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Abstract

We present a Monte Carlo sampler using a modi-
fied Nosé-Poincaré Hamiltonian along with Rie-
mannian preconditioning. Hamiltonian Monte
Carlo samplers allow better exploration of the
state space as opposed to random walk-based
methods, but, from a molecular dynamics per-
spective, may not necessarily provide samples
from the canonical ensemble. Nosé-Hoover sam-
plers rectify that shortcoming, but the resul-
tant dynamics are not Hamiltonian. Further-
more, usage of these algorithms on large real-life
datasets necessitates the use of stochastic gradi-
ents, which acts as another potentially destabiliz-
ing source of noise. In this work, we propose
dynamics based on a modified Nosé-Poincaré
Hamiltonian augmented with Riemannian man-
ifold corrections. The resultant symplectic sam-
pling algorithm samples from the canonical en-
semble while using structural cues from the Rie-
mannian preconditioning matrices to efficiently
traverse the parameter space. We also propose
a stochastic variant using additional terms in the
Hamiltonian to correct for the noise from the
stochastic gradients. We show strong perfor-
mance of our algorithms on synthetic datasets
and high-dimensional Poisson factor analysis-
based topic modeling scenarios.
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1. Introduction
Bayesian inference in high dimensional models often re-
quires one to draw samples from posterior distributions
of variables which cannot be computed in closed form.
Monte Carlo techniques are the primary tool in one’s arse-
nal for this purpose; they allow one to draw samples from a
sequence of probability distributions that form a Markov
chain with the target distribution as its stationary distri-
bution. The Hamiltonian Monte Carlo (HMC) technique,
first proposed in (Duane et al., 1987) as “Hybrid Monte
Carlo”, improves on this by using ideas from statistical
physics to avoid the random walk behavior that normally
arises in these Markov chains. HMC sets the target distri-
bution as the “potential energy” of the simulated system,
and uses auxiliary “momentum” variables to augment the
potential with a kinetic energy term. Hamiltonian dynam-
ics are then used to create a sampler that conserves this
quantity, and the samples generated by this technique are
provably less correlated among themselves which leads to
faster convergence to the target distribution. The dynam-
ics are usually specified with a set of differential equations
which then have to be discretized; however one can derive
discrete-time numeric integrators (Neal, 2011; Leimkuh-
ler & Reich, 2004), usually called “leapfrog” methods, that
preserve the detailed balance and time reversibility proper-
ties of the continuous-time formulations.

In the statistical physics literature, dynamics-based tech-
niques are used to sample from a canonical ensemble,
where the possible states of the system remain at a constant
temperature. One technique that has been used for this pur-
pose uses the Nosé Hamiltonian (Nosé, 1984), which gen-
erates sequence of states from the canonical ensemble un-
der the standard ergodicity assumptions. The Nosé-Hoover
system (Hoover, 1985) proposes a change of variables that
allows evenly spaced samples from the canonical ensem-
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ble, however the resulting system is not Hamiltonian. In
particular, the numeric integrator used to solve the system
of differential equations for this formulation is not sym-
plectic, in that it does not preserve the symplectic geom-
etry of the original manifold defined by the Hamiltonian
system. Symplecticness being in general a stronger prop-
erty than volume preservation, (Bond et al., 1999) proposed
a Hamiltonian which can be used to derive a numeric in-
tegrator that samples from a fixed temperature canonical
ensemble, and is also symplectic and time-reversible.

Although Monte Carlo techniques constructed from these
formulations can be used to sample from Markov chains
that converge to the desired target distributions, a difficulty
arises when working with very large-scale datasets. Here,
due to computational limitations, one often cannot compute
the gradient of the target likelihood (potential energy) over
the entire dataset in a reasonable amount of time. Instead,
at every iteration one computes a stochastic gradient (SG),
which is the gradient evaluated over a randomly selected
“mini-batch” of data (Robbins & Monro, 1951; Welling &
Teh, 2011). This allows the algorithms to scale to massive
datasets commonly seen in machine learning, while pre-
serving the desired theoretical properties. Recent work in
this vein includes SG Langevin dynamics (Welling & Teh,
2011), SG Hamiltonian Monte Carlo (Chen et al., 2014),
and other variants and extensions (Ding et al., 2014; Pat-
terson & Teh, 2013). First order Langevin dynamics meth-
ods are inherently random-walk based, whereas the HMC
methods exploit the exploration efficiencies of Hamiltonian
systems to derive more robust samplers in a stochastic set-
ting. However, the samples are not automatically drawn
from the canonical ensemble, an issue that was addressed
in (Ding et al., 2014), where the SGNHT algorithm was
proposed. The authors do show the efficacy of the sampler
in the face of stochastic noise; but as mentioned above, the
Nosé-Hoover system is not Hamiltonian, which can have
adverse effects on the efficiency and convergence speed of
any MCMC algorithm derived using its dynamics.

