
Foundations and TrendsR© in
Machine Learning
Vol. 5, No. 4 (2012) 287–364
c© 2013 B. Kulis
DOI: 10.1561/2200000019

Metric Learning: A Survey

By Brian Kulis

Contents

1 Introduction 288

2 Distance Learning via Linear Transformations 292

2.1 A Simple Motivating Example 292

2.2 Basic Techniques and Notation 293

2.3 Regularized Transformation Learning 295

2.4 Representative Special Cases 300

2.5 Optimization Techniques 310

2.6 Summary 320

3 Nonlinear Models for Metric Learning 321

3.1 Kernelization of Linear Methods 322

3.2 Other Nonlinear Methods 333

4 Extensions 339

4.1 Metric Learning for Kernel Regression 339

4.2 Metric Learning for Ranking 340

4.3 Dimensionality Reduction and Data Visualization 341

4.4 Database Indexing 342

4.5 Domain Adaptation 343

5 Applications 345

5.1 Computer Vision 345

5.2 Text Analysis 348

5.3 Other Applications 350

6 Conclusions 352

A Representer Theorem Proof 354

Acknowledgments 358

References 359

Foundations and TrendsR© in
Machine Learning
Vol. 5, No. 4 (2012) 287–364
c© 2013 B. Kulis
DOI: 10.1561/2200000019

Metric Learning: A Survey

Brian Kulis

Ohio State University, CSE Department, Columbus, OH 43210, USA,
kulis@cse.ohio-state.edu

Abstract

The metric learning problem is concerned with learning a distance

function tuned to a particular task, and has been shown to be use-

ful when used in conjunction with nearest-neighbor methods and other

techniques that rely on distances or similarities. This survey presents

an overview of existing research in metric learning, including recent

progress on scaling to high-dimensional feature spaces and to data sets

with an extremely large number of data points. A goal of the survey is to

present as unified as possible a framework under which existing research

on metric learning can be cast. The first part of the survey focuses on

linear metric learning approaches, mainly concentrating on the class

of Mahalanobis distance learning methods. We then discuss nonlinear

metric learning approaches, focusing on the connections between the

nonlinear and linear approaches. Finally, we discuss extensions of met-

ric learning, as well as applications to a variety of problems in computer

vision, text analysis, program analysis, and multimedia.

1

Introduction

Consider the images in Figure 1.1, and imagine a scenario in which we

must compute similarity or distances over pairs of images (for example,

for clustering or nearest neighbor classification). A basic question that

arises is precisely how to assess the similarity or distance between the

pairs of images. For instance, if our goal is to find matching faces based

on identity, then we should choose a distance function that emphasizes

appropriate features (hair color, ratios of distances between facial key-

points, etc). But we may also have an application where we want to

determine the pose of an individual, and therefore require a distance

function that captures pose similarity. Clearly other features are more

applicable in this scenario. To handle multiple similarity or distance

metrics, we could attempt to determine by hand an appropriate dis-

tance function for each task, by an appropriate choice of features and

the combination of those features. However, this approach may require

significant effort and may not be robust to changes in the data. A desir-

able alternative — and the focus of this survey — is to apply metric

learning, which aims to automate this process and learn task-specific

distance functions in a supervised manner.

288

289

Fig. 1.1 Example face data set. In one application, our notion of “distance” between faces
may depend on the pose, whereas in another application it may depend on the identity.

A possible informal formulation of the metric learning problem

could be given as follows: given an input distance function d(x,y)

between objects x and y (for example, the Euclidean distance), along

with supervised information regarding an ideal distance, construct a

new distance function d̃(x,y) which is “better” than the original dis-

tance function (we could also easily replace “distance” with “similar-

ity,” and d with s for some similarity function s(x,y)). This survey

will focus, for the most part, on learning distance functions d̃(x,y) of

the form d(f(x),f(y)) for some function f — that is, we learn some

mapping f and utilize the original distance function over the mapped

data. We will denote this approach as global metric learning methods,

since they learn a single mapping f to be applied to all the data.

One possible drawback to the above definition of metric learning

is that it assumes that we have at least some supervision available

to learn the new distance; the fact that we assume supervision seems

somewhat arbitrary. Take, for instance, dimensionality reduction: linear

methods such as principal components analysis can be viewed as con-

structing a linear transformation P to be applied globally to the data,

290 Introduction

in an unsupervised manner. The resulting distance between objects

is therefore d(Px,Py), and one may claim that this is also a form of

metric learning. In contrast, the methods we study typically have super-

vised information regarding the structure of the desired distance func-

tion. For example, one popular form of supervision — relative distance

constraints — assumes we may not know the target distance between

pairs of instances, but does assume we know that object x is more sim-

ilar to y than it is to z. The fact that the supervised information is

a function of the ideal distance (or similarity) is key to distinguishing

the methods we study in this survey from other existing techniques

such as dimensionality reduction methods or classification techniques.

Furthermore, incorporating such supervision lends itself to interesting

algorithmic and analysis challenges, as we will see. Thus, in this sur-

vey we will mainly focus on metric learning as a supervised learning

problem.

We will break down global metric learning into two subclasses —

linear and nonlinear. For both cases, we will mainly focus on the

case where the input distance function is the Euclidean distance, i.e.,

d(x,y) = ‖x − y‖2. In the linear case, we aim to learn a linear map-

ping based on supervision, which we can encode as a matrix G such

that the learned distance is ‖Gx − Gy‖2. This paradigm is by far the

most prevalent in the metric learning community due to the fact that

many of the resulting formulations are tractable (at the least, local

solutions can be found easily). To achieve convexity, many methods

assume that G is square and full-rank, leading to convex optimization

problems with positive semi-definiteness constraints. We will discuss

such methods in Section 2.

We study nonlinear methods for global metric learning in Sec-

tion 3. In this case, the distance function is the more general d(x,y) =

‖f(x) − f(y)‖2. One of the most well-understood and effective tech-

niques for learning such nonlinear mappings is to extend linear methods

via kernelization. The basic idea is to learn a linear mapping in the

feature space of some potentially nonlinear function φ; that is, the dis-

tance function may be written d(x,y) = ‖Gφ(x) − Gφ(y)‖2, where φ
may be a nonlinear function. While it may not appear that we have

gained anything by this, if we further assume that we can compute

291

the kernel function κ(x,y) = φ(x)Tφ(y), then it turns out that we

may efficiently learn G in the input space using extensions of linear

techniques. Crucially, the resulting algorithms scale independently of

the dimensionality of the feature space of φ, allowing us to utilize

kernel functions whose embedding functions may be extremely high-

dimensional (or even infinite-dimensional, as in the Gaussian kernel).

A core result that we discuss is a representer theorem that demonstrates

when such metrics may be learned. Beyond kernelization, we discuss

some other proposed methods for nonlinear metric learning, including

methods based on neural networks.

The goal of the survey is to provide an overview of recent advances

in metric learning. For the sake of clarity, we will attempt to present as

much of the literature as possible under a unified framework. Of course,

given the broad scope of the metric learning problem, and the fact that

not all material fits neatly into such a unified presentation, we will have

to divert from the main presentation from time to time. In addition to

presenting the main metric learning models and algorithms that have

been studied, we also focus on several recent applications, including

applications from computer vision, multimedia, and text analysis. It is

our hope that this survey will synthesize much of the recent work on

metric learning, and inspire new algorithms and applications.

2

Distance Learning via Linear Transformations

We begin with the simplest and popular approach to learning metrics.

This approach is often called “Mahalanobis metric learning” in the

research community (though the metric learned is not the Mahalanobis

distance, as we will discuss), and attempts to learn distances of the form

‖Gx − Gy‖2 for some matrix G.

2.1 A Simple Motivating Example

As an example, consider the “wine” data set from the UCI machine

learning repository.1 This data set contains 13 attributes obtained by

chemical analyses of wines grown in Italy. The underlying classification

problem is to determine to which of three classes of wines each instance

belongs, based on these 13 attributes. Suppose we are interested in find-

ing a distance function over the space of these attributes. The simplest

and most obvious choice would be to compute the Euclidean distance

between the attribute vectors corresponding to two wines. Unfortu-

nately, a quick look at the underlying attributes shows why this will not

1Available at http://archive.ics.uci.edu/ml/

292

2.2 Basic Techniques and Notation 293

work. Nine of the attributes have an average attribute value across the

data set in the range [0,10], 3 of the attributes have an average attribute

value in the range [10,100], and one feature has an average value of

747. Computing the distance between two feature vectors is completely

dominated by the single largest attribute, and therefore carries little

information about the data as a whole. Further, if one uses the distance

function in conjunction with a classifier such as a k-nearest neighbor

classifier, the performance is poor.

This example highlights that, at the very least, appropriate scal-

ing of the data features is necessary before applying a distance func-

tion such as the Euclidean distance. For instance, one option would

be to normalize each attribute, or to whiten the data. Indeed, whiten-

ing the data and then applying the Euclidean distance is precisely the

Mahalanobis distance. However, such unsupervised scaling is generally

not sufficient: in one application, certain features may be more impor-

tant than in other applications, and thus the weighting of the features

may change from application to application. This argument suggests

the need for supervised learning of feature weighting to transform the

data from one space to another. In the context of metric learning, the

goal will be to learn such transformations of the data based on super-

vised information regarding the distances of the transformed data.

Linear transformation methods for metric learning are simply meth-

ods for learning the weights for a scaling and rotation of the data, given

appropriate supervised data. In the following sections, we will describe

a formalization for learning linear transformations for metric learning,

and then we will describe several special cases which have received

particular attention in the machine learning community. In subsequent

sections, we will see how to generalize the linear transformation model

for learning nonlinear transformations.

2.2 Basic Techniques and Notation

We begin with some notation and comparison to basic existing

methods. Let us suppose that we have a set of data points in a

Euclidean space x1, . . . ,xn. Let X = [x1, . . . ,xn] be the matrix of

all the data points. We will use the Euclidean distance ‖xi − xj‖2

294 Distance Learning via Linear Transformations

=
√

(xi − xj)T (xi − xj) as the canonical distance measure,2 and the

inner product xT
i xj as the canonical inner product. Let ei be the ith

standard basis vector, i.e., a vector of all zeros except for entry i, which

has a 1.

2.2.1 The Mahalanobis Distance

The Mahalanobis distance [51] is defined as the following:

dMahal(xi,xj) =
√

(xi − xj)TΣ−1(xi − xj),

where Σ is the covariance matrix of the data. In many cases, the

true covariance is unknown, and so a point estimate of the covari-

ance (e.g., the sample covariance) is used. The Mahalanobis distance

is closely related to data whitening. When whitening a random vector

w whose mean and covariance are µ and Σ, respectively, we compute

the whitened version w̃ via

w̃ = Σ−1/2(w − µ).

It is straightforward to show that the resulting random variable has

mean zero and covariance equal to the identity. Further, the Euclidean

distance between two whitened variables is simply the Mahalanobis

distance: √
(w̃i − w̃j)T (w̃i − w̃j)

=

√√√√(Σ−1/2(wi − µ) − Σ−1/2(wj − µ))T

×(Σ−1/2(wi − µ) − Σ−1/2(wj − µ))

=
√
(wi − wj)TΣ−1(wi − wj) = dMahal(wi,wj).

Note that, in the case of the wine example discussed earlier, the use of

the Mahalanobis distance would avoid the scenario in which one feature

dominates in the computation of the Euclidean distance, as the data

has implicitly been whitened.

2 In fact, we will most often work only with the square of the Euclidean distance, which is
not a metric or pseudo-metric as it does not satisfy the triangle inequality. However, most
of the time it is algorithmically simpler to work with the squared Euclidean distance.

2.3 Regularized Transformation Learning 295

In the metric learning literature, the term “Mahalanobis distance”

is often used to denote any distance function of the form:

dA(x,y) = (x − y)TA(x − y),

where A is some positive semi-definite matrix (i.e., its eigenvalues are

non-negative). As with the original Mahalanobis distance, we can view

this distance simply as applying a linear transformation of the input

data: since A is positive semi-definite, we factorize it as A = GTG

and simple algebraic manipulations show that dA(x,y) = ‖Gx − Gy‖22.
Thus, this generalized notion of a Mahalanobis distance exactly cap-

tures the idea of learning a global linear transformation.

2.2.2 Unsupervised Metric Learning and Dimensionality
Reduction

A number of classical dimensionality reduction methods may be viewed

as Mahalanobis distance learning methods, though we will tend to not

focus on such classical methods throughout the survey. For instance,

consider principal components analysis (PCA) [60] (or its probabilistic

extensions [56, 70]), which finds a linear transformation to map the

data from an input space to a lower-dimensional space such that the

lower-dimensional projected data is as informative as possible, in that

it captures as much of the variance of the data as possible. Classical

supervised methods that discover linear mappings in the data include

linear discriminant analysis [53], which uses class labels to maximally

separate two classes of data.

While these methods are indeed related to Mahalanobis distances

and metric learning — they can be viewed as inducing a Mahalanobis

distance obtained via the projections computed by their respective algo-

rithms — our focus will be on methods that specifically target learning

the underlying metric, and employ some form of supervision to do so.

2.3 Regularized Transformation Learning

We now turn to a formal model for global linear metric learning with

the Euclidean distance. We propose a general, regularized model that

captures most of the existing techniques studied previously in the

296 Distance Learning via Linear Transformations

literature, and which has the added benefit of allowing for general

analysis, which will be useful when discussing nonlinear generalizations.

2.3.1 Model

Recall our informal definition of metric learning: we aim to learn a

new distance using supervision that is a function of the learned dis-

tance/similarity. In the case of global linear metric learning, the origi-

nal distance is the squared Euclidean distance and the learned distance

is the squared Euclidean distance after applying the transformation G

globally.

We would like the class of supervision to be as general as

possible but still allow for useful analysis. To that end, we will

assume that the supervision depends on the data only through the

mapped inner product matrix XTGTGX = XTAX. This allows, for

example, supervision based on the mapped Euclidean or squared

Euclidean distance since ‖Gxi − Gxj‖22 = (xi − xj)
TA(xi − xj) =

(ei − ej)
TXTAX(ei − ej). Similarly, supervision based on mapped

inner products is also permitted, as well as linear combinations of

mapped distances or similarities. In Section 2.3.2, we will describe var-

ious types of supervision that are utilized by existing techniques.

To encode the supervision, we assume that we are given a col-

lection of m loss functions, which we will denote as c1, . . . , cm; by

the assumption above, each loss function depends on the data only

through the inner product matrix XTAX. For instance, one loss func-

tion might encode the squared loss between the target distance between

xi and xj and the squared Euclidean distance between xi and xj using

the Mahalanobis distance with A.

The second part of the model is a regularizer on the model, which

we will denote as r(A), and will be a function of A. Putting these two

together, we obtain the general model, a linear combination between

these two components of the model:

L(A) = r(A) + λ
m∑
i=1

ci(X
TAX). (2.1)

The λ term is a trade-off between the regularizer and the loss. The goal

will be to find the minimum of L(A) over the domain of A, which we

2.3 Regularized Transformation Learning 297

will denote as dom(A). In many cases, the domain of A is defined as the

space of positive semi-definite matrices, but in some cases we will want

to further restrict the domain (for example, to the space of non-negative

diagonal matrices). Note that the final form of the model is analogous

to the standard regularized empirical risk minimization problem uti-

lized for classification problems such as support vector machines [59],

the lasso [69], or (regularized) logistic regression [4], except that the

optimization is with respect to a matrix and the loss functions have a

particular form.

