nearest neighbors per query. (We can easily
decrease this percentage even further by using a smaller
value of B; our choice may have been too liberal.) With
hashing, the average running times for a NN query with
our Matlab code fully optimized are: 0.001 s for hash key
construction and permutation (overhead), 0.13 s for binary
search to find approximate NNs (overhead), and 0.44 s for
searching the approximate NNs. In contrast, a linear scan
takes 45 seconds per query on average, assuming that all
images are stored in memory.

6.6 Normality Test for the Kernelized Hyperplanes

The proposed KLSH algorithm relies on generating Gaus-
sian-distributed hyperplanes in the kernel-induced feature
space. How Gaussian are the hyperplanes that the algorithm
implicitly generates? Due to the central limit theorem, we
can expect that the larger the number of sampled points used
to generate the hyperplanes (i.e., the larger p and ¢ are), the
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more closely the functions will resemble samples from the
desired distribution. While by definition we cannot empiri-
cally test the normality of the hyperplanes for an arbitrary
kernel, we can examine their normality for the special case of
a linear kernel for which we do know the kernel-induced
feature space mapping (the identity).

Thus, in this experiment, we evaluate the Gaussianity of
KLSH hyperplanes computed using our algorithm’s learned
weights on selected training points. We use a data set of
90,000 128-dimensional SIFT descriptors taken from the
Notre Dame images in the Photo Tourism image patch
collection. For increasing values of p, we use KLSH to
generate the weights on selected points among the p training
instances, and then explicitly compute the KLSH hyperplane
dictated by those learned weights: =" w(i)¢(z;),
which is simply r =Y w(i)z; for the linear kernel. We
do this for 1,000 trials for each value of p, each time selecting a
random subset of p indices from the data, and setting
t=10.2xp]|.

To score the degree of normality, we use the Anderson-
Darling statistic [48]. The Anderson-Darling method is a
statistical test for the hypothesis that n independent,
identically distributed random variables have a specified
continuous distribution, and is often used to test whether a
sample of data departs from normality. Lower values of the
statistic indicate greater evidence for a Gaussian fit, and the
test is declared successful (Gaussian hypothesis confirmed)
if the associated probability exceeds the critical value for a
given confidence level .

For reference, we compare the Gaussianity results of
KLSH to two methods: 1) hyperplanes sampled directly
from the desired N(0,1) 128-dimensional distribution, and
2) hyperplanes computed by taking a randomly weighted
combination of points from the same training pool, with
weights sampled from A(0,1). The former serves as the
“ideal” upper bound since those are the true hyperplanes
one would hash with in this special case of no kernel
mapping; the latter serves as a sanity check baseline to
verify the meaningfulness of the KLSH-derived weights.

Fig. 7 shows the results in terms of the raw distribution
of Anderson-Darling scores (left) and the corresponding
success rates (right) as a function of p. These results clearly
demonstrate that KLSH generates hyperplanes from the
desired distribution, nearly matching the normality statis-
tics of the upper bound, even when using rather few
training points (e.g., for p = 150). This is a good sign for
hashing complexity since our algorithm’s query time is
linearly dependent on the value of p. In contrast to KLSH,
the baseline that takes a random combination of training
points yields hyperplanes unlikely to be normal. Interest-
ingly, the success rate of the random baseline increases with
p, perhaps a side effect of the CLT. Nonetheless, as
expected, KLSH is significantly better, and makes it possible
to generate Gaussian-distributed hyperplanes with very
few sampled training points for this data set.

6.7 Comparison to Random Fourier Features

We now focus on a comparison of KLSH applied to the
Gaussian kernel with an existing technique based on random
Fourier features. In [31], it was shown that any shift-invariant
kernel (such as the Gaussian kernel) can be approximated by
a low-dimensional embedding via random Fourier features.
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Fig. 7. Empirical verification of the “Gaussianity” of the random hyperplanes generated by KLSH, for a linear kernel with image patch data. We
compare KLSH’s hyperplanes to both those generated by directly sampling from a Gaussian distribution (“True Random”), as well as those
generated by taking a random weighted combination of training points from the same pool (“Random Weights”). (a) Distribution of Anderson-Darling
normality statistics computed for 1,000 trials for each value of p; lower values indicate greater normality. (b) The corresponding success rates across
all 1,000 trials for each approach (o = 0.05). These results demonstrate that KLSH generates hyperplanes from the desired distribution, nearly
matching the normality statistics of the upper bound (hyperplanes sampled from the Gaussian directly), even for rather low values of p. In contrast,
the baseline that takes a random combination of training points (dotted curves) yields hyperplanes unlikely to be normal. See text for more details.

For example, to construct a d-dimensional embedding for the
Gaussian kernel, each dimension ¢ is parameterized by a
Gaussian vector w; and a value b; chosen uniformly at
random in [0,27], and then the ith dimension of the
embedding for an arbitrary data point z is given by
\/2/dcos(wlz +b;). In follow-up work, Raginsky and
Lazebnik [20] showed how to extend this embedding for
locality-sensitive hashing by appropriately binarizing the
random Fourier embedding. For both the binarized and
nonbinarized embeddings, error bounds were proven for
approximations to the corresponding shift-invariant kernels.

We compare the hash embeddings obtained by KLSH
(using the Gaussian kernel) with those of the binarized
random Fourier features. We evaluate over the five vector-
based data sets used in [49] for testing the ability of a
hashing method to approximate the true nearest neighbors
in the input (kernel) space, with the evaluation criterion
adopted from [11]. These data sets are: the Photo Tourism
data; Peekaboom and LabelMe, two image data sets on top
of which global Gist descriptors have been extracted;
MNIST, the standard handwritten digits data set; and
Nursery, one of the UCI data sets. The z-axis in the plots in
Fig. 8 corresponds to the number of hash bits used, while
the y-axis corresponds to how well the nearest neighbors in
the Hamming space match the nearest neighbors in the
original space. Specifically, for each data set, we randomly
choose 1,000 points as our “database” and 3,000 points as
our set of queries. Among database points, we find the
average distance between every point and its 50th nearest
neighbor (using the Gaussian kernel), and use this as a
threshold for determining true nearest neighbors. Then, for
each query, we determine which query-database pairs have
Hamming distance less than or equal to 3, and plot the
fraction of these that are true nearest neighbors, which
we denote as the overlap score. We would expect that the
fraction should approach 1 as the number of bits increases.

The results of the evaluation over the five data sets are
shown in Fig. 8. Since the binarized Fourier embeddings
are optimized for the Gaussian kernel, we expected them

to outperform our more general technique. Surprisingly,
this does not seem to be the case, and our method appears
to be a better match to the Gaussian kernel under our
evaluation criterion on each of the benchmark data sets.

One possible explanation for the poorer performance of
the Fourier features is that the analysis of the binarized
embeddings given in [20] does not explicitly bound any
measure between nearest neighbors in the binary space and
nearest neighbors in the original Gaussian kernel space.
Because our method is additionally not restricted to shift-
invariant kernels, the results suggest that our approach may
be more desirable in general for hashing as compared to
using Fourier features.

7 CONCLUSIONS

We presented a general algorithm to draw hash functions
that are locality sensitive for arbitrary kernel functions,
thereby permitting sublinear time approximate similarity
search. This significantly widens the accessibility of LSH to
generic normalized kernel functions, whether or not their
underlying feature space is known. While our experiments
focus on visual data, there is nothing about our approach
that is specific to image features. Furthermore, since our
method does not require assumptions about the data
distribution or input, it is directly applicable to many
existing useful measures that have been studied for image
search and other domains.
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