Therefore one would want a stochastic technique that sam-
ples from the canonical ensemble, without sacrificing the
advantages of Hamiltonian trajectories. To that end, we
propose the stochastic gradient Nosé-Poincaré Hamiltonian
Monte Carlo sampler, which uses a variant of the Hamilto-
nian proposed in (Bond et al., 1999) that leverages Rie-
mannian preconditioning and corrects for the random noise
from the stochastic gradients while preserving the desired
properties mentioned above. The basic idea of Rieman-
nian adaptations, first proposed in (Girolami & Calder-
head, 2011), is to define a Riemannian metric tensor on
the parameter space and use structural cues from the re-
sulting manifold while traversing the Hamiltonian trajecto-
ries. This technique was exploited in the context of sam-
pling from a high dimensional probability simplex (Patter-

son & Teh, 2013), where the geometric information allows
the sampler to improve upon the slow mixing behavior ex-
hibited by the first order Langevin dynamics on parameter
spaces with a high degree of correlation. Another advan-
tage of locally-adaptive preconditioning is that one does not
have to worry about selecting optimal values for the “mass”
matrices in Hamiltonian samplers, an aspect such samplers
tend to be highly sensitive to (Girolami & Calderhead,
2011; Bond et al., 1999). In our algorithm, we use Riemann
tensors on the original parameter space to precondition the
momenta of both the real and extended position variables
in the Nosé Hamiltonian, and show that the resulting sys-
tem samples from the canonical ensemble. We then add
correction terms to account for noise when the full gradient
is replaced by the stochastic gradient, and use the Fokker-
Planck equation to prove that the dynamics conserve the
desired energy. Finally, we apply our algorithm to parame-
ter estimation in synthetic settings and a high dimensional
topic modeling scenario using the Poisson factor analysis
framework (Zhou & Carin, 2015) and the exact Gamma
process construction of (Roychowdhury & Kulis, 2014).

2. Preliminaries
2.1. Monte Carlo using Hamiltonian Dynamics

Let us denote the model parameters by θ. Suppose we
want to generate samples from the posterior distribution
of θ given data X, p(θ|X). In a Hamiltonian setting, we
take the joint log likelihood of the data and the parame-
ters, L(θ) = log p(X|θ) + log p(θ), and add to it a term
involving auxiliary “momentum” variables p , to get the
Hamiltonian

H(θ,p) = −L(θ) +
1

2
pTM−1p. (1)

The quantity can be interpreted in a physical sense as the
sum of the potential energy L(θ) and the kinetic energy
1
2pTM−1p, where M−1 acts as the canonical mass ma-
trix. The joint distribution of θ and p is then defined as
p(θ,p) ∝ exp (−H(θ,p)). It is easily seen that we can
integrate out p from p(θ,p) to get the desired posterior dis-
tribution on θ.

Denoting time derivatives with the dot accent, i.e. θ̇ =
dθ/dt, the Hamiltonian equations of motion govern-
ing the dynamics of this system can be written as

θ̇ =
∂

∂p
H(θ,p), ṗ = − ∂

∂θ
H(θ,p). In our formulation

the dynamics are θ̇ = M−1p, ṗ = ∇L(θ). These equations
are time-reversible, and the dynamics conserve the total
energy and are symplectic as well. These continuous-
time equations are discretized to give “leapfrog” algo-
rithms which are used for Monte Carlo simulations along
with Metropolis-Hastings correction steps. For details see
(Neal, 2011; Leimkuhler & Reich, 2004).
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2.2. Riemann Adjusted Hamiltonian Monte Carlo

The scaling issues associated with standard Hamiltonian
Monte Carlo algorithms can be partially alleviated using
Riemannian preconditioning. We first define the Hamil-
tonian on a Riemann manifold defined by a positive def-
inite metric G(θ). Trajectories incorporating information
from this manifold can be simulated by simply defining the
kinetic energy in terms of the metric tensor (Girolami &
Calderhead, 2011), which leads to the following Hamilto-
nian:

Hgc(θ,p) = −L(θ)+
1

2
pTG(θ)−1p+

1

2
log
{

(2π)D|G(θ)|
}

(2)
where D is the dimensionality of the parameter space. The
log term ensures that the momentum variable p can be in-
tegrated out to recover the desired marginal density of θ.
The equations of motion in this system therefore are

θ̇ = G(θ)−1p

ṗ = ∇L(θ)− 1

2
tr
(
G(θ)−1∇G(θ)

)
+

1

2
pTG(θ)−1∇G(θ)G(θ)−1p.