Before proceeding to discuss some examples of this model, we make

a few remarks. First, sometimes the metric learning model will be spec-

ified as a constrained optimization problem of the form:

min
A∈dom(A)

r(A)

subject to ci(X
TAX) ≤ 0, 1 ≤ i ≤m.

In general, we can transform this constrained problem into the uncon-

strained model, but we will often present the constrained version when

discussing models that were originally developed in this form.

Second, we could have specified the regularizer in terms of G instead

of A, and constraints of the form ci(X
TGTGX), and then posed the

minimization problem with respect to G. Indeed, neighbourhood com-

ponents analysis [26], discussed below, solves a problem of this form. In

many cases, however, solving with respect to A yields convex models,

whereas solving with respect to G does not. Recall that a convex opti-

mization problem seeks to solve the following problem [6]:

min f0(y)

subject to fi(y) ≤ 0, i = 1, . . . ,m

aT
i y = bi, i = 1, . . . ,p

The functions f0,f1, . . . ,fm are all convex. Note that we may replace the

inequalities with generalized inequalities [6]; for instance, if the opti-

mization problem is defined with respect to a matrix Y , the constraint

that Y be positive semi-definite is a convex constraint that may be

incorporated into the optimization problem. Returning to the metric

298 Distance Learning via Linear Transformations

learning problem, writing in terms of A instead of G often yields a

convex optimization problem since the mapped inner product xT
i Axj

and squared Euclidean distance (xi − xj)
TA(xi − xj) are linear with

respect to A, whereas they are quadratic with respect to G. Com-

bining this fact with the types of constraints that are typically used

(and discussed below), the final form of the optimization problem is

often convex with respect to A. It is often beneficial to work with

convex optimization problems as they can be solved in polynomial

time [6].

2.3.2 Examples of Regularizers and Constraints

Before discussing some specific examples of the above model, let us

briefly consider regularization and supervision in a general setting. The

two most popular forms of supervision for metric learning are given by

(a) similarity/dissimilarity constraints, and (b) relative distance con-

straints. For similarity constraints, we are given a set of pairs (i,j) ∈ S
of objects that should be similar, and pairs (i,j) ∈ D of objects that

should be dissimilar. Typically, we want to ensure that

dA(xi,xj) ≤ u (i,j) ∈ S
dA(xi,xj) ≥ � (i,j) ∈ D.

We can encode these as loss functions in various ways; for example, the

hinge loss would encode the desired constraints as:

c(XTAY) = max(0,dA(xi,xj) − u), (i,j) ∈ S
c(XTAY) = max(0, � − dA(xi,xj)), (i,j) ∈ D.

Similarly, the squared hinge loss would encode the constraints as:

c(XTAY) = (max(0,dA(xi,xj) − u))2, (i,j) ∈ S
c(XTAY) = (max(0, � − dA(xi,xj)))

2, (i,j) ∈ D.

Note that the above losses rely on an appropriate choice of u and �.

Below, we will use the notation [z]+ = max(0,z) for the standard hinge

loss.

2.3 Regularized Transformation Learning 299

Another possibility is to utilize relative distances. Typically, these

are specified via a triple (i,j,k) ∈ R which denotes that xi should have

a smaller distance to xj than xj to xk:

dA(xi,xj) < dA(xi,xk).

Note that, unlike similarity and dissimilarity constraints, the relative

distances do not require one to specify any parameters. However, typ-

ically one adds a margin to the above constraint:

dA(xi,xj) < dA(xi,xk) − m,

for some m. In many cases, m is chosen to be 1. These can be encoded

into loss functions analogously to the similarity and dissimilarity con-

straints. As we will see in the representative examples, other constraints

are possible, and have been utilized in the literature. For instance, one

approach is to constrain the sum of distances of pairs of similar objects

to be bounded. However, the use of similarity/dissimilarity and rela-

tive distance constraints appears to be the most popular method of

introducing supervision.

In many applications, the form of the side information is governed

by the application. For instance, suppose we are applying metric learn-

ing for face identity, and we want to gather supervision from human

subjects. It is typically easier for a subject to provide relative distance

constraints than similarity and dissimilarity constraints (i.e., it is pos-

sible to say that image a is more similar to b than to c, but it may

be difficult to determine whether an arbitrary pair of images should be

considered similar or dissimilar). On the other hand, if we have a fully

supervised training data set consisting of class labels for all training

data, it is straightforward and standard to create similarity constraints

for all pairs of objects of the same class and dissimilarity constraints for

pairs of objects of different classes. In practice, the more constraints one

gives (assuming appropriate regularization), the better the performance

of the resulting metric is; as a result, for fully supervised cases one often

uses all possible pairs. Note that one could also create relative distance

constraints given a fully supervised training set, though the number of

such constraints grows cubically with the size of the training set.

300 Distance Learning via Linear Transformations

Regarding regularizers, we will motivate several cases in the exam-

ples below. However, to get a sense of some potential regularizers, each

of the following have been considered:

r(A) =
1

2
‖A‖2F

r(A) = tr(AC)

r(A) = tr(A) − log det(A).

The particular choice of regularizer has a significant impact on the

resulting metric learning model, both theoretically and algorithmically.

For instance, when C is the identity matrix, the resulting regularizer is

the trace-norm (or nuclear-norm) regularizer, which is known to prefer

low-rank solutions. For the metric learning problem, this corresponds to

finding matrices G which reduce the dimensionality of the input data,

and therefore these methods can be viewed as a form of dimensionality

reduction.

2.4 Representative Special Cases

We now describe, in more detail, several existing models for linear met-

ric learning. As we will see, several of these methods can be very simply

obtained by picking a regularizer and a form of constraints. However,

the choice of regularizer and constraints have important implications

for both algorithms and the properties of the resulting metrics.

2.4.1 Frobenius Norm Regularization: r(A) = ‖A‖2F
One of the most popular techniques involves regularizing based on the

squared Frobenius norm, i.e., r(A) = ‖A‖2F . This regularizer may be

viewed as the matrix analog of the standard squared-�2 regularizer

that is used in problems such as support vector machines and ridge

regression. As such, the squared Frobenius norm inherits several of the

useful properties that make the squared �2 regularizer popular, such as

its ease in analysis and strong convexity. We will begin our discussion

of special cases of our general model with three existing techniques.

2.4 Representative Special Cases 301

2.4.1.1 Schultz and Joachims

At a high level, the method of Schultz and Joachims [61] may be viewed

as employing a squared Frobenius norm regularizer with relative dis-

tance constraints, under the additional assumption that the matrix

learned is a diagonal matrix. Learning a diagonal Mahalanobis matrix

is equivalent to simply learning weights on the features and evaluat-

ing the Euclidean distance over the re-weighting of the data points.

One advantage to learning a diagonal Mahalanobis matrix is that the

number of parameters only grows linearly with the number of data

dimensions, and is therefore significantly more scalable than general

Mahalanobis matrix learning methods. Thus, Schultz and Joachims

learn feature weights such that the relative distance constraints are

satisfied.

More formally, Schultz and Joachims consider learning a Maha-

lanobis matrix A of the form A = ÃDÃT , where D is a diagonal matrix

and Ã is a given (possibly non-diagonal) matrix. Then the optimization

is expressed in terms of D as

min
D

‖A‖2F + λ
m∑
i=1

ci(X
TAX),

where ci(X
TAX) = [1 + dA(xi1 ,xi2) − dA(xi1 ,xi3)]+, (i1, i2, i3) ∈ R

A = ÃDÃT � 0,D diagonal.

Here R is a set of relative distance constraints, which are enforced

through the hinge loss. In the case where Ã = I, then the optimization

problem is a squared Frobenius regularized metric learning problem

with an additional constraint that the Mahalanobis matrix is diagonal.

The domain of A is the set of all positive semi-definite matrices of the

form ÃDÃT .

Since we are equivalently learning a vector of feature weights, we see

that the optimization problem involves a quadratic objective over the

feature weights, along with the hinge loss applied to a linear function of

the feature weights. Thus, the resulting optimization problem is quite

similar to the classical soft-margin SVM problem [59].

302 Distance Learning via Linear Transformations

2.4.1.2 Kwok and Tsang

In follow-up work, Kwok and Tsang [47] presented a method that uses

Frobenius regularization and similarity/dissimilarity constraints, and

places no diagonal matrix restriction on the form of A. Although their

method is mainly presented as a technique for learning kernels, they also

provide an interpretation of their approach as learning a Mahalanobis

metric.

The form of constraints they utilize is slightly different from other

methods. Consider a similarity constraint dA(x,y) ≤ u, for some x

and y that should be “similar.” In many cases, one simply chooses

a global value for u that is used for all constraints. Instead, Kwok and

Tsang propose that the constraint should be dA(x,y) ≤ dI(x,y); that

is, the learned distance should be smaller than the original distance.

Note the similarity to a relative distance constraint; however, in this

case dI(x,y) is fixed upfront, and so we can view the constraint as a sim-

ilarity constraint where the bound of the constraint depends on x and y.

They define a dissimilarity constraint as dA(x,y) ≥ dI(x,y) + γ, which

ensures that for points that are dissimilar, their distance decreases by

at least γ. They refer to this technique as “idealizing” the distance.

As with Schultz and Joachims, the approach of [47] utilizes a hinge

loss over the constraints. They further let γ be part of the optimization,

and add a penalty within the optimization for γ. The final form of the

optimization is given as:

min
A�0,γ≥0

‖A‖2F +
∑
i

ci(X
TAX) − λgγ

where ci(X
TAX) = λs[dA(xi,yi) − dI(xi,yi)]+, (xi,yi) ∈ S

ci(X
TAX) = λd[dI(xi,yi) + γ − dA(xi,yi)]+, (xi,yi) ∈ D

When written in this way, the above optimization does not quite fall

under the regularization framework that we have adopted due to the

γ term. However, for completeness we note that, with some additional

effort, we can write this in our model by considering

Ā =

[
A 0

0T −γ
]

(2.2)

2.4 Representative Special Cases 303

as an “augmented” Mahalanobis matrix. We consider two augmenta-

tions of the data: x̄ = [xT 1]T and x̂ = [xT 0]T and we let the full aug-

mented data set X have copies of each. Then dĀ(x̄, ȳ) = dA(x,y) − γ

and dĀ(x̂, ŷ) = dA(x,y). We let the domain of Ā be the set of matrices

of the form given in (2.2), where A is positive semi-definite and γ ≥ 0,

and we rewrite our optimization and constraints appropriately over Ā.

When rewriting the constraints, the similarity constraints utilize x̂ and

dissimilarity constraints utilize x̄. Finally, we define the regularizer as

r(Ā) = ‖A‖2F − λgγ.

2.4.1.3 Pseudo-Metric Online Learning

Algorithm (POLA)

The POLA algorithm of Shalev-Shwartz et al. [63] is an example of

a Frobenius-regularized Mahalanobis metric learning method applied

in the online setting. We will discuss further details of the algorithm

below, and focus here only on the model.

The authors assume that each constraint is a similarity or dissimilar-

ity constraint. Let yi = 1 if the pair of points for constraint i, (xi,yi),

should be similar, and yi = −1 if the pair should be dissimilar. The

following loss functions are used by POLA:

ci(X
TAX) = [1 + yi(dA(xi,yi) − γ)]+.

As with Kwok and Tsang, we optimize jointly for A and γ, and can use

the same trick during optimization: we augment A by incorporating γ

and padding appropriately with zeros. Finally, though the authors do

not explicitly state it, the regularizer is the squared Frobenius norm,

which follows from the fact that the algorithm employs Euclidean pro-

jections to define the updates. When we discuss the algorithm, we will

make these connections more precise.

2.4.2 Linear Regularization: r(A) = tr(AC)

We now consider several existing models where the regularizer is a

linear function with respect to the Mahalanobis matrix A.

304 Distance Learning via Linear Transformations

2.4.2.1 Mahalanobis Metric Learning for Clustering

One of the earliest techniques for Mahalanobis metric learning was pro-

posed by Xing et al. [80], sometimes referred to as MMC. The main

idea behind this method is to minimize the sum of distances that should

be similar while maximizing the sum of distances that should be dis-

similar. As with other methods based on similarity and dissimilarity

constraints, we assume a set of similar pairs (xi,xj) ∈ S and dissimilar

pairs (xi,xj) ∈ D are given. The optimization problem to solve is as

follows:

min
A�0

∑
(xi,xj)∈S

dA(xi,xj)

such that
∑

(xi,xj)∈D

√
dA(xi,xj) ≥ 1.

The authors utilize
√
dA(xi,xj) instead of the usual (squared) Maha-

lanobis distance because the solution with the squared Mahalanobis

distance results in a trivial, rank-one solution to the problem. They

discuss both the diagonal case (when the domain of A is restricted

to a positive semi-definite diagonal matrix), and the full case (when

the domain of A is any positive semi-definite matrix). For the full

case, they utilize a gradient-descent algorithm combined with a pro-

jection onto the cone of positive semi-definite matrices. We can view

the above problem in terms of the constrained version of our metric

learning model. Here, the regularizer can be written as tr(AC), where

C =
∑

(xi,xj)∈S(xi − xj)(xi − xj)
T , along with a single constraint for

the dissimilarity constraints. The main application of this work was in

improving k-means-type clustering methods by appropriately learning

the distance function prior to clustering.

Although it does not fall under the regularization framework that we

have been discussing, we note the related method of Bilenko et al. [3],

which also employs Mahalanobis metric learning for clustering. Briefly,

the authors augment a constrained k-means formulation (a cluster-

ing objective with penalties based on must-link and cannot-link con-

straints) by further optimizing with respect to the Mahalanobis (inverse

covariance) matrix of each cluster. Thus, the E-step computes the

2.4 Representative Special Cases 305

cluster assignments, while the M-step updates the means and the

covariance matrices for each cluster.

2.4.2.2 Large-Margin Nearest Neighbors (LMNN)

Weinberger et al. [76, 78] proposed a metric learning technique based

on a combination of relative distance constraints and the regularizer of

Xing et al. That is, the regularizer is the same as in the Xing method —

we can write is as tr(AC), where C =
∑

(xi,xj)∈S(xi − xj)(xi − xj)
T .

Then, similarly to Schultz and Joachims, Weinberger et al. utilize rel-

ative distances. They denote this method as LMNN, which stands for

large-margin nearest neighbors. This model is one of the most popular

methods for metric learning, and we will discuss several extensions of

the LMNN model throughout this survey. Written out, the aim is to

minimize:

min
A�0

∑
(i,j)∈S

dA(xi,xj) + λ
∑

(i,j,k)∈R
[1 + dA(xi,xj) − dA(xi,xk)]+.

The intuition behind LMNN is fairly straightforward: the goal is

that a given data point should share the same labels as its nearest neigh-

bors, while data points of different labels should be far from the given

point. The relative distance with margins enforce such an intuition,

hence the name large-margin nearest neighbors. Figure 2.1 illustrates

the idea behind LMNN; the term target neighbor refers to a point that

xi

margin

target neighbors

impostors

local neighborhood

Class 1

Class 3

Class 2

xi

margin

target neighbors

BEFORE AFTER

impostors

Fig. 2.1 Figure reproduced from [78] demonstrating the goals of LMNN. See text for details.

306 Distance Learning via Linear Transformations

should be similar while an impostor is a point that is a nearest neighbor

but has a different label. The goal of LMNN is to minimize the number

of impostors via the relative distance constraints. The set S is defined

as all pairs of target neighbors, which is often given by the set of pairs

(i,j) where xj is one of the k-nearest neighbors in the same class as xi;

the set R is defined as all triples (i,j,k) such that xi and xj are target

neighbors and xk is a point with a different label.