To discretize this system of equations, we use the general-
ized leapfrog algorithm, where a first order symplectic in-
tegrator is composed with its adjoint; the resultant second
order integrator can be shown to be both time-reversible
and symplectic (Leimkuhler & Reich, 2004). We use this
integrator to derive discretized samplers from our Nosé-
Poincaré Hamiltonians in §3.

2.3. Stochastic Gradient Dynamics

For moderate datasets, the gradient of the log-likelihood
in the dynamics above can be evaluated over the entire
dataset. However, for large datasets, doing so in every iter-
ation becomes prohibitively expensive. The most common
way around this problem is to replace the full gradient by
one evaluated over a random “mini-batch” of the dataset,
a technique inspired by (Robbins & Monro, 1951). The
approximate gradient of the log-likelihood can be written
as

∇L̃ (θ) =
|N |
|Ñ |

∑
x∈Ñ

∇ log p(x|θ) +∇ log p(θ),

where N denotes the entire dataset, and Ñ denotes a ran-
dom mini-batch. Monte Carlo samplers using stochastic
gradients have been proposed for first order Langevin dy-
namics (Welling & Teh, 2011; Patterson & Teh, 2013),
as well as for Hamiltonian systems using second order
Langevin dynamics (Chen et al., 2014).

Another feature of these algorithms is the removal of a
Metropolis-Hastings correction step, as that would require

very expensive computations over the entire dataset. In-
stead, a decaying sequence of stepsizes {εt} satisfying∑
t
εt = ∞ and

∑
t
ε2t < ∞ is used, for which the Markov

chain of distributions can be proved to have the desired tar-
get as its equilibrium distribution.

3. Riemannian Nosé-Poincaré Dynamics
3.1. The Deterministic Case

The Nosé-Poincaré Hamiltonian proposed in (Bond et al.,
1999) can be written as

H(θ,p, s, q) = s

(
− L(θ) +

1

2

(p
s

)T
M−1

p
s

+
q2

2Q

+gkT log s−H0

)
.

(3)

Here k is Boltzmann’s constant, T is the system tempera-
ture, g is equal to the number of degrees of freedom of the
system. s is an extended position variable with momentum
q and associated mass Q, as introduced by (Nosé, 1984).
s acts as the time-scaling function in a Poincaré transfor-
mation, which allows us to preserve the dynamics of the
original Hamiltonian upto the time transformation.

3.1.1. THE RIEMANN AUGMENTATION

As mentioned previously, the dynamics of Hamiltonian
systems are highly sensitive to the values of the mass ma-
trices, in this case M and Q. To take advantage of locally-
adaptive walks on the Riemann manifold, we replace the
mass matrices in (3) by a metric tensor G(θ) as follows:

H(θ,p, s, q) = s

(
− L(θ) +

1

2

(p
s

)T
G(θ)−1

p
s

+
1

2
|G(θ)|−1q2 +

1 + kT

2
log
{

(2π)D|G(θ)|
}

+ gkT log s−H0

)
.

(4)

The log term ensures that we can integrate out the extended
momentum term q to get back the Hamiltonian (2), or for
that matter the one in (1), if one treats the curvature of the
metric-defined manifold as a constant. Note that the only
constant one needs to choose in this system is the value
for T . In Bayesian inference we usually take kT = 1,
though use of this Hamiltonian is not restricted to that spe-
cific choice.

Theorem 1. The dynamical system derived from the Rie-
mannian Nosé-Poincaré Hamiltonian (4) generates sam-
ples from the canonical ensemble.
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Proof. We will show that we can integrate out s, q from
p(θ,p, s, q) ∝ exp (−H(θ,p, s, q)) to get p(θ,p) ∝
exp (−Hgc(θ,p)/kT ). The integration of s essentially
follows (Bond et al., 1999), so we detail that in §A
of the supplementary. With s integrated out, we are
left with p(θ,p, q) ∝ exp (−Hgc(θ,p)/kT ) exp

[
−

1
2kT |G(θ)|−1q2 − 1

2 log
{

(2π)D|G(θ)|
} ]

. We can easily
integrate out q from the second exponential term on the
right to get the desired form for p(θ,p).

The dynamics for this system are given by

θ̇ =
(p
s

)T
G(θ)−1

ṗ = s
1

2

(p
s

)T
G(θ)−1∇G(θ)G(θ)−1

(p
s

)
+ s

1

2
q2G(θ)−1∇G(θ)G(θ)−1

− s

2
(1 + kT )tr

(
G(θ)−1∇G(θ)

)
+ s∇L(θ)

ṡ = sqG(θ)−1

q̇ = −gkT +
(p
s

)T
G(θ)−1

p
s
−Hinner

(5)

where Hinner =

(
− L(θ) + 1

2

( p
s

)T G(θ)−1 p
s

+ 1
2 |G(θ)|−1q2 + 1+kT

2 log
{

(2π)D|G(θ)|
}

+ gkT log s−H0

)
.

Since we derived these equations following Hamiltonian’s
laws of motion, the dynamics are time-reversible and sym-
plectic. Moreover, as shown above, the samples are drawn
from the fixed temperature canonical ensemble, and the use
of Riemann metric tensors allows us to exploit the geom-
etry of the manifold. We can see that if the manifold is
assumed to have a constant curvature. i.e. ∇G(θ) = 0,
then the dynamics above reduce to those of the standard
Nosé-Poincaré system in (Bond et al., 1999).

We can also see that the Hamiltonian (4) is not a simple
generalization of (2); the only way to recover (2) is to set
the extended position variable s = 1, q = 0 (effectively
assuming that the particles are not changing position in the
extended phase space), as well as setting T = 0. This is
problematic in a physical sense, since particles do not move
at absolute zero.

3.1.2. THE DISCRETIZED DYNAMICS

For Monte Carlo sampling we need to discretize this sys-
tem, and to do so we use the generalized leapfrog algo-
rithm of (Leimkuhler & Reich, 2004). The generalized
leapfrog algorithm can be shown to be both time-reversible
and symplectic. However, since our Hamiltonian is not sep-
arable due to the coupling of the momenta terms with the

position variable θ, the leapfrog equations are implicitly
defined, necessitating the use of fixed point techniques or
Newton-like iterations to solve them. The algorithm ap-
plied to the dynamics (5) yields the following discrete up-
date equations:

p
(t+ ε

2 )
i = p

(t)
i −

ε

2
∇θiH

(
θ(t), s(t),p(t+ε/2), q(t+ε/2)

)
q(t+

ε
2 ) = q(t) − ε

2

[
Hinner + gkT

−
(

p(t+ε/2)

s(t)

)T
G(θ(t))−1

(
p(t+ε/2)

s(t)

)]
θ
(t+ε)
i = θ

(t)
i +

ε

2

[(
p(t+ε/2)

s(t)

)T
G(θ(t))−1

+

(
p(t+ε/2)

s(t+ε)

)T
G(θ(t+ε))−1

]
i

s(t+ε) = s(t) +
ε

2

[
s(t)q(t+ε/2)|G(θ(t))|−1

+ s(t+ε)q(t+ε/2)|G(θ(t+ε))|−1
]

p
(t+ε)
i = p

(t+ε/2)
i − ε

2
∇θiH

(
θ(t+ε), s(t+ε),p(t+ ε

2 ), q(t+
ε
2 )
)

q(t+ε) = q(t+ε/2) − ε

2

[
Hinner + gkT

−
(

p(t+ε/2)

s(t+ε)

)T
G(θ(t+ε))−1

(
p(t+ε/2)

s(t+ε)

)]
(6)

where ∇θiH(θ, s,p, q)

=
ε

2

[
− 1

2
s
(p
s

)T
G(θ)−1

(
∂

∂θi
G(θ)

)
G(θ)−1

(p
s

)
+
s

2
(1 + kT )tr

{
G(θ)−1

∂

∂θi
G(θ)

}
− s ∂

∂θi
L(θ)

− sq
2

2
|G(θ)|−1tr

{
G(θ)−1

∂

∂θi
G(θ)

}]
.

The half-step (t+ ε/2) updates equations for the momenta
p and q are implicitly defined, as are those for the θ, s pair.
The full step (t + ε) updates for p and q are explicit, since
they depend only on the half-step values of p and q and the
full step ones for θ, s. The overall procedure is outlined in
Algorithm 1.

In (Girolami & Calderhead, 2011) the authors men-
tion using fixed point iterations for solving a similar set
of equations. However, in our experiments with real
datasets, fixed point updates led to unstable mixing at
even moderate learning rates. One reason for this could
be the fact that the Jacobians of the implicit equations
are large (implying “stiff” domains) for these datasets
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Algorithm 1 Riemann Nosé-Poincaré HMC

Input: θ, ε, kT
Initialize θ, s
repeat
· Sample p(t) ∼ N(0, G(θ)), q(t) ∼ N(0, |G(θ)|)
·Perform leapfrog dynamics (6)
to get ((θ(t), s(t),p(t), q(t)) :
for i = 1 to leapfrog_iterations do
· Perform implicit Newton updates to get
p(t+ε/2), q(t+ε/2),θ(t+ε), q(t+ε)

· Perform explicit updates to get p(t+ε), q(t+ε)

end for
·(θ′

, s
′
,p

′
, q

′
)← ((θ(t+ε), s(t+ε),p(t+ε), q(t+ε))

· Set ((θ(t+1), s(t+1),p(t+1), q(t+1))
using Metropolis-Hastings

until forever

and this specific formulation. Therefore, for strictly pos-
itive parameters we resort to using diagonal metric ten-
sors

(
G(θ) = diag(θ)−1, assuming G(θ) � 0

)
, and using

Newton’s method for solving the implicit systems. We pro-
vide additional details in §B.1 of the supplementary.