2.4.2.3 Trace-norm Regularization

A final example of linear regularization arises when we choose C = I;

in this case the resulting regularization is simply r(A) = tr(A). This is

known as the trace-norm, or nuclear-norm.

The trace-norm is known to produce matrices A of low-rank; the reg-

ularizer is analogous to �1 regularization used for sparse linear models

such as the lasso [69]. Since the resulting A matrix is typically low-

rank, we can write A = GTG, where G ∈ Rk×d, with k < d. Therefore,

these methods can be viewed as supervised dimensionality reduction

methods. One particular method, studied in [36], utilizes the trace-

norm regularizer with general linear constraints. If we choose similar-

ity and dissimilarity constraints, we obtain the following (constrained)

problem:

min
A�0

tr(A)

such that dA(xi,xj) ≤ u (i,j) ∈ S
dA(xi,xj) ≥ � (i,j) ∈ D

As will be discussed in the next section, the trace-norm formulation

was originally described in conjunction with kernelization, in order to

describe a supervised nonlinear dimensionality reduction scheme.

2.4.2.4 Neighbourhood Components Analysis (NCA)

and Maximally Collapsing Metric

Learning (MCML)

A slightly different formulation, called neighbourhood components

analysis (NCA), was proposed by Goldberger et al. [26]. As we will

2.4 Representative Special Cases 307

see, the resulting objective is non-convex and does not utilize a linear

regularizer but its convex extension, MCML [25], does. Therefore, we

will categorize this technique under the linear regularization heading.

If we let �i be the class associated with data point xi, then the

objective proposed is simply:

max
A�0

n∑
i=1

∑
{j|�i=�j ,i �=j}

exp(−dA(xi,xj))∑
k �=i exp(−dA(xi,xk))

.

The authors of NCA also consider the following alternate objective:

max
A�0

n∑
i=1

log

 ∑

{j|�i=�j ,i �=j}

exp(−dA(xi,xj))∑
k �=i exp(−dA(xi,xk))

.

The main idea behind these objectives is to optimize a softmax version

of the leave-one-out KNN score. As opposed to the standard leave-one-

out KNN score, which would just consider the distance to the nearest

neighbor, NCA utilizes a continuous and differentiable relaxation of

it, as given above. Although not particularly insightful, this objective

may be viewed in the framework of the general linear metric learning

model as an unconstrained problem where there is no regularizer, and

n constraints of the form:

ci(X
TAX) =

∑
{j|�i=�j ,i �=j}

exp(−dA(xi,xj))∑
k �=i exp(−dA(xi,xk))

.

We define the constraints analogously for the alternate NCA objective.

One drawback to the above objectives is that both are non-convex in A,

and so a globally optimal solution cannot be efficiently found. Since the

problem is non-convex, the authors of NCA instead solve the problem

with respect to G, where as usual A = GTG. They simply run gradient

descent over G; we will discuss gradient descent in Section 2.5.

As follow-up work to NCA, Globerson and Roweis [25] proposed

a variant to NCA which has the desirable property of convexity. It

is based on a similar idea to NCA, except with a modification of

the objective. To use the notation adopted in the MCML paper,

308 Distance Learning via Linear Transformations

define the NCA objective as a set of conditional probabilities pA(j|i),
defined as

pA(j|i) = exp(−dA(xi,xj))∑
k �=i exp(−dA(xi,xk))

,

along with an “ideal” conditional distribution

p0(j|i) ∝
{
1 �i = �j,

0 �i �= �j.

The NCA objective aims to find the matrix A that maximizes pA(j|i)
summed over all i. In contrast, the MCML objective aims to minimize

the KL-divergence between p0 and pA:

min
A�0

n∑
i=1

KL(p0(j|i)|pA(j|i)).

Now, using the fact that KL(p|q) =∑i p(i) log(p(i)/q(i)) and noting

that
∑

i p(i) logp(i) is a constant, we can simplify the objective as

follows:

min
A�0

∑
{i,j|�i=�j}

dA(xi,xj) +
∑

{i,j|�i=�j}
log

∑

k �=i

exp(−dA(xi,xk))

.

The authors further assume that all classes are equally likely, and so

we can write the resulting optimization as:

min
A�0

tr(AC) + λ
∑
i

log

∑

k �=i

exp(−dA(xi,xk))

,

where C =
∑

{i,j|�i=�j}(xi − xj)(xi − xj)
T ; note the similarity to the

method of Xing et al. as well as LMNN. The resulting objective is con-

vex in A, since one can show that the log-sum-exp function is convex;

further, each of the resulting log-sum-exp terms is clearly a function of

the matrix XTAX. We can therefore view the resulting optimization

problem in our framework as utilizing a linear objective with convex

penalties.

We also note the similarity between NCA and work on Infor-

mative Discriminant Analysis [41], a technique that learns a linear

2.4 Representative Special Cases 309

transformation via gradient descent over an objective involving class-

conditional distributions that are similar to those of NCA.

2.4.3 Information-Theoretic Metric Learning (ITML):
r(A) = tr(A) − logdet(A)

The method of Davis et al., called information-theoretic metric learning

(ITML) [20], considers the regularizer r(A) = tr(A) − logdet(A). This

regularizer can be viewed as a special case of the LogDet divergence,

which is defined as

D�d(A,A0) = tr(AA−1
0) − logdet(AA−1

0) − d,

where d is the dimensionality of the data. Simple algebraic

manipulations demonstrate that D�d(A,I) = r(A), and further that

D�d(A,A0) = r(A
−1/2
0 AA

−1/2
0).

The LogDet divergence has various properties that can be readily

verified (see [46] for a detailed discussion), many of which are useful in

metric learning contexts:

• Scale invariance. The divergence satisfies D�d(A,A0) = D�d

(αA,αA0), for α > 0.
• Translation invariance. More generally, for any invert-

ible S, the LogDet divergence satisfies D�d(A,A0) = D�d

(STAS,STA0S).
• Range space preservation. While it appears that the defini-

tion of the LogDet requires the arguments to be strictly pos-

itive definite, one can show that D�d(A,A0) is finite if and

only iff range(A) = range(A0), and therefore the divergence

can be defined for positive semi-definite matrices.
• Connections to multivariate Gaussians. Consider a multivari-

ate Gaussian parameterized by mean µ and precision matrix

A: p(x;µ,A) = 1
Z exp(−dA(x,µ)). Then for two multivariate

Gaussians of the same mean, with precision matrices A0 and

A, we have:

KL(p(x;µ,A0)‖p(x;µ,A)) = 1

2
D�d(A,A0),

where KL is the Kullback–Leibler divergence.

310 Distance Learning via Linear Transformations

The name information-theoretic metric learning is derived from the

last property, as the resulting metric learning optimization may be

viewed in an information-theoretic manner. The LogDet divergence has

been studied in the statistics community, where it is often referred to

as Stein’s loss [39]; the divergence also arises in the context of quasi-

Newton optimization, where the updates of the BFGS and DFP algo-

rithms can be given an interpretation of solving a LogDet optimization

problem at each iteration [21].

The authors of ITML argue that the above properties, along with

the fact that the LogDet divergence is only defined over the space of

positive semi-definite matrices, make it a natural choice for regular-

ization in a metric learning model. They therefore consider similarity

and dissimilarity constraints under the above regularizer, and pose the

learning problem as a constrained optimization problem:

min
A

r(A) = tr(A) − logdet(A)

such that dA(x,y) ≤ u, (x,y) ∈ S
dA(x,y) ≥ �, (x,y) ∈ D.

One can write this problem as an unconstrained problem by incorporat-

ing slack variables; the authors of ITML consider one such formulation,

and solve it using the method of Bregman projections. We will discuss

this technique further in Section 2.5.3.

ITML was one of the first methods, along with POLA, for which

extensions were performed from the linear metric learning problem to

a nonlinear problem via kernelization. ITML and its variants (partic-

ularly LEGO [37] and HOLLER [68]) have also been extended to the

online setting, and solved via stochastic gradient algorithms. We will

also discuss these algorithms below, along with some of their associated

bounds.

2.5 Optimization Techniques

Now that we have seen several examples of models proposed for learning

Mahalanobis distances, we turn to the problem of efficiently optimizing

the resulting models. In general, there is no single optimization tech-

nique that is universally accepted among the various models presented

2.5 Optimization Techniques 311

earlier. Indeed, the authors of most existing models design their own

optimization techniques specific to the individual models. These algo-

rithms run the gamut across the range of possible methods, and a full

treatment of such techniques is beyond the scope of this survey. We

will summarize some of the main techniques that have been utilized

successfully for metric learning applications. The development will be

partially general and partially specific; in most cases we will discuss

a particular model for which a given optimization procedure has been

defined, but we will also discuss how to apply such techniques in a more

general setting.

2.5.1 Gradient Descent

Perhaps the simplest optimization technique is standard gradient

descent [6]. However, despite its simplicity, even gradient descent can be

non-trivial to apply to the metric learning problem. This is because gra-

dient descent is designed for unconstrained optimization problems —

even in the “unconstrained” metric learning problem, there is still a

constraint over the domain of the matrix. Typically the domain is sim-

ply the cone of positive (semi-)definite matrices, so even standard gra-

dient descent cannot be naively applied.

One possible approach when the domain of A is the cone of positive

semi-definite matrices, which was utilized for the NCA model, is to

factorize the matrix A = GTG, and then apply gradient descent on G

directly. The positive semi-definiteness constraint over A implies that

we can always factorize in this manner, so re-writing the optimization

with respect to G allows us to remove the constraint. For instance, an

optimization of the form:

min
A�0

L(A) = r(A) + λ
m∑
i=1

ci(X
TAX)

can simply be rewritten as an unconstrained optimization problem as

follows:

min
G

L(G) = r(GTG) + λ
m∑
i=1

ci(X
TGTGX).

312 Distance Learning via Linear Transformations

Gradient descent then proceeds by iteratively computing the gradient

of L with respect to G and moving in the direction of the gradient:

Gt+1 = Gt − ηt∇L(Gt),

where ηt is the step size for iteration t. Unfortunately, this re-

formulation in terms of G comes at a price: if the original problem is

convex in A, the new problem will almost always be non-convex in G.

Nonetheless, applying gradient descent directly over G has two impor-

tant advantages: (i) one can directly control the rank of A by choosing

the size of G (to guarantee a low-rank solution, one can choose G to

be r × d, where r < d), (ii) the resulting algorithm is simple, fast, and

scalable.

As an example, consider the model of NCA:

max
A�0

n∑
i=1

∑
{j|�i=�j ,i �=j}

exp(−dA(xi,xj))∑
k �=i exp(−dA(xi,xk))

.

The model is already non-convex, so the introduction of the factor-

ization does not eliminate convexity. Using the notation introduced in

the discussion of MCML along with the shorthand xij = xi − xj , it

is straightforward to show that the gradient with respect to G of the

above model can be written as

−2G
∑

{i,j|�i=�j}
pA(j|i)

(
xijx

T
ij −

∑
k

pA(k|i)xikx
T
ik

)
.

Given this gradient computation, one can directly apply stan-

dard unconstrained gradient-based optimization techniques (gradient

descent, L-BFGS [2], etc).

2.5.2 Projected Gradient Descent

On the other hand, if our model is convex and we would like to retain

convexity, we can apply the projected gradient method [27, 49] (which

is a special case of a technique called generalized gradient descent).

The basic idea is that, instead of applying just a gradient step, which

would not retain the positive semi-definiteness of A in general, we apply

2.5 Optimization Techniques 313

gradient descent followed by an orthogonal projection onto the positive

semi-definite cone. That is, we repeat the following:

At+ 1
2
= At − ηt∇L(At)

At+1 = argmin
A∗

‖A∗ − At+ 1
2
‖2F s.t. A∗ � 0

The first step is the standard gradient descent step, and the second

step is the projection back to the cone of positive semi-definite matri-

ces. It turns out that this projection is straightforward: we compute the

eigendecomposition of At+ 1
2
and set all negative eigenvalues to 0. As in

standard gradient descent, care must be taken to ensure that the step-

sizes ηt are chosen appropriately so that one can guarantee convergence.

One example of the use of the projected gradient descent algorithm

is the method utilized by Globerson and Roweis for MCML. Recall the

MCML formulation:

min
A�0

tr(AC) + λ
∑
i

log

∑

k �=i

exp(−dA(xi,xk))

 .

To compute the gradient steps, we first compute the gradient of the

above regularized loss function. Then we apply gradient descent on A

followed by an eigendecomposition where all negative eigenvalues are

set to 0.

A related technique was utilized by Xing et al. for their metric

learning problem. Recall the optimization problem to be solved:

min
A�0

∑
(xi,xj)∈S

dA(xi,xj)

such that
∑

(xi,xj)∈D

√
dA(xi,xj) ≥ 1.

This formulation has 2 constraints: the positive semi-definiteness con-

straint, as well as the constraint over the sum of the dissimilar

pairs. Thus, rather than project onto the single constraint A � 0, we

need to project onto the set which is the intersection of these two

constraints. Projecting onto the intersection of these two constraints

314 Distance Learning via Linear Transformations

can be performed by repeatedly projecting onto the two constraints

individually, until convergence. For details, we refer the reader to the

original paper [80].

2.5.3 Bregman Projections

In cases where there are a large number of constraints, it may be expen-

sive to compute the entire gradient of the loss function. The next two

techniques — Bregman projections and stochastic gradient descent —

are based on making simpler updates based on a single constraint at

a time. Both have been successfully utilized for optimization of several

metric learning models.

The method of Bregman projections (also simply called Bregman’s

algorithm) is a simple first-order technique developed by Bregman in

1967 [8] for solving optimization problems where a strictly convex func-

tion must be minimized with respect to linear inequality constraints:

min
x

f(x)

such that Ax ≤ b.

We can easily think of the basic ITML formulation in this manner,

where we now consider the variable to optimize to be the matrix A, the

function f(A) = tr(A) − logdetA, and the constraints as either similar-

ity and dissimilarity constraints or relative distance constraints (both

of which are linear in the entries of A). We note again that positive def-

initeness is enforced automatically by the loss function, and is therefore

not explicitly considered as a constraint.

The idea behind Bregman’s algorithm is to choose one constraint at

each iteration, and perform a projection so that the chosen constraint

is satisfied. Unlike projected gradient descent, the Bregman projection

is not in general an orthogonal projection, but is rather tailored to the

particular function that is being optimized. After projecting, an appro-

priate correction is employed. Alternatively, we may view Bregman’s

algorithm simply as a dual coordinate ascent procedure, where we opti-

mize the dual with respect to a single dual variable at each iteration. To

be explicit, let us consider the projection step when choosing a single

constraint, which we will write as tr(AXi) ≤ bi. First, we consider the

2.5 Optimization Techniques 315

equality constraint tr(AXi) = bi:

min
A

f(A)

such that tr(AXi) = bi.

If we introduce a dual variable αi and form the Lagrangian f(A) +

αi(bi − tr(AXi)), the Bregman projection is obtained by setting the

gradient of the Lagrangian with respect to A and αi to zero, resulting

in the following system of equations:

∇f(At+1) = ∇f(At) + αiXi

tr(At+1Xi) = bi.

One must perform a correction when the constraint is an inequality

constraint. Let νi ≥ 0 be a dual variable corresponding to the inequality

constraint tr(AXi) ≤ bi. After solving for αi by solving for the Bregman

projection as given above, we perform the following operations:

α′
i = min(νi,αi), νi = νi − α′

i.

Finally, we update At to At+1 by computing

∇f(At+1) =∇f(At) + α′
iXi.