3.2. The Stochastic Case

Typically when working with large datasets, computing the
gradient of the log-likelihood over the entire dataset is very
expensive. Therefore we resort to evaluating the gradients
on a mini-batch of the data. The stochastic gradient of the
log-likelihood can be written as

∇L̃ (θ) =
|N |
|Ñ |

∑
x∈Ñ

∇ log p(x|θ) +∇ log p(θ),

where N denotes the entire dataset, and Ñ denotes a ran-
dom mini-batch.

From the dynamics in the deterministic case (5), we can
see that there are two sources of stochastic noise in the
minibatch setting from the two momenta terms: one in the
equation for ṗ, where we have the extended position vari-
able s multiplied by the gradient of the log-likelihood, and
the second in the equation for q̇, where we have the full
log-likelihood term in Hinner. Note that the additive noise
in the update for q is purely a function of θ, whereas the
noise arising from the stochastic gradient in ṗ is multiplied
by the extended position variable s. Therefore, following
convention, if we write the stochastic terms (likelihood as
well as gradient) as the corresponding full terms plus ran-
dom noise, then we have the following expressions for the
momenta dynamics in the stochastic setting:

˜̇q = q̇ +N(0, 2A(θ))

˜̇p = ṗ +N(0, 2
√
sB(θ)).

This therefore turns the deterministic dynamics of (5) into a
Langevin diffusion, with A(θ) and

√
sB(θ) acting as dif-

fusion coefficients of standard Wiener processes.

As one might imagine, using these noisy terms in the dy-
namics without any correction leads to non-conservation of
the total system energy; indeed, (Chen et al., 2014) showed
that under certain conditions the entropy of such a system
would strictly increase with time. Therefore, one needs to
introduce additional terms in the dynamics if the Hamilto-
nian (4) is to be conserved in the stochastic setting. To do
so, we turn to the Fokker-Planck equation.

THE FOKKER-PLANCK CORRECTIONS

The Fokker-Planck equation describes the evolution of the
probability distribution of the parameters of a differential
equation under stochastic forces. For a stochastic differ-
ential equation with diffusion coefficient D(θ), written as
θ̇ = f(θ) +N(0, 2D(θ)), with the distribution of θ being
p(θ), the Fokker-Planck equation can be written as

∂

∂t
p(θ) = − ∂

∂θ
[f(θ)p(θ)] +

∂2

∂θ2
[D(θ)p(θ)] , (7)

where the notation ∂2

∂θ2 denotes
∑
i,j

∂
∂θi

∂
∂θj

.

Using this equation, we can derive the corrective terms for
the stochastic noise in the dynamics (5). We propose cor-
rection terms consisting of the Hamiltonian equations for
the position variables with suitable multiplicative terms to
cancel out the diffusion noise, resulting in the following
corrected dynamics:

θ̇ =
(p
s

)T
G(θ)−1

ṗ = s
1

2

(p
s

)T
G(θ)−1∇G(θ)G(θ)−1

(p
s

)
+ s

1

2
q2G(θ)−1∇G(θ)G(θ)−1 −

√
sB(θ)

(p
s

)T
G(θ)−1

− s

2
(1 + kT )tr

(
G(θ)−1∇G(θ)

)
+ s∇L̃(θ)

ṡ = sqG(θ)−1

q̇ = −gkT +
(p
s

)T
G(θ)−1

p
s
− H̃inner −A(θ)sqG(θ)−1.

(8)

This choice can be justified using the Fokker-Planck equa-
tion, as we prove below.

Theorem 2. The dynamics defined in (8) leave the
probability distribution defined by p(θ, p, s, q) ∝
exp (−H(θ, p, s, q)) invariant.

Proof. Let us start with the deterministic Hamiltonian dy-
namics (5), and replace the log-likelihood terms therein
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with their stochastic versions, without any corrections. Fol-
lowing the notation of (Yin & Ao, 2006), the dynamics can
be represented in the following format:
θ̇
ṗ
ṡ
q̇

 = −


0 0 0 −I
0 0 I 0
0 −I 0 0
I 0 0 0



∂
∂sH(θ,p, s, q)
∂
∂qH(θ,p, s, q)
∂
∂θH(θ,p, s, q)
∂
∂pH(θ,p, s, q)

+N

(9)

where N = [0, N(0, 2
√
sB(θ)), 0, N(0, 2A(θ))]

T . Let
us denote the anti-symmetric matrix above by X . Then,
denoting ∇ = [∂/∂θ; ∂/∂p; ∂/∂s; ∂/∂q], it is easy to see
that tr

{
∇T∇Xy

}
= 0 for any y(θ,p, s, q).