Let us consider the ITML problem in the context of Bregman’s algo-

rithm. Recalling that f(A) = tr(A) − logdetA, we see that ∇f(A) =
I − A−1. For simplicity, let us consider a similarity constraint of

the form dA(xi,xj) ≤ u, which we can write as tr(AX) ≤ u, where

X = (xi − xj)(xi − xj)
T . The Bregman projection must solve the fol-

lowing system of equations:

A−1
t+1 = A−1

t − αiX

tr(At+1X) = u.

Since X is a rank-one matrix, we can utilize the Sherman-Morrison

inverse formula [28]:

(A + uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

316 Distance Learning via Linear Transformations

It turns out that there is a simple closed-form solution to the resulting

system of equations. Letting z = xi − xj and p = zTAtz, after simplifi-

cation we arrive at a simple rank-one update: At+1 = At + βAtzz
TAt,

where β = α/(1 − αp) and α = (1/p) − (1/u). It can easily be verified

(Lemma 9, [46]) that the update results in a matrix At+1 that remains

in the positive semi-definite cone. Finally, one must perform the appro-

priate correction, which still results in a simple rank-one update to the

matrix A.

In practice, there will often be no feasible solution to the general

ITML problem, particularly when the number of constraints is large. It

is straightforward to introduce slack variables into the metric learning

formulation. Though we will not discuss this in detail, see [20] and

Section 6.2.1 of [46] for further details on how to add slack variables to

guarantee a feasible solution.

In the case of the function f(A) = tr(A) − logdetA, we need not

worry about the positive semi-definiteness constraint, as the regu-

larizer automatically enforces such a constraint. It may therefore

appear that the use of Bregman’s algorithm is somewhat limited, in

that it can only handle linear constraints; when we use a regularizer

such as f(A) = 1
2‖A‖2F , the positive semi-definiteness must be explic-

itly enforced. While we cannot use Bregman’s algorithm directly, an

extension to Bregman’s algorithm called Dykstra’s algorithm can be

employed in the more general setting. We will not discuss this algo-

rithm in detail, but we refer the interested reader to [7] for further

details.

2.5.4 Stochastic Gradient Descent and Online Learning

Consider the problem of minimizing the sum of the losses∑
i ci(X

TAX). Analogous to projection-based methods, we may only

want to update based on a single loss ci at a time. Stochastic gradi-

ent descent (SGD) [5] and online learning methods provide a way to

achieve this goal.

The basic SGD algorithm considers a single ci per iteration and

updates A via

At+1 = At − ηt∇ci(XTAX).

2.5 Optimization Techniques 317

Once again, the value ηt is the learning rate, analogous to gradient

descent. Typically one performs a projection onto the PSD cone after

performing this update, as in projected gradient descent. Compared

with the gradient descent procedure described earlier, the main differ-

ence is that the SGD approach does not consider the gradient of the

entire loss; further, the regularizer is not explicitly considered here.

We can alternately write this update as the solution to the following

problem:

At+1 = argmin
A

1

2
‖A − At‖2F + ηtci(X

TAX).

In this view, we can say that we are trying to update the matrix A

such that the updated matrix is “close” to At in terms of the squared

Frobenius distance (as captured by the first term of the problem),

while also trying to minimize the loss of the ith constraint (as cap-

tured by the second term of the problem). In the online learning litera-

ture, this is often referred to as a balance between conservativeness and

correctiveness.

One can generalize the SGD approach by changing the notion of

conservativeness; this is often called mirror descent [1], and can be

expressed as

At+1 = argmin
A

Dφ(A,At) + ηtci(X
TAX),

where Dφ(A,At) is an arbitrary Bregman divergence. As we will dis-

cuss below, changing the divergence implicitly changes the form of

regularization.

Online learning algorithms are often analyzed in terms of a notion

called regret which, loosely speaking, looks at the difference between

the loss of a fixed predictor and the loss of the online predictions:

Reg =
∑
t

ct(X
TAtX) −

∑
t

ct(X
TA∗X),

where ct indexes the constraint examined at step t, and A∗ is the matrix

which minimizes the sum of the losses. Though it is beyond the scope of

this manuscript to discuss online learning algorithms in detail, we note

that there is a wide body of literature on online convex programming,

318 Distance Learning via Linear Transformations

including [10, 84], and many of this literature can be applied to the

design of competitive online metric learning algorithms. For example,

choosing ηt = 1/
√
t typically yields regret of O(

√
T), where T is the

total number of timesteps/constraints.

Let us look at two examples of SGD/online learning methods for

metric learning. The first is called LEGO [37], and is similar to the

basic ITML algorithm. As with ITML, we consider similarity and dis-

similarity constraints, which we encode via a squared hinge-loss. We

then use mirror-descent, with the Bregman divergence arising from the

regularizer for ITML: f(A) = tr(A) − logdetA. As discussed earlier,

the resulting divergence is called the LogDet divergence: D�d(X,Y) =

tr(XY −1) − logdet(XY −1) − d, where d is the dimensionality of the

data. The corresponding mirror descent problem can be expressed as:

At+1 = argmaxAD�d(A,At) + ηtci(X
TAX).

For similarity and dissimilarity constraints, this update turns out to

have a simple, rank-one solution which is similar to the update for

ITML. We refer the reader to [37] for further details.

As a second example, consider POLA [63] from the perspective of

online learning and stochastic gradient descent. If we let the learning

rate ηt tend toward infinity, the SGD update becomes a projection: we

find a matrix A that satisfies the chosen constraint while minimizing

the divergence to the existing matrix. Recall the loss functions used by

POLA:

ci(X
TAX) = [1 + yi(dA(xi,yi) − γ)]+.

With a sufficiently high learning rate, we can view the standard SGD

update as an orthogonal projection onto the set of matrices A where the

above loss is 0. As shown in [63], this results in a simple rank-one update

to A as well as a simple update to γ. However, since we are utilizing the

squared Frobenius norm (as opposed to the LogDet divergence), pos-

itive semi-definiteness is not enforced by the update. Thus, we must

additionally project back onto the cone of positive semi-definite matri-

ces. This is achieved by setting any negative eigenvalues of A to equal

0. (By the eigenvalue Interlacing Theorem [28], the rank-one update

2.5 Optimization Techniques 319

to A from above causes at most one eigenvalue to become negative,

and so at most eigenvalue must be set to 0, which can be performed

efficiently.) Similarly, the update to γ is simply to set it to max(γ,1).

The authors of POLA show regret-type bounds for the resulting

procedure by adapting analysis for existing online convex programming

algorithms such as the passive-aggressive online learning technique [15].

2.5.5 Complexity of Optimization

We will say a few words about the complexity of the different optimiza-

tion procedures. We are mainly interested in the running time of the

methods with respect to the number of dimensions of the input data

as well as the number of constraints.

For gradient descent, the per-iteration complexity is dominated by

the computation of the gradient of the loss function. In general, it is dif-

ficult to give the running time of the gradient of the loss, as it depends

on the choice of regularizer and constraints. But as an example, for

NCA one must compute Gxijx
T
ij and Gxikx

T
ik for all xij and xik; each

such computation requires O(rd) time. For projected gradient descent

over A, often the gradient will require O(d2m) time, where d is the num-

ber of dimensions and m is the number of constraints, but again, the

cost will depend on the particular formulation. The projection back

onto the cone of positive semi-definite matrices requires O(d3) time.

For Bregman projections and stochastic gradient descent, the running

time per iteration (which now only looks at a single constraint) is typ-

ically O(d2) when fully optimized (for instance, by taking advantage

of the fact that the projection onto the cone of positive semi-definite

matrices can be performed efficiently after low-rank updates of A).

Thus, iterating through all constraints typically yields O(d2m) total

time.

In addition to the per-iteration cost, these optimization techniques

also depend on the number of iterations to convergence. A full discus-

sion of the convergence of these techniques is beyond the scope of this

article, as it depends on various factors including choice of step size

and properties of the regularizer.

320 Distance Learning via Linear Transformations

2.5.6 Other Models and Considerations

Naturally, our treatment of Mahalanobis metric learning models and

algorithms does not cover all of the techniques proposed in the

literature, and we add a few remarks to the above discussion. Recently,

there has been additional work on the case of mixed-norm regular-

izers, such as the (2,1)-norm: ‖A‖(2,1) =
∑

j(
∑

iA
2
ij)

1/2. In [82], a

particular Mahalanobis metric learning problem with relative distance

constraints was shown to be equivalent to a squared trace-norm formu-

lation with relative distance constraints. Other authors have considered

�1-regularization on the entries of A, e.g., in [55]. Another recent paper

showed that several Mahalanobis metric learning methods can be shown

to be equivalent to a problem of minimizing the maximal eigenvalue of

a symmetric matrix [83]; this yields new algorithms for existing models,

such as LMNN, as well as new formulations.

We also note that there has been some recent interest and work in

proving generalization bounds for Mahalanobis metric learning meth-

ods, but these techniques are beyond the scope of this survey. We refer

the reader to [9, 40] for further details.

2.6 Summary

In this section, we focused on a general model for linear metric learning.

This is known as Mahalanobis metric learning in the literature, and

accounts for most of the existing research in metric learning. Our goal

was to present as unified a view as possible, such that a wide variety of

existing work could be viewed as special cases of a general model. As

such, we studied a regularized metric learning model which contains a

regularizer on the linear transformation along with loss functions that

encode the supervision.

The remainder of the section considered more deeply examples of

the general linear transformation model that have been studied, along

with a review of optimization techniques that have been employed on

these models.

3

Nonlinear Models for Metric Learning

In the previous section, we considered a general framework for learning

global linear metrics. In this section, we consider two alternate but

related approaches for metric learning. First, we will consider global

nonlinear methods, which learn distances of the form ‖f(x) − f(y)‖2
for some function f ; as before, we are mainly concerned with models

and algorithms for learning such f under the presence of supervision

over the learned distances or similarities. Second, we will explore local

distance learning methods, both linear and nonlinear, which aim to

learn several distance functions over the domain of the data.

Recall that a linear transformation may be viewed as “stretching”

(or “shrinking”) the axes and rotating the data. To motivate the need

for nonlinear or non-global metrics, consider the data in Figure 3.1, an

extension of the classic XOR example to demonstrate the limitations

of linear methods. Here the data roughly can be clustered into four

“blobs.” Shrinking the x-axis in this figure, for instance, would yield

a linear transformation that brings blue points closer to green points,

and red points closer to black points while maintaining separation along

the y-axis. The problem arises when we require that the red and green

points be similar, the blue and black points be similar, but that the red

321

322 Nonlinear Models for Metric Learning

Fig. 3.1 Example of the limitation of linear methods. Suppose in this data we would like
that the black and blue points should be “similar” to one another, while the red and green
point should also be similar to one another (while simultaneously the black and blue points
should be dissimilar to the red and green points). No global linear metric will suffice for
enforcing the constraints.

and green are dissimilar to the blue and black points. Here there is no

way to construct a linear transformation to satisfy such constraints.

In general, learning a nonlinear transformation is difficult — unlike

linear transformations, which can be expressed as a matrix of parame-

ters, the set of nonlinear transformations is not readily parametrized. In

order to learn such transformations, it will be necessary to restrict the

form of the nonlinear mapping f to a particular parameterized class,

and in such a way that parameters can be learned efficiently. We will

focus on one such parameterization that has been successful for metric

learning, namely kernelized linear transformations.

3.1 Kernelization of Linear Methods

Recall the linear model discussed in the previous section:

min
A�0

r(A) + λ

m∑
i=1

ci(X
TAX),

where r is the regularizer and ci are the loss functions. The algorithms

discussed for optimizing this model generally require updating A iter-

atively, using the data points from X directly. What we will show

3.1 Kernelization of Linear Methods 323

in the following is that we can design algorithms that do not access

the data directly; instead, they only require access to inner products

xT
i xj between data points. Because we only require such inner prod-

ucts, we can generalize the resulting algorithms to utilize kernel func-

tions instead of inner products. Such kernel functions represent inner

products in a high or infinite dimensional space, and applying such

algorithms will correspond to learning nonlinear transformations in

the input space. More specifically, a kernel function can be written

as κ(xi,xj) = φ(xi)
Tφ(xj) for some (generally nonlinear) function φ.

When we apply linear metric learning algorithms with this inner prod-

uct, it corresponds to learning a linear transformation in the space of

the φ function (i.e., the feature space). Therefore, we can write these

methods as learning distances of the form ‖Gφ(x) − Gφ(y)‖2, which
is a nonlinear transformation over the input data in general. We will

see that the linear transformation model permits such kernelization for

a large class of regularizers, called spectral regularizers, and that in

most cases algorithms for the linear case can easily be generalized to

algorithms for the nonlinear case.

3.1.1 Brief Review of Kernel Methods

We briefly review some background on kernel methods; for a more

complete treatment, see [59, 64]. As stated above, a main use of kernel

methods is in extending linear learning methods to the nonlinear case,

and this is achieved by writing algorithms in terms of inner products

and replacing those inner products with kernel functions. As a very sim-

ple example, consider a Euclidean nearest neighbor classifier. For each

query xq, we compute the distance to each point x in the database via

‖xq − x‖2, and then classify xq based on the labels of the nearest neigh-

bors. Using the fact that ‖x − y‖22 = (x − y)T (x − y), we can write

‖xq − x‖2 =
√
xT
q xq − 2xTxq + xTx.

Replacing the inner products with a kernel function κ(xq,x) =

φ(xq)
Tφ(x), the distance function is expressed as√

κ(xq,xq) − 2κ(xq,x) + κ(x,x).

324 Nonlinear Models for Metric Learning

The resulting distance is a “kernelized” distance between the query and

a datapoint. As a slightly more complex example, consider extending

the k-means algorithm to kernel space [60]. Recall that, in each step

of k-means, we compute the squared Euclidean distance from each

point x to each cluster centroid µc. Since the cluster centroid is simply

the mean of the data points in cluster πc, we can write the distance

computation as:

‖x − µc‖22 = xTx − 2
∑

xi∈πc
xTxi

|πc| +

∑
xi,xj∈πc

xT
i xj

|πc|2 ,

which is readily extended to kernel space by replacing the above inner

products with kernel functions.

In order for a kernel function to be valid, it must represent an inner

product between data points in the Hilbert space induced by the map-

ping φ. One way to express this requirement (using Mercer’s theo-

rem) is that any matrix K of kernel function values defined over a set

of data points x1, . . . ,xn (so Kij = κ(xi,xj)) must always be positive

semi-definite (equivalently, it must have non-negative eigenvalues). For

instance, in the case of the standard inner product, the resulting K is

simply the Gram matrix XTX, and is positive semi-definite.

In practice, typically one chooses a kernel from a set of known kernel

functions. Two popular choices are the polynomial kernel and the Gaus-

sian kernel. The polynomial kernel is defined as κ(x,y) = (xTy + c)d

for positive reals c and d. Consider the simple case of c = 0, d = 2, and

data from 2 dimensions (so each x = [x1;x2]). Then we can see that

κ(x,y) = (xTy)2 = φ(x)Tφ(y),

where φ(x) = [x21;
√
2x1x2;x

2
2]. The Gaussian kernel is defined as

κ(x,y) = exp(−‖x − y‖22/(2σ2)). The resulting embedding φ(x) can

be shown to be infinite-dimensional in this case.

A further benefit to utilizing kernel methods lies in the fact that

kernel functions have been designed and successfully employed for sev-

eral types of structured data [24]. For instance, one can define a kernel

between two strings, which can be viewed as embedding a string into

a high-dimensional feature space and then computing inner products

3.1 Kernelization of Linear Methods 325

efficiently in this feature space [50]. Another example is in computer

vision, where it is common to use kernels defined between images. For

example, the pyramid match kernel [29] defines a notion of similarity

between images based on comparing sets of local features between the

images; this kernel has the property that, while the underlying repre-

sentation of the feature space is extremely high dimensional, the kernel

itself can be computed cheaply. Given the prevalence of kernels in these

applications, kernelization of linear metric learning will make it possi-

ble to apply metric learning to domains such as computer vision where

feature spaces can be very high but where efficient kernels have been

developed.

3.1.2 Spectral Regularizers

In order to extend global linear metric learning methods to kernel space,

it will be necessary to consider a restricted class of regularizers known

as spectral functions. Such functions limit kernelization to a smaller set

of problems, but as we will see, in practice most global linear metric

learning methods use spectral regularizers.

We define spectral functions as follows:

Definition 3.1. We say that f : Rn×n → R is a spectral function

if f(A) =
∑

i fs(λi), where λ1, . . . ,λn are the eigenvalues of A and fs :

R→ R is a real-valued scalar function. Note that if fs is a convex scalar

function, then f is also convex.

Example 3.1. Consider the function r(A) = tr(A). This is clearly a

spectral function, as the matrix trace is the sum of the eigenvalues

λ1, . . . ,λd of A, and so the resulting scalar function is fs(λi) = λi. The

trace function is convex, but not strictly convex. More generally, the

regularizer r(A) = tr(AC) can be written as r(A) =
∑

iwiλi, where

wi = vT
i Cvi and vi is the ith eigenvector of A. This does not satisfy

the definition of a spectral regularizer, but as we will see, our results

can be extended for this function in some cases.

326 Nonlinear Models for Metric Learning

Example 3.2. Consider the squared Frobenius norm r(A) = ‖A‖2F .
Using the fact that ‖A‖2F = tr(ATA), then one can easily show using

the eigendecomposition of A that r(A) =
∑

iλ
2
i . Therefore, fs(λi) = λ2i

and the resulting function is a spectral function. This function is strictly

convex.

Example 3.3. The rank function r(A) = rank(A) is also a spectral

function. The corresponding scalar function is fs(λi) = 1 if λi �= 0, and

0 otherwise. This is not a convex function.

Example 3.4. The function r(A) = tr(A) − logdetA, as utilized by

the ITML algorithm, is a spectral function. We saw earlier that trace

is a spectral function, and logdetA =
∑

i log(λi), so r(A) =
∑

i(λi −
logλi). This is a strictly convex function.

Example 3.5. The function tr(A logA − A) is also a spectral function.

The corresponding scalar function in this case is fs(λi) = λi logλi − λi,

and is a strictly convex function.

Note that the examples above encompass many of the models dis-

cussed in the previous section. For instance, the squared Frobenius

norm is used by POLA and the method of Schultz and Joachims.

3.1.3 A Representer Theorem

We will now show an important result, namely that the linear model

for metric learning discussed in the previous section can be solved in

kernel space when the regularizer is a spectral function. That is, we will

re-write the optimization problem with respect to the kernel matrix

K =XTX, and once we have the kernel matrix we will not require the

original matrix X. This permits the use of kernel functions to form

kernel matrices after applying nonlinear mappings to the original data.

3.1 Kernelization of Linear Methods 327

More specifically, we will consider the following problem:

min
KA�0

r(K−1/2KAK
−1/2) + λ

m∑
i=1

ci(KA), (3.1)

and we will show that this problem is equivalent to the linear metric

learning problem, in that the solution to one problem can be obtained

in closed form from the solution to the other (and vice versa).

Theorem 3.1. Let K =XTX and r be a strictly convex spectral func-

tion. Denote the global minimum of the corresponding scalar function

rs as α ≥ 0. Let A∗ be an optimal solution to the linear model (2.1)

and K∗
A be an optimal solution to the kernel problem (3.1). Then

A∗ = αI + XSXT ,

where S = K−1(K∗
A − αK)K−1. Furthermore, K∗

A =XTA∗X.

The proof is given in the appendix. A key consequence of the theo-

rem is that A∗ can be constructed in closed-form from K∗
A and vice

versa, thus allowing us to solve whichever problem is more conve-

nient. In the kernel setting, where the underlying feature space may

be extremely high-dimensional (or even infinite-dimensional), then it is

clear that solving (3.1) is typically easier than solving (2.1). Note that

the above result is a representer theorem, in that it shows that the opti-

mal solution to the linear metric learning problem can be expressed as

an appropriate expansion in terms of the training data, as given by X.

As such, the result is similar in style to the representer theorem for

support vector machines [59].

Another key advantage of the above theorem is that it shows us, con-

structively, how to compute inner products or Mahalanobis distances in

the learned space, even if we are working in kernel space. Suppose that

we have learned a matrix A via optimization of (2.1). Then, given arbi-

trary points x and y, computing the mapped inner product or Maha-

lanobis distance is easily computed as xTAy and (x − y)TA(x − y),

respectively. When we instead solve (3.1), we obtain KA, not A. The

theorem tells us that we could construct A via A = αI + XSXT , but

328 Nonlinear Models for Metric Learning

this would be expensive when working in high-dimensional feature

spaces. Instead, we can simply compute the mapped inner product

xTAy using an implicit representation of A using KA and kernel eval-

uations, as follows:

xTAy = xT (αI + XSXT)y = ακ(x,y) + kT
xSky,

where kx = [κ(x,x1), . . . ,κ(x,xn)]
T and ky = [κ(y,x1), . . . ,κ(y,xn)]

T ,

and S is obtained from K and KA. This requires 2n + 1 kernel evalu-

ations per mapped inner product computation; further, computing the

term kT
x Sky involves O(n2) computations. When computing mapped

inner products from test data to training data, however, we can reduce

the overall complexity of computing the mapped inner product between

a test point and a training point to O(n) by precomputing Sky for each

training point.

3.1.4 The Kernel PCA Trick

In the previous section, we saw that the Mahalanobis metric learn-

ing problem could be expressed equivalently in a form amenable to

kernels, and further that the learned distances could be computed

via kernel functions. An elegant corollary of this analysis, studied by

Chatpatanasiri et al. [11], shows that in some cases this leads to a sim-

ple method for performing the kernelization, wherein we simply apply

kernel PCA to the data and run the same algorithm for the linear

model on the transformed data. This is guaranteed to find the optimal

solution to the kernel form of the metric learning problem, and does

not require any additional algorithmic development.

Here we will describe this approach in more detail. The simplest

scenario considered in [11] looks at the case where there is no regular-

ization; that is, the linear metric learning problem can be expressed as

a minimization only over the constraints, which we will write as

min
A�0

∑
i

ci(X
TAX) ≡min

A�0
f(XTAX).

Theorem 3.1 above says that A has a representation A = XSXT . Thus

we could equivalently write the problem as

min
S�0

f(XTXSXTX) = f(KSK).

3.1 Kernelization of Linear Methods 329

Now, let us denote the SVD of X as X = UΣV T . The kernel matrix is

expressed as K = V Σ2V T , and we have

f(KSK) = f(V Σ2V TSV Σ2V T)

= f(V ΣUTUΣV TSV ΣUTUΣV T)

= f(XTUΣV TSV ΣUTX) = f(XTUA′UTX),

where A′ = ΣV TSV Σ. Thus we can equivalently write the optimization

in terms of A′ : minA′�0 f(X
TUA′UTX). We also note that, if A is the

optimal solution to the linear metric learning problem, then

xT
i Axj = xT

i XSX
Txj = xT

i UA
′UTxj .

Putting these two observations together, we can equivalently run the

metric learning problem on X̃ = UTX to produce a matrix A′. Then,
the learned distances are computed via learned inner products x̃T

i A
′x̃j .

However, the data X̃ is simply the original data projected onto

the eigenvectors of the covariance matrix, which is precisely what is

computed by PCA (modulo the centering step, which is not required

here). As kernel PCA can perform this projection when the data has

been mapped into kernel space, this yields a constructive and simple

approach to performing metric learning in kernel space when the prob-

lem has no regularizer (or the regularizer is of the form r(XTAX)):

• Given original data X, compute X̃ by projecting onto the

eigenvectors of the covariance with non-zero eigenvalues (via

the approach used by kernel PCA).
• Run an existing algorithm for Mahalanobis metric learning

over f , using X̃ in place of X, to learn A′.
• Learned distances in kernel space are computed via

dA′(x̃i, x̃j).

Two examples discussed in [11] for utilizing the kernel PCA trick are

NCA and LMNN. In both cases, we can write the entire optimization

as in the above discussion, namely a minimization of f(XTAX). For

instance, in LMNN, recall that the regularizer is written as tr(AC),

where C =
∑

(xi,xj)∈S(xi − xj)(xi − xj)
T . It is straightforward to see

that this regularizer is of the form r(XTAX) and can therefore be

330 Nonlinear Models for Metric Learning

incorporated into the above approach. Similarly, we saw that NCA

uses no explicit regularizer.

The authors of [11] go on to prove an additional result, where they

show that when a Hilbert–Schmidt regularizer is added, the kernel PCA

approach can still be applied. However, for general spectral regularizers

such as that used by ITML, one cannot simply apply kernel PCA to the

data. Finally, we also note the related work of Torresani and Lee [71],

an earlier paper that considers the use of kernel PCA for solving LMNN

in kernel space. The authors demonstrate first how to perform gradient

descent on LMNN on the low-dimensional matrix G (where A = GTG),

as in NCA. Then they show that the gradient descent update can

actually be applied in kernel space in a way that is similar to [11].

Though the authors do not formally prove that the optimal solution

of LMNN can be represented via the training data, this paper was an

early step on the path to understanding kernelization of Mahalanobis

metric learning.

3.1.5 Additional Kernelization Examples

To make the application of Theorem 3.1 clear, let us consider some

additional kernelization examples. First, we consider ITML. Recall the

problem in its constrained form:

min
A�0

tr(A) − logdetA

such that dA(xi,xj) ≤ u (i,j) ∈ S
dA(xi,xj) ≥ � (i,j) ∈ D

As discussed earlier, the regularizer is a spectral function, and the con-

straints are clearly a function of the matrix XTAX, since the data is

only utilized to compute Mahalanobis distances. We can therefore apply

Theorem 3.1 directly to this problem, and we must simply determine

the appropriate form of the objective and constraints for the kernel

form of the optimization problem.

As given in the theorem, the regularizer in kernel space is of the

form r(K−1/2KAK
−1/2); as we discussed in Section 2.4.3, this is equal

to D�d(KA,K), where D�d(·, ·) is the LogDet divergence. In terms of

3.1 Kernelization of Linear Methods 331

the constraints, we have

(xi − xj)
TA(xi − xj) = (ei − ej)

TKA(ei − ej),

where KA =XTAX. Thus, the kernel form of ITML is the following

kernel learning problem:

min
KA�0

D�d(KA,K)

such that KA(i, i) + KA(j,j) − 2KA(i,j) ≤ u (i,j) ∈ S
KA(i, i) + KA(j,j) − 2KA(i,j) ≥ � (i,j) ∈ D

Further, the optimal solution for A is of the form A = I + XSXT (here,

α = 1, which can be seen by minimizing the scalar function rs(λ) =

λ − logλ as required by the theorem) and S is computed as given in

the theorem.

Thus, for ITML, the kernel problem seeks to find a kernel matrixKA

that is “close” to K (in terms of the LogDet divergence), but where

squared Euclidean distance constraints using the learned kernel KA

are satisfied. Note that, as with standard ITML, we often incorporate

slack variables into this formulation or solve the corresponding uncon-

strained version, as there may not be a feasible solution to the above

problem. Moreover, we note that this kernel formulation of the problem

was actually studied before the corresponding ITML formulation was

proposed, but the connections to Mahalanobis metric learning were not

known before the publication of ITML [45].

As another example, consider the following squared-Frobenius reg-

ularization problem, similar to the problem of POLA:

min
A�0

‖A‖2F
such that yij(b − dA(xi,xj)) ≥ 1, (i,j) ∈ P,

where yij = 1 if i and j are similar and −1 if they are dissimilar, and P
is the set of pairs with constraints. In this case, we have r(A) = 1

2‖A‖2F ,
which is again a spectral regularizer; here, α = 0 and the optimal A is

of the form XSXT . So, applying Theorem 3.1, we have that the objec-

tive in kernel space is 1
2‖K−1/2KAK

−1/2‖2F = 1
2‖KAK

−1‖2F . Writing

the constraints in kernel space analogously to ITML (we write each of

332 Nonlinear Models for Metric Learning

the m constraints as gi(KA) ≤ bi) for simplicity), we obtain the follow-

ing kernel problem:

min
KA�0

‖KAK
−1‖2F

such that gi(KA) ≤ bi, 1 ≤ i ≤m.

Finally, consider the trace-norm regularizer r(A) = tr(A). Again,

this is a spectral regularizer whose corresponding α value equals 0.

Though Theorem 3.1 applies to strictly convex functions, and the trace-

norm is not strictly convex, the representer theorem can also be shown

to apply to the trace-norm [36]. Thus, the optimal A is of the form

XSXT , as with the squared Frobenius norm. After applying the theo-

rem, the resulting objective is tr(KAK
−1). The trace-norm regularizer

tends to find low-rank matrices A, and this property is inherited when

we move to kernel space. This leads to a type of nonlinear dimension-

ality reduction: since A =XSXT is low-rank at optimality, then S is a

low-rank matrix, leading to a new representation of the data given by

x→ S1/2XTx, which will be of low-dimensionality for low-rank S.

3.1.6 Scalability in Kernel Space

One of the challenges when applying Mahalanobis metric learning in

kernel space arises when the number of data points n becomes large.

The kernelization result, as shown in Theorem 3.1, indicates that the

number of parameters to optimize changes from O(d2) to O(n2): instead

of learning a Mahalanobis matrix A, we instead learn a kernel matrix

KA over all of the training data.

Performing metric learning in kernel space when the data set

size is very large remains an ongoing research problem. Some simple

approaches have been employed, and empirically seem to work well.

For instance, when applying kernel PCA (to LMNN, for example),

instead of projecting using all eigenvectors and eigenvalues of the kernel

matrix, one could project using only the top eigenvectors and eigen-

values. Alternately, one can perform kernel PCA using a sample of the

data, compute the kernel matrix over this set of sampled data points,

and then perform the kernel PCA projection based only on this matrix.

3.2 Other Nonlinear Methods 333

For the more general setting of Theorem 3.1, some work along

similar lines has been proposed. Analogous to the kernel PCA-based

approaches, the main idea is to consider a smaller sample of the data,

and constrain the optimal A matrix to admit a representation only in

terms of these sampled data points. We refer the reader to [35] for a

more in-depth discussion of these ideas.

3.2 Other Nonlinear Methods

We conclude this section by discussing a few other prominent metric

learning methods.

3.2.1 Non-Mahalanobis Local Distance Functions

A major drawback to global Mahalanobis metric learning is that one

learns a single transformation to be applied across the entire space

globally. Intuitively, one can imagine that such a single transformation

may be insufficient in many cases. For example, we may want to have

a different metric for each class or cluster in the data.

The method of Frome et al. [23] takes this idea even further: they

propose to learn a distance per training point. Given training data

of n data points, each of which has d features, let dij(m) be some

baseline distance between the mth feature of training points i and j. In

simple settings, where each feature is a scalar, this distance can simply

be the squared difference between the feature values. (As considered

in [23], however, each feature is a multi-dimensional vector obtained

by a feature extractor on an image patch, and additionally a matching

algorithm is applied to match features from pairs of images.) We then

define the learned distance between data point i and data point j as

wT
i dij , where wi is a vector of d weights for training point i. Thus,

the idea is that each training image i will have associated with it a

vector wi whose entries weight the features differently. Note that this

implies that distances are no longer symmetric.