Therefore the right hand side of the Fokker-Planck equation
(7) can be written as

− tr∇T {p(θ,p, s, q)X∇H}+ tr
{
∇TD∇p(θ,p, s, q)

}
= −tr∇T {p(θ,p, s, q)X∇H}
+ tr

{
(D +X)∇T∇p(θ,p, s, q)

}
.

Here we have used the shorthand ∇H to refer to the sec-
ond matrix on the right hand side of equation (9), and D
contains the diffusion terms from the stochastic noise (see
§C of the supplementary for the exact formulation).

Note that ∇p = −p∇H , since p ∝ exp (−H). Therefore,
if we simply replace X with D + X in (9), the right hand
side of the Fokker-Plank equation reduces to zero. Using
D +X in (9) is equivalent to the dynamics (8).

As mentioned before, we use the generalized leapfrog al-
gorithm to discretize the continuous differential equations
of motion. The generalized leapfrog algorithm is a com-
position of a symplectic first-order Euler integrator with its
adjoint. We describe the discretized version of the dynam-
ics (8) in §B of the supplementary.

4. Experiments
4.1. Estimation of 1D Gaussian Distribution

We start off with a synthetic experiment on learning the pa-
rameters of a one-dimensional Gaussian distribution. We
generate 5000 points from a standard normal distribu-
tion, and attempt to learn the mean and the variance us-
ing the discretized stochastic algorithm based on the dy-
namics (8). We call this algorithm stochastic gradient
Riemann Nosé-Poincaré Hamiltonian Monte Carlo (SGR-
NPHMC). We compare it to the SG-NHT algorithm of
(Ding et al., 2014). Extensive comparisons of SG-NHT
with related techniques like stochastic gradient Hamilto-
nian Monte Carlo and Langevin Dynamics have already

Table 1. RMSE and auto-correlation times of the sampled means,
precisions from SGR-NPHMC runs on synthetic Gaussian data.

{A,B} RMSE (µ) RMSE (τ ) A.T. (µ)

0.01 0.0240 0.0328 14.8999
0.001 0.0244 0.0466 13.6332
0.0001 0.0289 0.0433 2.5899

been performed in the literature, hence we do not conduct
comparisons with those methods here.

For both SGR-NPHMC and SG-NHT, we use normal-
Wishart priors on the mean and precision; the pos-
terior distribution is proportional to p(µ, τ |X) ∝
N(X|µ, τ)W(τ |1, 1), where τ denotes the precision, and
W denotes the Wishart distribution. We run both algo-
rithms for 105 iterations and discard the first 5000 “burn-
in” iterations. For our Riemannian algorithm we use the
observed Fisher information plus the negative Hessian of
the prior as the metric tensor, and perform one fixed point
iteration to solve the implicit system of equations. For both
algorithms we use 10 leapfrog iterations. Learning rates
are fixed to 1e-3 and batchsizes to 100 for both algorithms.

In Figure 1 we demonstrate the sensitivity of the algorithms
to different values of the stochastic noise correction terms.
The post-burnin samples of µ generated by both algorithms
for various values of these terms are plotted in Figures 1a
and 1b. 1c. Figure 1c shows the corresponding precision
samples. We can see that SGR-NPHMC is as robust to
stochastic noise as SG-NHT, and both algorithms generate
acceptable samples of µ and τ post-burnin.

However the sampling trajectories in Figures 2a and 2b
tell a different story. We see that SG-NHT overshoots the
target value of µ by a large margin, as well as having a
higher spread of the post-burnin samples. In contrast, SGR-
NPHMC follows a more direct path to the target, and gen-
erates a tighter set of samples. This behavior can be at-
tributed to the Riemann geometry cues and the resulting
implicit system of update equations.

The higher variance in the samples shows up in the RMSE
for the parameters. We show these numbers along with the
autocorrelation times for both algorithms in Tables 1 and
2. As seen in the qualitative sample trajectories, the SGR-
NPHMC generates samples with lower RMSE for all val-
ues of the noise corrector terms.

4.2. Parameter Estimation in Bayesian Logistic
Regression

Our next experiment is on learning the parameters in
a synthetic two-dimensional Bayesian logistic regression
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(a) (b) (c)

Figure 1. Density plots for the mean (µ) and precision (τ ) samples obtained from SGR-NPHMC and SG-NHT runs on the synthetic
Gaussian dataset. Plots (a) and (b) show the sample densities of µ for SGR-NPHMC and SG-NHT respectively. Plot (c) shows the
sample densities of τ for both algorithms. The true values were µ = 0, τ = 1. See the text for experimental details.