The goal of learning is to find the weight matrix W = [w1, . . . ,wn]

over the n training points such that a regularized loss function is

minimized. In fact, the resulting optimization problem turns out to

be quite similar to the formulations described earlier, with the only

334 Nonlinear Models for Metric Learning

exception being that the Mahalanobis distance is replaced by the local

distances as described above. More specifically, the authors of [23]

consider relative distance constraints: given a triple (i,j,k) ∈ R such

that the distance between i and j should be smaller than the distance

between i and k, we can set this up as a constraint of the form:

wT
i dik >wT

i dij + 1.

As with Mahalanobis distances, we can encode this into a loss function;

the authors utilize the hinge-loss [1 + wT
i dij − wT

i dik]+. The final step

is to add a regularizer, and they choose a squared Frobenius norm on

W (additionally, the entries of W are constrained to be non-negative).

This leads to the following problem:

min
W≥0

1

2
‖W‖2F + λ

∑
(i,j,k)∈R

[1 + wT
i dij − wT

i dik]+.

Presented in this manner, there are clear similarities between this for-

mulation and the method of Schultz and Joachims, which performs

diagonal Mahalanobis learning under a squared Frobenius regular-

izer and a hinge-loss over relative distance constraints. Indeed, we

can stretch the connections further by showing how the Frome et al.

approach could be viewed as the Schultz and Joachims method in the

case where features are scalars and the baseline distance is simply the

squared difference (we note that this connection does not appear to

be particularly insightful, and we discuss it simply for the purposes of

presenting as unified a framework for distance learning as possible).

Suppose for simplicity that we have 3 training data points. Let us

represent W = [w1,w2,w3] alternatively as

W̃ =

diag(w1) 0 0

0 diag(w2) 0

0 0 diag(w3)

.

Now consider the Mahalanobis distance (using W̃) between [0;x1;0]

and [0;x2;0]; this is precisely the weighted local distance using the

weights from training point 2. Thus, conceptually, we can imagine that

we have n2 training data points — for each data point xi, we encode

3.2 Other Nonlinear Methods 335

it n ways into a nd-dimensional space, where we change the placement

of xi for each. Utilizing these n2 data points, we can then set up a

Mahalanobis distance learning problem in the manner of Schultz and

Joachims, which is easily seen to be equivalent to the learning problem

of Frome et al. At test time, when computing the distance between a

training point i and some novel test point, we utilize the representation

of the test point which is all zeros except in the i-th “slot,” which

contains the data point.

3.2.2 Mahalanobis Local Distance Functions

Weinberger and Saul considered an alternative local distance learn-

ing strategy, multiple metric LMNN (MM-LMNN) [77]. The idea is

to learn a Mahalanobis matrix per class. Recall that LMNN utilizes a

linear objective with relative distance constraints. The only difference

between standard LMNN and MM-LMNN is that, whenever one com-

putes the Mahalanobis distance between points xi and xj , instead of

using the global Mahalanobis distance one uses the Mahalanobis dis-

tance corresponding to the class of xi. That is, if �i corresponds to the

class label of data point xi (so �i ∈ {1, . . . ,k}, where k is the total num-

ber of classes in the data), then we replace dA(xi,xj) with dA�i
(xi,xj),

and we learn matrices A1, . . . ,Ak.

We note that, in principle, such an approach could be applied to

any Mahalanobis distance learning algorithm, allowing one to extend

a single global Mahalanobis matrix learning problem into a multiple

Mahalanobis matrix learning problem.

We also mention the related approach of multi-task metric learn-

ing [54]. Briefly, this approach also learns multiple metrics, one per

group of data; however, unlike the MM-LMNN formulation, we intro-

duce a matrix A0 into the formulation such that each Mahalanobis

distance is of the form

dt(xi,xj) = (xi − xj)
T (A0 + At)(xi − xj),

where t indexes one of the groups of data. Thus A0 is shared across all

of the Mahalanobis distances, and an additional regularizer is placed

on A0. See [54] for further details.

336 Nonlinear Models for Metric Learning

3.2.3 Metric Learning with Neural Networks

We next discuss two existing approaches to learning nonlinear metrics

based on neural networks. Recall that for Mahalanobis distances we are

learning a distance of the form ‖Gxi − Gxj‖2, where A = GTG. When

working in kernel space, we generalize this to ‖Gφ(xi) − Gφ(xj)‖2,
but a more general nonlinear metric learning approach would con-

sider alternative parameterizations for learning a distance of the form

‖ψ(xi) − ψ(xj)‖2.
The approach of Chopra et al. [13] considers learning a convolutional

network in order to parameterize the mapping ψ. More specifically,

given two input data points xi and xj, we pass both through identical

convolutional networks with common parameters. These networks are

multi-layer, nonlinear systems, and produce a mapping from the input

space to some (nonlinear transformed space). Though the details of

convolutional networks are beyond the scope of this survey, we refer the

reader to [13] for details on how such networks are set up and trained.

The underlying learning process utilizes a loss function which is

somewhat reminiscent of the losses used by some of the techniques

specified above. In particular, the approach considers a form of relative

distance constraints (in the terminology of [13], if i and j should be

more similar than i and k, they say i and j are a genuine pair and i

and k an impostor pair). Denoting Eij as the learned squared distance

between a genuine pair and Eik as the distance between an impostor

pair, the loss function aims to minimize∑
(i,j,k)∈R

α1Eij + α2 exp(−α3

√
Eik),

for appropriately chosen α1,α2,α3. While the underlying learning pro-

cess and parameterization are quite different from the Mahalanobis

learning approach, the loss function is similar.

A related technique was explored by Salakhutdinov and Hinton [58],

who focused on extending NCA to the nonlinear case. Recall that the

NCA probabilities can be expressed as:

pA(j|i) = exp(−dA(xi,xj))∑
k �=i exp(−dA(xi,xk))

.

3.2 Other Nonlinear Methods 337

Salakhutdinov and Hinton replace the Mahalanobis distance with a

nonlinear distance function given by the distance between the outputs

of a multi-layer neural network, in a style similar to that of Chopra

et al. Thus, as in Chopra et al. the distances are parameterized by the

weights of the neural network, and training seeks to learn these weights.

3.2.4 Other Nonlinear Extensions of LMNN

We conclude this section by overviewing two additional nonlinear exten-

sions of LMNN, namely χ2-LMNN and GB-LMNN [42].

Let us focus on the χ2-LMNN variant. Recall that the LMNN prob-

lem seeks to minimize a linear term (a sum of learned distances over

similar pairs) along with a set of relative distance constraints (encoded

via a hinge loss):

min
A�0

∑
(i,j)∈S

dA(xi,xj) + λ
∑

(i,j,k)∈R
[1 + dA(xi,xj) − dA(xi,xk)]+.

Simply stated, the goal in χ2-LMNN is to optimize the same objective,

but with the χ2 histogram distance in place of the Mahalanobis dis-

tance. In this manner, there are strong similarities to the approach of

Frome et al., as discussed earlier, where the Mahalanobis distances are

replaced with local distances to form a nonlinear method.

The χ2-distance is defined as follows. Assuming two d-dimensional

vectors x and y defined over the d-dimensional simplex, we can define

the distance as

χ2(x,y) =
1

2

d∑
i=1

(x(i) − y(i))2

x(i) + y(i)
.

This distance has been used in a variety of domains, e.g., [16, 73, 75].

The authors of [42] propose a “Mahalanobis-like” extension of the χ2-

distance — instead of the standard distance, consider the following

transformed distance:

χ2
G(x,y) = χ2(Gx,Gy),

where G is a linear transformation that maintains the data on the sim-

plex. The authors discuss that the margin can no longer be simply

338 Nonlinear Models for Metric Learning

set to 1 as in standard LMNN, and must be optimized as an additional

hyperparameter. Finally, the authors demonstrate how to perform opti-

mization using a simple unconstrained sub-gradient descent method.

See [42] for details of the method, as well as details of their other pro-

posed extension of LMNN based on gradient boosting.

4

Extensions

In the basic metric learning model, we are concerned with learning an

appropriate distance function tuned to some given task. As discussed

previously, the end goal is typically not the metric itself, but rather

some other task for which the learned metric will ideally improve per-

formance. Nearest neighbor search is the most common, as many of the

metric learning approaches are treated as optimization problems which

attempt to shrink the distances between similar pairs of objects while

expanding distances between dissimilar pairs.

However, the simple approach of applying metric learning for a near-

est neighbor classification problem is not always the whole story. In this

section, we discuss extensions of the basic metric learning approach to

solve problems beyond a simple nearest-neighbor classifier.

4.1 Metric Learning for Kernel Regression

In some cases, metric learning can be used within other supervised

learning methods. Consider the problem of regression. Suppose we have

data points (x1,y1), . . . ,(xn,yn), where the xi are the data points and

339

340 Extensions

the yi are the (real-valued) response variables. In kernel regression, one

approximates the yi via

ŷi =

∑
j �=i yjκ(xi,xj)∑
j �=iκ(xi,xj)

.

In [79], the problem of kernel regression was considered in a metric

learning context. Often one uses a standard Gaussian kernel κ(xi,xj) =

exp(−‖xi − xj‖2/(2σ2)). The approach in [79] replaces the squared

Euclidean distance within the Gaussian kernel with a Mahalanobis dis-

tance utilizing A = GTG. Then, gradient descent is performed on the

simple squared loss
∑

i(yi − ŷi)
2 with respect to G. One can imag-

ine designing other learning problems involving Mahalanobis distances

within a Gaussian kernel.

4.2 Metric Learning for Ranking

As an extension beyond the simple nearest-neighbor applications of

most metric learning techniques, McFee and Lanckriet [52] present a

method for utilizing Mahalanobis metric learning for the problem of

ranking. In information retrieval settings, we often want to rank a set

of data objects with respect to some query q. One straightforward way

to rank items would be to compute the distance between the query and

each data item, and then rank by increasing distance.

Going a step further, we could attempt to learn a distance function

such that the rankings obtained using these sorted distances opti-

mize various known ranking measures such as the AUC, precision-at-k,

MRR, MAP, or NDCG. McFee and Lanckriet consider learning a Maha-

lanobis metric in this framework. Here, the problem becomes one of

structured prediction — one encodes constraints with respect to all

permutations (rankings) over the data, leading to an enormous num-

ber of constraints, and each constraint uses some fixed ranking measure

to compare pairs of rankings. As is common with structured prediction

problems, enforcing all constraints using a standard optimization pro-

cedure is typically infeasible in practice, but cutting plane methods can

be used to discover a small set of active constraints which are sufficient

for optimization within some tolerance.

4.3 Dimensionality Reduction and Data Visualization 341

4.3 Dimensionality Reduction and Data Visualization

In the Mahalanobis distance learning framework, we can view met-

ric learning algorithms as learning a linear transformation G to be

applied to the data (A = GTG), and where the resulting learned dis-

tance between x and y is of the form ‖Gx − Gy‖22. Typically, G is d × d

(and full-rank), meaning that the transformation maintains the dimen-

sionality of the input data. However, if the matrix A is not full-rank,

then G will map the data from d dimensions to a lower-dimensional

space, thereby performing dimensionality reduction. If dimensionality

reduction is the goal (for example, for data visualization), then learning

a low-rank A provides a possible way to perform a form of supervised

dimensionality reduction. The main issue is in how to learn such a low-

rank A, as most Mahalanobis metric learning methods tend to learn a

full-rank A.

One approach, utilized by the authors of neighbourhood compo-

nents analysis [26], is simply to perform gradient descent usingG, where

G is restricted to be r × d for some fixed r. The resulting problem is

non-convex in G, but does guarantee that the resulting transforma-

tion will reduce the dimensionality to r. Further, this method, while

discussed for NCA, could easily be applied to any metric learning

formulation by replacing the optimization over A with a (typically

non-convex) optimization over the r × d matrix G.

Another approach, introduced in [36], is to encourage low-rank

A matrices via a trace-norm regularizer. As discussed earlier, this

approach has the advantage of retaining convexity, but the result-

ing dimensionality of the mapped data r can be difficult to con-

trol directly — typically the trade-off parameter λ must be carefully

selected to obtain a desired dimensionality. However, a benefit of trace-

norm regularization is that the trace function is a spectral function,

meaning that kernelization can be easily obtained. This leads to a form

of nonlinear dimensionality reduction, as the mapping Gφ(x) can be

low-dimensional, even if the underlying feature space is very high (or

even infinite-dimensional).

As an example of such nonlinear dimensionality reduction,

Figure 4.1 shows a visualization of the MNIST digits, color-coded by

342 Extensions

Fig. 4.1 Example taken from [36] demonstrating supervised nonlinear dimensionality reduc-
tion using kernelized Mahalanobis metric learning. The right plot shows the results of pro-
jecting to two dimensions via kernel PCA on the MNIST digits, while the left plot shows
results when projecting using a learned rank-2 projection obtained by a trace-norm regu-
larized kernelized metric learning problem.

their digit. On the right, we see the result of kernel PCA to perform

nonlinear dimensionality reduction; in this case, there is no supervision,

and the results are qualitatively poor. On the left, the visualization

shows what a kernelized trace-norm metric learning optimization pro-

duces. Note that the digits shown here are not the same as the digits

used for training (i.e., the visualized data utilizes the inductive repre-

sentation for performing the mapping to the two dimensions). See [36]

for further details.

Another example is shown in Figure 4.2, which is taken from [58].

This shows results comparing dimensionality reduction on MNIST, but

where the comparison is between standard NCA (on the right) and

its nonlinear extension via neural networks (on the left). In this case,

we see clear evidence that a nonlinear metric learning method yields

qualitatively better results than its linear counterpart.

4.4 Database Indexing

When the data set size is modest, metric learning can provide a use-

ful preprocessing step for nearest neighbor searches. However, for very

large-scale data, performing nearest-neighbor searches exhaustively can

be prohibitive — given n total data points, the running time of a

nearest-neighbor search grows linearly with n.

4.5 Domain Adaptation 343

1

2
3

4

5
6

7

8
9

0

Fig. 4.2 Example reproduced from [58] showing further dimensionality reduction results
on MNIST, comparing standard NCA (right) with its nonlinear extension based on neural
networks (left), discussed in Section 3.2.3.

To deal with large-scale data sets, several approximate nearest

neighbor search routines have been proposed, most notably locality-

sensitive hashing [34] and search trees (e.g., [14, 22, 74]). Some recent

work has explored how to most effectively combine metric learning with

approximate nearest neighbor search data structures [38, 43]. For exam-

ple, one standard locality-sensitive hashing function computes binary

values of the form sign(rTx), where r is a random vector drawn from

the canonical Gaussian N (0, I). When performing metric learning, one

additionally maps via G, leading to functions of the form sign(rTGx).

The work in [38, 43] explored how to compute these functions when

running metric learning in kernel space, for particular kernels, result-

ing in a method that alternates between updating hash functions and

updating the learned metrics. Another recent approach showed how to

incorporate metric learning with ball trees effectively [77].

4.5 Domain Adaptation

In most metric learning applications, we think of a single data set

X = [x1, . . . ,xn], and we consider mapped inner products of the form

xT
i Axj. In a slight twist on this problem, consider two sources of data

X = [x1, . . . ,xn] and Y = [y1, . . . ,ym], along with inner products of the

form xT
i Ayj. In the latter problem, we need not require positive semi-

definiteness of A.

344 Extensions

To motivate this problem, consider two sources of image data. The

data points (images) from X may consist of images taken with a high-

resolution camera, while the data points in Y may consist of images

taken with a low-resolution camera (e.g., a webcam). This is an exam-

ple of domain shift, which has been extensively studied in the con-

text of text [18] and images [44, 57]. Results have shown, for instance,

that training on one domain and then testing on another domain often

results in poor performance (see, e.g., [57]); it is therefore unlikely that

a standard inner product xT
i yj should be the most desirable notion of

similarity between pairs of cross-domain data points.

One approach to the domain adaptation problem may be viewed

as a generalization of the metric learning problem [44]. The idea is

to learn a transformation A that maps the data from one domain to

the other, thus leading to the inner product xT
i Ayj. Note that such

an approach can be applied even when the dimensionalities of the two

domains are different (in which case the A matrix will not be square).

Analogous to the standard linear metric learning problem, we can set

up a regularized learning problem of the form:

min
A
r(A) + λ

∑
i

ci(X
TAY).

Thus, the main differences between the above problem and a standard

regularized linear metric learning problem are that the matrix is not

constrained to be positive semi-definite and the constraints utilize the

mapped inner products of the form xT
i Ayj . Note that there are exten-

sions of this model to the kernel case, analogous to the results of metric

learning. See [44] for further details. We also refer the reader to earlier

work [12], which also considers learning a non-PSD matrix A. In this

case, the goal is not domain adaptation, but rather to speed up met-

ric learning by avoiding projections onto the PSD cone; however, the

resulting formulations are very similar to those of [44].

5

Applications

We conclude with a brief overview of some of the applications of metric

learning employed in various domains. Our discussion of applications

is far from being an exhaustive list, and is intended to convey some

of the breadth of application domains considered recently for metric

learning.

5.1 Computer Vision

Computer vision has seen many applications of metric learning, and

is arguably the most successful domain for metric learning. Indeed, a

large fraction of research in metric learning has been published in the

computer vision community. In this section, we describe a few such

efforts.

Before proceeding, we note that because it is beyond the scope of

this survey, and since techniques vary from problem to problem, we will

not describe the preprocessing methods utilized for encoding images (or

image patches) into an appropriate Euclidean or reproducing kernel

Hilbert space. We refer the reader to the specific papers for further

details on such image preprocessing.

345

346 Applications

5.1.1 Image Retrieval and Classification

As we have discussed throughout this survey, a common end goal for

metric learning is to improve nearest neighbor searches; after all, most

metric learning formulations utilize constraints which aim to bring sim-

ilar items closer together and dissimilar items farther apart. It is there-

fore natural to consider the problem of nearest-neighbor image retrieval

as a potential application. Simply stated, the goal is to retrieve “simi-

lar” images to a query; metric learning is then used to refine an appro-

priate notion of similarity to aid in this task.

Many vision applications of metric learning, either explicitly or

implicitly, perform image retrieval. An explicit example is from [43]

(discussed earlier in Section 4.4), where the goal was to combine ITML

metric learning with locality-sensitive hashing to simultaneously learn

a good metric, as well as construct the appropriate hash functions for

performing fast nearest neighbors searches at test time. As an example

of this approach applied to retrieval and indexing, the authors con-

sidered performing metric learning over a database of 300,000 image

patches taken from the Photo Tourism data set [33, 66]. This data

consists of local image patches from several images (taken by different

photographers) of the same underlying landmark. The training data

consists of labels for matching patches across different photos, and the

end goal is to retrieve matching image patches from other images to a

query image patch.

As another example, many metric learning algorithms showed con-

siderable success on the Caltech-101 data set.1 Here, the problem is

object classification: given a novel image, can we label it using an exist-

ing database of labeled images? The metric learning approach involves

learning an appropriate metric, and then applying a simple nearest

neighbor classifier to label the test images. The local metric approach

of [23] produced state-of-the-art results at the time, and led to further

work in the vision community on applications of metric learning.

Finally, we note that [32] provides another example of applying

metric learning to the problem of image retrieval.

1Available at http://www.vision.caltech.edu/Image Datasets/Caltech101/

5.1 Computer Vision 347

5.1.2 Face Recognition

The problem of face recognition seeks to determine whether two images

of faces depict the same person or not. A recent paper [30] considered

an approach to face recognition based on Mahalanobis distances.

Algorithmically, the main idea of the approach in [30] is to use a

logistic regression-type loss within a Mahalanobis distance framework.

Briefly, we have a set of n pairs of training points along with values

tn ∈ {0,1} that encode whether the pair of training images is a match

or not. Analogous to logistic regression, we encode the probability that

the pair of images xi,xj are a match via

pn = p(yi = yj |xi,xj ,A,b) = σ(b − dA(xi,xj)),

where yi is a label for the face corresponding to image xi, b is a bias

parameter, and σ(·) is the sigmoid function. The standard likelihood

for t = (t1, . . . , tn) is given by

p(t |X,A,b) =
∏
n

ptnn (1 − pn)
1−tn .

The corresponding log-likelihood is∑
n

tn lnpn + (1 − tn) ln(1 − pn),

and can be viewed within the framework presented in Section 2 (where

each n corresponds to a single constraint). The authors opt for a gra-

dient descent approach to minimizing the above log-likelihood, and

though they mention projected gradient descent as a natural way to

enforce positive definiteness, they ultimately choose to ignore the pos-

itive definiteness constraint for scalability purposes.

On the Labeled Faces in the Wild (LFW) data set,2 which con-

tains 13,233 face images labeled by identity, the authors demonstrate

state-of-the-art performance. The authors also demonstrate applica-

tions to face clustering and multi-class face recognition from a single

face exemplar.

2Available at http://vis-www.cs.umass.edu/lfw/

348 Applications

5.1.3 Human Activity Recognition and Pose Estimation

A recent paper [72] considered the application of LMNN to the problem

of human activity recognition in video sequences, and showed superior

results with the learned metrics as compared to a number of other

baselines. Here the problem is to determine what activity is being

done in a video — for instance, activities could include people walk-

ing, running, or jumping. Using appropriate features, one can obtain

very good performance on standard data sets via LMNN. Further, the

authors demonstrated an application to video activity labelling on a

set of YouTube videos.

In a related context, ITML was applied to the problem of human

body pose estimation in [43]. The problem here is to predict the joint

angles of a test image of a human body. This was set up as a metric

learning problem as follows: a training set was generated using the soft-

ware Poser [17], which generated 500,000 synthetic images of humans in

various poses (with a variety of clothing, etc). Because the images were

generated synthetically, the ground truth (joint positions and angles)

of the underlying images is known.

Given this training data, a metric learning problem is set up where

two training images should have distance close to their ground truth

distance, which is simply the sum of the distances of corresponding

joints angles of the two people in the images. After training, the joint

angles of a novel test image is determined by computing the nearest

neighbor from a test image to the training data, and using the joint

angles of the nearest neighbors to predict the angles of the test image.

Some examples are given in Figure 5.1 of the test images and their

nearest neighbors from the training set. Note that a similar approach

was also applied in [62], where a method called parameter-sensitive

hashing was applied to improve the nearest neighbor searches.

5.2 Text Analysis

A standard model for text documents is the TF-IDF model, along with

the cosine similarity for computing a corresponding similarity score.

Such an approach is known to achieve high precision for text retrieval

5.2 Text Analysis 349

Fig. 5.1 Some example query poses along with the associated nearest neighbor as given by
several retrieval methods (figure from [43]). ML-HASH refers to running metric learning
and then applying LSH on top of the learned metrics. L2-HASH refers to using a baseline
Euclidean distance with LSH. PSH refers to parameter-sensitive hashing [62].

applications, but recently in [19] it was shown that metric learning

could achieve gains in terms of recall over standard similarities.

One of the challenges in applying metric learning to text is the high-

dimensional nature of text — typically, one represents text data as

sparse vectors whose dimensionality is equal to the number of unique

words in the corpus (possibly after appropriate pruning). Given the

sparsity of text, however, it turns out that kernelization is often natural

in this setting, as the inner products between sparse text vectors can

be easily computed. High-dimensional (kernelized) metric learning was

explored in [19], where the kernel form of ITML was employed for

text retrieval applications. As seen in Figure 5.2, the resulting metrics

outperform standard approaches as measured by precision and recall.

We note that another approach to metric learning for text docu-

ments was explored in [48], although the approach from this paper

350 Applications

Fig. 5.2 Figure from [19] comparing Euclidean distance and Latent Semantic Analysis for
comparing text documents with a metric learning approach. Here the red and green curves
(HDLR Class Means and HDILR Class Means) refer to two high-dimensional metric learn-
ing algorithms. The precision-recall curves indicate that metric learning improves over the
standard approaches. See the corresponding paper for further details.

does not fall into the same framework that has been discussed in this

survey.

5.3 Other Applications

5.3.1 Music Analysis

In [65], Slaney et al. considered metric learning for music. The goal

was to learn an appropriate notion of similarity between songs. The

authors considered various approaches of how to do the embedding of

the audio into an appropriate Euclidean space, and then considered

several different existing metric learning algorithms, including NCA,

LMNN, and RCA, for the metric learning step. According to their

findings, NCA and RCA appear to perform the most robustly with the

audio embeddings considered.

5.3.2 Automated Program Debugging

The original ITML paper briefly considered applying metric learning

to the problem of discovering a distance between program executions.

The authors utilized the output of a program called Clarify [31], which

embeds program executions into a high-dimensional Euclidean space

based on which functions in the program are executed, and other

5.3 Other Applications 351

statistics. Given a program execution that crashes due to a particular

bug, the goal is to identify other existing executions from a database of

executions that have the same bug. This is set up as a standard metric

learning problem, and we refer the interested reader to [20] for further

details.

5.3.3 Microarray Data Analysis

Two recent papers [67, 81] considered metric learning in the context of

microarray data classification. DNA microarrays measure the expres-

sion levels of tens of thousands of genes simultaneously; a fundamental

task is to classify tissue samples according to their gene expression lev-

els. These predictions can then be used to help diagnose and predict

various genetic disorders including cancer. While simple methods such

as k-nearest neighbors have been used, metric learning has recently

been shown to produce superior results in some cases.

6

Conclusions

In this survey, we attempted to provide an overview of recent work in

metric learning, with a focus on models, extensions, and applications.

One of the primary goals of this survey has been to present metric learn-

ing techniques in as common a framework as possible. For many tech-

niques — particularly those that fall under the linear (Mahalanobis)

metric learning model — this is straightforward, but there are several

“outliers” that fall under metric learning but cannot be easily repre-

sented within the standard framework. We hope that the presentation

has helped to unify the extensive literature to some degree. Naturally,

this survey cannot give justice to all the literature on metric learning,

and we have been forced to pick a subset of methods and ideas on which

to focus.

Metric learning promises to continue to be a rich area of research.

While linear methods appear to be fairly well-studied and understood,

nonlinear methods continue to attract new research and ideas. In par-

ticular, scaling nonlinear methods to large data sets (e.g., when apply-

ing linear methods in kernel space) remains a difficult problem, and

developing stronger theoretical underpinnings for methods involving

local distances remains open. Further, given the recent progress in deep

352

353

learning methods, we expect that there will continue to be new nonlin-

ear metric learning methods developed based on neural networks.

Applications of metric learning continue to emerge, and we expect

this to continue moving forward. While metric learning has been used

heavily for computer vision tasks, applications continue to emerge

in biology, music, and multimedia. Ideally, such applications will

help drive further theoretical and algorithmic development for metric

learning.

A

Representer Theorem Proof

Here we prove Theorem 3.1, which allows one to develop nonlinear

metric learning methods based on kernel methods. The proofs below

follow the treatment in [35], but we include them here for completeness.

First, recall the linear transformation problem (2.1)

min
A�0

r(A) + λ
m∑
i=1

ci(X
TAX),

and the corresponding kernel form of the problem (3.1)

min
KA�0

r(K−1/2KAK
−1/2) + λ

m∑
i=1

ci(KA).

We also recall the representer theorem to be proved:

Theorem A.1(3.1). LetK = XTX and r be a strictly convex spectral

function. Denote the global minimum of the corresponding scalar func-

tion rs as α ≥ 0. Let A∗ be an optimal solution to the linear model (2.1)

and K∗
A be an optimal solution to the kernel problem (3.1). Then

A∗ = αI + XSXT ,

where S = K−1(K∗
A − αK)K−1. Furthermore, K∗

A =XTA∗X.

354

355

To prove the theorem, we first consider the following auxiliary problem:

min
A�0,L

f(A) + λ
m∑
i=1

ci(X
TAX) s. t. A = αI + ULUT , (A.1)

where L ∈ Rk×k, U ∈ Rd×k is a column orthogonal matrix, and I is the

d × d identity matrix. Now we show the following:

Theorem A.2. Let f be a spectral function and let α ≥ 0 be any

scalar. Then (A.1) is equivalent to

min
L�−αI

f(αI + L) + λ
m∑
i=1

ci(αX
TX + XTULUTX). (A.2)

Proof. The constraint A = αI + ULUT implies that there is a one-to-

one mapping between A and L. We can therefore eliminate A from (A.1)

by substituting αI + ULUT for A. This results in

min
L�−αI

f(αI + ULUT) + λ

m∑
i=1

ci(αX
TX + XTULUTX).

We also show that the objectives f(αI + L) and f(αI + ULUT) are

equal up to a constant. Let U ′ ∈ Rd×d be an orthonormal matrix

obtained by completing the basis represented by U , i.e., U ′ = [U U⊥]
for some U⊥ ∈ Rd×(d−k) such that UTU⊥ = 0 and UT

⊥U⊥ = I. Note

that

A = αI + ULUT = U ′
(
αI +

[
L 0

0 0

])
U

′T .

For a spectral function f , we have that f(V AV T) = f(A), whenever V

is an orthogonal matrix. Also,

f

([
B 0

0 C

])
= f(B) + f(C).

356 Representer Theorem Proof

Putting these observations together, we have

f(A) = f(αI + ULUT) = f

([
αI + L 0

0 αI

])

= f(αI + L) + (d − k)f(α),

establishing equivalence of the objectives up to a constant.

We also establish the following result.

Theorem A.3. Suppose f , K, and α satisfy the conditions of Theo-

rem 3.1. Then, the optimal solution to the linear model (2.1) is of the

form A∗ = αI + XSXT , where S is an n × n matrix.

Proof. Let A = UΛUT =
∑

j λjuju
T
j be the eigenvalue decomposition

of A. Consider the loss ci(X
TAX). If the jth eigenvector uj of A is

orthogonal to the range space ofX (i.e., XTuj = 0), then the eigenvalue

λj is unconstrained except for the non-negative constraint imposed

by positive semi-definiteness. Since the range space of X is at most

n-dimensional, let us assume that λj ≥ 0,∀j > n are not constrained.

Since f satisfies the conditions of Theorem 3.1, f(A) =
∑

j fs(λj).

Also, fs(α) = minx fs(x). We can therefore select λ∗j = α ≥ 0,∀j > n.

Further, the eigenvectors uj∀j ≤ n lie in the range space of X and so

uj =Xzj for some zj , for all j ≤ n. Thus,

A∗ =

n∑
j=1

λ∗ju
∗
ju

∗T
j + α

d∑
j=n+1

u∗
ju

∗T
j

=
n∑

j=1

(λ∗j − α)u∗
ju

∗T
j + α

d∑
j=1

u∗
ju

∗T
j = XSXT + αI.

Finally, we use the above two results to prove the main theorem.