(a) (b)

Figure 2. Samples trajectories for µ and τ from (a) SGR-NPHMC
and (b) SG-NHT runs on the synthetic Gaussian dataset. Both
algorithms were initialized with µ0 = 0.3, τ0 = 3. For the former
we used {A,B} = 0.001, and for the latter we had A = 1. The
true values were µ = 0, τ = 1. Note the convergence patterns
and sample spread of the two algorithms.

task. In this experiment we first generate 5000 data-
points from two bivariate normal distributions with means
at [1,−1] and [−1, 1] and unit covariances, and then use a
linear classifier with weights (w1, w2) = [1,−1] to bag
the points into two classes. We then estimate the classi-
fier weights using Bayesian logistic regression. As with
the previous experiment, we compare SGR-NPHMC and
SG-NHT in terms of accuracy and autocorrelation time.
We run both algorithms for 105 iterations, discard the first
5000 samples and use the rest to compute these metrics.
SGR-NPHMC achieves lower RMSE for the parameters in
this case as well, as seen in the corresponding tables pro-
vided in §D.1 of the supplementary. The sample trajecto-
ries shown in Figures 3a and 3b paint a similar picture to
that of the previous section; SG-NHT overshoots by a wide
margin before converging, and has higher sample variance
as well. SGR-NPHMC follows a more efficient path to con-

Table 2. RMSE and auto-correlation times of the sampled means
and precisions from SG-NHT runs on synthetic Gaussian data.

{A} RMSE (µ) RMSE (τ ) A.T. (µ)

0.1 0.0364 0.0386 13.5715
1 0.0375 0.0471 17.2241
10 0.0365 0.0416 13.5715

vergence, and post-convergence sample variance is lower.

4.3. Topic Modeling using Hierarchical Gamma
Processes

For this experiment we compare the algorithms in a high-
dimensional topic modeling scenario using hierarchical
Gamma processes. In particular, we use the Poisson fac-
tor analysis framework of (Zhou & Carin, 2015). We model
the observed counts of V vocabulary terms inN documents
as DV×N = Poi(ΦΘ), where ΦV×K is the factor load ma-
trix that encodes the relative importance of the vocabulary
terms in the K latent topics, and ΘK×N models the counts
of the topics in the documents.

We put a Dirichlet prior on the columns of Φ using nor-
malized Gamma variables: φv,k = γv∑

v γv
, with γv ∼

Γ(α, 1). Then we have θn,k ∼ Γ(rk,
pj

1−pj ), where the
document-specific mixing probabilities pj have β(a0, b0)
priors. Next, we use two different formulations of rk: (a)
we set rks to the weights of a discrete Gamma process with
equal atom weights, as in (Zhou & Carin, 2015); and (b)
we set rks to the atom weights generated by the construc-
tive Gamma process definition of (Roychowdhury & Kulis,
2014). See the respective papers for the details of the con-
structions. We call these two formulations γNB, and γGP
respectively.
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(a) (b)

Figure 3. Samples trajectories for w1 and w2 from (a) SGR-
NPHMC and (b) SG-NHT runs on the synthetic Bayesian lo-
gistic regression dataset. Both algorithms were initialized with
w1 = 2, w2 = 1. For the former we used {A,B} = 0.001, and
for the latter we had A = 1. The true values were w1 = 1, w2 =
−1. Note the convergence patterns of the two algorithms, and the
spread of the samples thereafter.

Figure 4. Test perplexities as a function of post-burnin iterations
for the 20-Newsgroups dataset.

We use two public datasets for this experiment, the 20-
Newsgroups and Reuters Corpus Volume 1 corpora from
(Srivastava et al., 2013). The first has a vocabulary of
2,000 words spread over 18,845 documents. The second
has 804,414 documents and a vocabulary of size 10,000.
We use the same training/validation/test split as (Gan et al.,
2015), where the 20 Newsgroups dataset is split chronolog-
ically into 11,314 training and 7,531 test documents, and
the Reuters dataset into 794,414 training and 10,000 test
documents. After training the stochastic algorithms, fol-
lowing standard methodology we learn document-specific
parameters from 80% of the words in the test set, and calcu-
late test perplexities on the remaining 20%. The perplexity
formulation is detailed in §D.2 of the supplementary.

For SGR-NPHMC and SG-NHT on the γGP model, we run
three parallel NPHMC chains; one each for the two con-
stituent parameters of the atom weights (Eks and Tks) and
one for the hyperparameters (α, γ and c). See §4.1 of (Roy-
chowdhury & Kulis, 2014) for the exact formulation. We

Table 3. Test perplexities on 20-Newsgroups and Reuters
datasets.