Proof. (Theorem 3.1.) Let X = UXΣV T
X be the SVD of X. Note that

K =XTX = VXΣ2V T
X , so ΣV T

X = V T
XK

1/2. Also, assuming X ∈ Rd×n

to be full-rank and d > n, VXV
T
X = I.

357

Using Theorem A.3, the optimal solution to (2.1) is of the form

A = αI + XSXT = αI + UXΣV T
X SVXΣUT

X = αI + UXV
T
XK

1/2SK1/2

VXU
T
X = αI + UXV

T
XLVXU

T
X , where L =K1/2SK1/2. Thus, for spec-

tral functions f , (2.1) is equivalent to (A.1). So using Theorem A.2,

(2.1) is equivalent to (A.2) with U = UXV
T
X and L =K1/2SK1/2.

Also, the losses can be simplified as

ci(αX
TX + XTULUTX) ≡ ci(αK + K1/2LK1/2).

Let KA = αK + K1/2LK1/2 = αK + KSK. The theorem follows by

substitution for L.

The reader is directed to [35] for further details, as well as some corol-

laries to the above result.

Acknowledgments

I thank the anonymous reviewers for several suggestions, including

pointers to recent results and ideas for improving the manuscript. I also

thank Kilian Weinberger and Ruslan Salakhutdinov for figures that

were reproduced in the manuscript. Further thanks go to Jason Davis

for initially getting me interested in the metric learning problem, and

to Michael Jordan for encouraging me to write this survey.

358

References

[1] A. Beck and M. Teboulle, “Mirror descent and nonlinear projected subgradi-
ent methods for convex optimization,” Operations Research Letters, vol. 31,
pp. 167–175, 2003.

[2] D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
[3] M. Bilenko, S. Basu, and R. Mooney, “Integrating constraints and metric learn-

ing in semi-supervised clustering,” in Proceedings of International Conference
on Machine Learning (ICML), 2004.

[4] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.
[5] L. Bottou, “Online algorithms and stochastic approximations,” in Online

Learning and Neural Networks, (D. Saad, ed.), Cambridge University Press,
1998.

[6] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[7] J. P. Boyle and R. L. Dykstra, “A method for finding projections onto the
intersection of convex sets in Hilbert spaces,” Lecture Notes in Statistics, vol. 37,
pp. 28–47, 1986.

[8] L. M. Bregman, “The relxation method of finding the common points of convex
sets and its application to the solutionof problems in convex programming,”
USSR Computational Mathematics and Mathematical Physics, vol. 7, no. 3,
pp. 200–217, 1967.

[9] Q. Cao, Z. C. Guo, and Y. Ying, “Generalization bounds for metric and simi-
larity learning,” arXiv:1207.5437, 2012.

[10] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning, and Games. Cambridge
University Press, 2006.

359

360 References

[11] R. Chatpatanasiri, T. Korsrilabutr, P. Tangchanachaianan, and B. Kijsirikul,
“A new kernelization framework for Mahalanobis distance learning algorithms,”
Neurocomputing, vol. 73, no. 10–12, pp. 1570–1579, 2010.

[12] G. Chechik, V. Sharma, U. Shalit, and S. Bengio, “An online algorithm for lrage
scale image similarity learning,” in Advances in Neural Information Processing
Systems (NIPS), 2009.

[13] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric discrimina-
tively, with application to face verification,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2005.

[14] P. Ciaccia, M. Patella, and P. Zezula, “M-Tree: An efficient access method for
similarity search in metric spaces,” in Proceedings of International Conference
on Very Large Data Bases (VLDB), 1997.

[15] K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer, “Online passive-
aggressive algorithms,” in Advances in Neural Information Processing Systems,
2004.

[16] O. G. Cula and K. J. Dana, “3D texture recognition using bidirectional feature
histograms,” International Journal of Computer Vision (IJCV), vol. 59, no. 1,
pp. 33–60, 2004.

[17] Curious Labs, Inc., Poser 5 — Reference Manual. Santa Cruz, CA, 2002.
[18] H. Daume, “Frustratingly easy domain adaptation,” in Conference of the Asso-

ciation for Computational Linguistics (ACL), 2007.
[19] J. Davis and I. S. Dhillon, “Structured metric learning for high-dimensional

problems,” in Proceedings of ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2008.

[20] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon, “Information-theoretic met-
ric learning,” in Proceedings of International Conference on Machine Learning
(ICML), 2007.

[21] R. Fletcher, “A new variational result for quasi-Newton formulae,” SIAM Jour-
nal on Optimization, vol. 1, no. 1, 1991.

[22] J. Friedman, J. Bentley, and A. Finkel, “An algorithm for finding best matches
in logarithmic expected time,” ACM Transactions on Mathematics Software,
vol. 3, no. 3, pp. 209–226, 1977.

[23] A. Frome, Y. Singer, F. Sha, and J. Malik, “Learning globally consistent local
distance functions for shape-based image retrieval and classification,” in Pro-
ceedings of IEEE International Conference on Computer Vision (ICCV), 2007.

[24] T. Gaertner, “A survey of kernels for structured data,” ACM SIGKDD Explo-
rations Newsletter, vol. 5, no. 1, 2003.

[25] A. Globerson and S. Roweis, “Metric learning by collapsing classes,” in
Advances in Neural Information Processing Systems (NIPS), 2005.

[26] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov, “Neighbourhood
components analysis,” in Advances in Neural Information Processing Systems
(NIPS), 2004.

[27] A. A. Goldstein, “Convex programming in Hilbert space,” Bulletin of the Amer-
ican Mathematical Society, vol. 70, pp. 709–710, 1964.

[28] G. H. Golub and C. F. Van Loan, Matrix Computations. Johns Hopkins
University Press, 1996.

References 361

[29] K. Grauman and T. Darrell, “The pyramid match kernel: Efficient learning with
sets of features,” Journal of Machine Learning Research, vol. 8, pp. 725–760,
2007.

[30] M. Guillaumin, J. Verbeek, and C. Schmid, “Is that you? Metric learning
approaches for face identification,” in Proceedings of IEEE International Con-
ference on Computer Vision (ICCV), 2009.

[31] J. Ha, C. Rossbach, J. Davis, I. Roy, D. Chen, H. Ramadan, and E. Witchel,
“Improved error reporting for software that uses black box components,” in
Proceedings of Programming Language Design and Implementation (PLDI),
2007.

[32] S. C. H. Hoi, W. Liu, M. R. Lyu, andW. Y. Ma, “Learning distance metrics with
contextual constraints for image retrieval,” in Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2006.

[33] G. Hua, M. Brown, and S. Winder, “Discriminant embedding for local image
descriptors,” in Proceedings of IEEE International Conference on Computer
Vision (ICCV), 2007.

[34] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality,” in Proceedings of Symposium on Theory of
Computing (STOC), 1998.

[35] P. Jain, B. Kulis, J. Davis, and I. Dhillon, “Metric and kernel learning using
a linear transformation,” Journal of Machine Learning Research, vol. 13,
pp. 519–547, 2012.

[36] P. Jain, B. Kulis, and I. Dhillon, “Inductive regularized learning of kernel func-
tions,” in Advances in Neural Information Processing Systems (NIPS), 2010.

[37] P. Jain, B. Kulis, I. Dhillon, and K. Grauman, “Online metric learning and
fast similarity search,” in Advances in Neural Information Processing Systems
(NIPS), 2008.

[38] P. Jain, B. Kulis, and K. Grauman, “Fast image search for learned metrics,” in
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2008.

[39] W. James and C. Stein, “Estimation with quadratic loss,” Proceedings of Berke-
ley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 361–379,
1961.

[40] R. Jin, S. Wang, and Y. Zhou, “Regularized distance metric learning: Theory
and algorithm,” in Advances in Neural Information Processing Systems (NIPS),
2009.

[41] S. Kaski and J. Peltonen, “Informative discriminant analysis,” in Proceedings
of International Conference on Machine Learning (ICML), 2003.

[42] D. Kedem, S. Tyree, K. Q. Weinberger, F. Sha, and G. Lanckriet, “Non-
linear metric learning,” in Advances in Neural Information Processing Systems
(NIPS), 2012.

[43] B. Kulis, P. Jain, and K. Grauman, “Fast similarity search for learned met-
rics,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31,
no. 12, pp. 2143–2157, 2009.

[44] B. Kulis, K. Saenko, and T. Darrell, “What you saw is not what you get:
Domain adaptation using asymmetric kernel transforms,” in Proceedings of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.

362 References

[45] B. Kulis, M. Sustik, and I. Dhillon, “Learning low-rank kernel matrices,” in
Proceedings of International Conference on Machine Learning (ICML), 2006.

[46] B. Kulis, M. Sustik, and I. Dhillon, “Low-rank kernel learning with Breg-
man matrix divergences,” Journal of Machine Learning Research, vol. 10,
pp. 341–376, 2009.

[47] J. Kwok and I. Tsang, “Learning with idealized kernels,” in Proceedings of
International Conference on Machine Learning (ICML), 2003.

[48] G. Lebanon, “Metric learning for text documents,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 497–508, 2006.

[49] E. S. Levitin and B. T. Polyak, “Constrained minimization problems,” USSR
Computational Mathematics and Mathematical Physics, vol. 6, pp. 1–50, 1966.

[50] H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristanini, and C. Watkins, “Text
classification using string kernels,” Journal of Machine Learning Research,
vol. 2, pp. 419–444, 2002.

[51] P. C. Mahalanobis, “On the generalized distance in statistics,” Proceedings of
the National Institute of Sciences of India, vol. 2, no. 1, pp. 49–55, 1936.

[52] B. McFee and G. Lanckriet, “Metric learning to rank,” in Proceedings of Inter-
national Conference on Machine Learning ICML, 2010.

[53] G. J. McLachlan, Discriminant Analysis and Statistical Pattern Recognition.
Wiley Interscience, 2004.

[54] S. Parameswaran and K. Q.Weinberger, “Large margin multi-task metric learn-
ing,” in Advances in Neural Information Processing Systems (NIPS), 2010.

[55] R. Rosales and G. Fung, “Learning sparse metric via linear programming,” in
Proceedings of SIGKDD Conference, 2006.

[56] S. Roweis, “EM algorithms for PCA and SPCA,” in Advances in Neural Infor-
mation Processing Systems, 1998.

[57] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models
to new domains,” in Proceedings of European Conference on Computer Vision
(ECCV), 2010.

[58] R. Salakhutdinov and G. Hinton, “Learning a nonlinear embedding by preserv-
ing class neighbourhood structure,” in Proceedings of International Conference
on Artificial Intelligence and Statistics (AISTATS), 2007.

[59] B. Schoelkopf and A. Smola, Learning with Kernels. MIT Press, 2002.
[60] B. Schoelkopf, A. Smola, and K.-R. Mueller, “Nonlinear component analysis

as a kernel eigenvalue problem,” Neural Computation, vol. 10, no. 5, pp. 1299–
1319, 1998.

[61] M. Schultz and T. Joachims, “Learning a distance metric from relative compar-
isons,” in Advances in Neural Information Processing Systems (NIPS), 2003.

[62] G. Shakhnarovich, P. Viola, and T. Darrell, “Fast pose estimation with
parameter-sensitive hashing,” in Proceedings of IEEE International Conference
on Computer Vision (ICCV), 2003.

[63] S. Shalev-Shwartz, Y. Singer, and A. Y. Ng, “Online learning of pseudo-
metrics,” in Proceedings of International Conference on Machine Learning
(ICML), 2004.

[64] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

References 363

[65] M. Slaney, K. Q. Weinberger, and W. White, “Learning a metric for music sim-
ilarity,” in International Symposium on Music Information Retrieval (ISMIR),
2008.

[66] N. Snavely, S. Seitz, and R. Szeliski, “Photo tourism: Exploring photo collec-
tions in 3D,” in Proceedings of ACM SIGGRAPH, 2006.

[67] I. Takeuchi, M. Nakagawa, and M. Seto, “Metric learning for DNA microar-
ray data analysis,” in Proceedingso of International Workshop on Statistical-
Mechanical Informatics (IW-SMI), 2009.

[68] M. Taylor, B. Kulis, and F. Sha, “Metric learning for reinforcement learning
agents,” in Proceedings of International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), 2011.

[69] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of
the Royal Statistical Society, Series B, vol. 58, no. 1, pp. 267–288, 1996.

[70] M. E. Tipping and C. M. Bishop, “Probabilistic principal component analysis,”
Journal of Royal Statistical Society, Series B, vol. 21, no. 3, pp. 611–622, 1999.

[71] L. Torresani and K. Lee, “Large margin component analysis,” in Advances in
Neural Information Processing Systems (NIPS), 2007.

[72] D. Tran and A. Sorokin, “Human activity recognition with metric learning,”
in Proceedings of European Conference on Computer Vision (ECCV), 2008.

[73] T. Tuytelaars and K. Mikolajczyk, “Local invariant feature detectors: A sur-
vey,” Foundations and Trends in Computer Graphics and Vision, vol. 3, no. 3,
pp. 177–280, 2008.

[74] J. Uhlmann, “Satisfying general proximity/similarity queries with metric
trees,” Information Processing Letters, vol. 40, pp. 175–179, 1991.

[75] M. Varma and A. Zisserman, “A statistical approach to material classification
using image patch exemplars,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 31, no. 11, pp. 2032–2047, 2009.

[76] K. Q. Weinberger, J. Blitzer, and L. K. Saul, “Distance metric learning for
large margin nearest neighbor classification,” in Advances in Neural Informa-
tion Processing Systems (NIPS), 2005.

[77] K. Q. Weinberger and L. K. Saul, “Fast solvers and efficient implementations
for distance metric learning,” in Proceedings of International Conference on
Machine Learning (ICML), 2008.

[78] K. Q. Weinberger and L. K. Saul, “Distance metric learning for large margin
nearest neighbor classification,” Journal of Machine Learning Research, vol. 10,
pp. 207–244, 2009.

[79] K. Q. Weinberger and G. Tesauro, “Metric learning for kernel regression,” in
Proceedings of International Conference on Artificial Intelligence and Statistics
(AISTATS), 2007.

[80] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell, “Distance metric learning,
with application to clustering with side-information,” in Advances in Neural
Information Processing Systems (NIPS), 2002.

[81] H. Xiong and X. Chen, “Kernel-based distance metric learning for microarray
data classification,” BMC Bioinformatics, vol. 7, p. 299, 2006.

[82] Y. Ying, K. Huang, and C. Campbell, “Sparse metric learning via smooth
optimization,” in Advances in Neural Information Processing Systems (NIPS),
2009.

364 References

[83] Y. Ying and P. Li, “Distance metric learning with eigenvalue optimization,”
Journal of Machine Learning Research, vol. 13, pp. 1–26, 2012.

[84] M. Zinkevich, “Online convex programming and generalized infinitesimal gra-
dient ascent,” in Proceedings of International Conference on Machine Learning
(ICML), 2003.

	Introduction
	Distance Learning via Linear Transformations
	A Simple Motivating Example
	Basic Techniques and Notation
	Regularized Transformation Learning
	Representative Special Cases
	Optimization Techniques
	Summary

	Nonlinear Models for Metric Learning
	Kernelization of Linear Methods
	Other Nonlinear Methods

	Extensions
	Metric Learning for Kernel Regression
	Metric Learning for Ranking
	Dimensionality Reduction and Data Visualization
	Database Indexing
	Domain Adaptation

	Applications
	Computer Vision
	Text Analysis
	Other Applications

	Conclusions
	Representer Theorem Proof
	Acknowledgments
	References