METHOD MODEL 20-NEWSGROUPS REUTERS

GIBBS γNB 763 -
GIBBS LDA 788 -
SG-NHT γGP 758 929
SGR-NPHMC γNB 752 930
SGR-NPHMC γGP 723 904

estimate the φs using Riemann Hamiltonian Monte Carlo
updates (Girolami & Calderhead, 2011), as we found it
to mix better than Gibbs sampling for the stochastic al-
gorithms. For all Riemannian HMC chains we use the
diagonal metric tensor G(θ) = diag(θ)−1, as first stud-
ied in (Patterson & Teh, 2013) (see §3.1.2 for the resulting
dynamics). We used K = 200 latent topics for all algo-
rithms. For SGR-NPHMC we set the learning rates of all
three NPHMC chains to 1e-4, and for SG-NHT we use a
stable learning rate of 1e-6. Batchsize was set to 100 for
both algorithms. We used 2,000 iterations for burn-in and
collected samples for test perplexity evaluation thereafter.

Figure 4 shows the perplexities evaluated on the 20-
Newsgroups dataset. The perplexities at the end of the test
runs for both 20-Newsgroups and Reuters are shown in Ta-
ble 3. We can see the SGR-NPHMC algorithms for both
γNB and γGP models outperforming SG-NHT for γGP on
20-newsgroups. For the larger Reuters dataset, the γGP-
based SGR-NPHMC performs best, followed by SG-NHT
and the γNB-based SGR-NPHMC.

5. Conclusion
We have proposed a novel Hamiltonian MCMC algo-
rithm using a modified Nosé-Poincaré Hamiltonian aug-
mented with Riemann preconditioning for both real and ex-
tended momenta, as well as correction terms arising from
the Fokker-Planck equations to ensure sampling from the
canonical ensemble in the presence of stochastic noise. We
have derived a discretized sampler using the generalized
leapfrog algorithm, and have shown robust performance in
synthetic and high dimensional real-world datasets.

Acknowledgements
We thank the anonymous reviewers for their helpful com-
ments and suggestions. This work was partially supported
by NSF awards IIS 1217433 and DMS #1418265.



Robust Monte Carlo Sampling using Riemannian Nose-Poincare Hamiltonian Dynamics

References
Bond, S. D., Leimkuhler, B. J., and Laird, B. B. The Nosé-

Poincaré Method for Constant Temperature Molecular
Dynamics. J. Comput. Phys, 151:114–134, 1999.

Chen, T., Chen, E., and Guestrin, C. Stochastic Gradient
Hamiltonian Monte Carlo. In ICML, 2014.

Ding, N., Fang, Y., Babbush, R., Chen, C., Skeel, R. D., and
Neven, H. Bayesian Sampling using Stochastic Gradient
Thermostats. In NIPS, 2014.

Duane, S., Kennedy, A.D., Pendleton, B.J., and Roweth, D.
Hybrid Monte Carlo. Physics Letters B, 195(2):216–222,
1987.

Gan, Z., Chen, C., Henao, R., Carlson, D., and Carin, L.
Scalable Deep Poisson Factor Analysis for Topic Mod-
eling. In ICML, 2015.

Girolami, M. and Calderhead, B. Riemann manifold
Langevin and Hamiltonian Monte Carlo methods. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 73(2):123–214, 2011.

Hoover, W.G. Canonical dynamics: Equilibrium phase-
space distributions. Physical Review A (General
Physics), 31(3):1695–1697, 1985.

Leimkuhler, B. and Reich, S. Simulating Hamiltonian Dy-
namics. Cambridge University Press, 2004.

Neal, R. M. MCMC using Hamiltonian dynamics. In
Brooks, S., Gelman, A., Jones, G. L., and Meng, X.-
L. (eds.), Handbook of Markov Chain Monte Carlo, pp.
113–162. Chapman & Hall / CRC Press, 2011.

Nosé, S. A molecular dynamics method for simulations in
the canonical ensemble. Molecular Physics, 52(2):255–
268, 1984.

Patterson, S. and Teh, Y. W. Stochastic Gradient Rieman-
nian Langevin Dynamics on the Probability Simplex. In
NIPS, 2013.

Robbins, H. and Monro, S. A Stochastic Approximation
Method. The Annals of Mathematical Statistics, 22(3):
400–407, 1951.

Roychowdhury, A. and Kulis, B. Gamma Pro-
cesses, Stick-Breaking, and Variational Inference, 2014.
arXiv:1410.1068.

Srivastava, N., Salakhutdinov, R., and Hinton, G. E. Mod-
eling documents with deep Boltzmann machines. In
UAI, 2013.

Welling, M. and Teh, Y. W. Bayesian Learning via Stochas-
tic Gradient Langevin Dynamics. In ICML, 2011.

Yin, L. and Ao, P. Existence and Construction of Dynam-
ical Potential in Nonequilibrium Processes without De-
tailed Balance. Journal of Physics A: Mathematical and
General, 39(27):8593, 2006.

Zhou, M. and Carin, L. Negative Binomial Process Count
and Mixture Modeling. IEEE Trans. Pattern Anal. Mach.
Intell., 37(2):307–320, 2015.


