
Scalable Semidefinite Programming using Convex
Perturbations

Brian Kulis∗, Suvrit Sra†∗,Stefanie Jegelka†,Inderjit S. Dhillon∗
∗Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

{kulis,suvrit,inderjit}@cs.utexas.edu
†Max Planck Institute for Biological Cybernetics

Spemannstr 38
72076 T̈ubingen, Germany

{suvrit.sra,stefanie.jegelka}@tuebingen.mpg.de

UTCS Technical Report TR-07-47

September 13, 2007

Abstract

Several important machine learning problems can be modeled and solved via semidefinite programs.
Often, researchers invoke off-the-shelf software for the associated optimization, which can be inappropriate
for many applications due to computational and storage requirements. Inthis paper, we introduce the use of
convex perturbations for semidefinite programs (SDPs). Using a particular perturbation function, we arrive
at an algorithm for SDPs that has several advantages over existing techniques: a) it is simple, requiring
only a few lines of MATLAB , b) it is a first-order method which makes it scalable, c) it can easily exploit
the structure of a particular SDP to gain efficiency (e.g., when the constraint matrices are low-rank). We
demonstrate on several machine learning applications that the proposedalgorithm is effective in finding fast
approximations to large-scale SDPs.

1 Introduction
There has been a rapid rise in the use of semidefinite programming in the machine learning community
over the last few years. Problems such as nonlinear dimensionality reduction [24, 18], learning kernel ma-
trices [12], maximum margin matrix factorization [19], graph clustering [13], and many others have been
formulated and solved as semidefinite programs (SDPs). Off-the-shelf software, such as SEDUMI [17] or
DSDP [2], are commonly used for solving these problems. These software packages are effective in finding
high-accuracy SDP solutions, though it is difficult to specialize them for particular SDPs and the scalability
of these methods makes them restrictive for large problems.Furthermore, it is often the case for machine
learning applications that high-accuracy solutions are not necessary, especially if the solution of the SDP is
only an intermediate goal in the overall machine learning problem (e.g., metric learning for nearest-neighbor
classification [23]).

In this paper we introduce convex perturbations for semidefinite programming and characterize their
relation to the unperturbed original. In particular, instead of minimizingTr(CX) subject to constraints onX,
we minimizeTr(CX) − ε log det(X). We show that for an appropriateε > 0, solving the perturbed problem

1

for anyε ≤ ε yields a solution to the original problem—in fact, it yields themaximum determinant solution.
Subsequently we exploit the strict convexity of the perturbed problem to develop asimple first-order algorithm
based on Bregman projections. Our algorithm scales well with the size of the data and may be preferable to
off-the-shelf software, especially for large-scale inputs. A pleasant benefit of our algorithm’s simplicity is
that it can be implemented with only a few lines of MATLAB code. Furthermore, it is easy to take advantage
of the problem structure, particularly when the constraints are low-rank or the cost matrix is sparse. Being a
first-order approach, our method is more suitable for problems where low to medium accuracy solutions are
acceptable, e.g., in large-scale machine learning problems. We illustrate our method by applying it to varied
problems in machine learning: maximum variance unfolding [24], min-balanced cut [13], and large-margin
nearest neighbor metric learning [23].

1.1 Related Work
Perturbation: The idea of adding a scaled perturbation function,εf(x), to the objective bears a close
connection to Tikhonov regularization and exact penalty terms. Mangasarian and Meyer [15] analyzed non-
linear (including convex and non-convex) perturbations for linear programs, and our extension to SDPs is
inspired by their work. In [14], Mangasarian developed an efficient method for linear programming based on
a quadratic perturbation, and characterized the solution of the perturbed problem as the leastℓ2-norm solu-
tion to the original linear program. In a similar vein, we characterize the solution of our perturbed problem
as the maximum determinant solution to the original SDP. Other relevant references related to perturbations
include the work of Ferris and Mangasarian [9] who extend theperturbation results of [15] to general convex
programs by applying them to linearizations of the latter. Tseng [21] includes several relevant references and
also discusses perturbations by separable nonlinear functions (e.g.,f(x) =

∑

i x2
i); in contrast, our perturba-

tion functionf(X) = − log det(X) is non-separable in the entries ofX. More recently, Friedlander and Tseng
[10] discussed perturbations for general convex programs,wherein they also discuss necessary and sufficient
conditions for the solution of the perturbed problem to be a solution to the original problem.

Algorithms: Interior point (IP) methods are amongst the most popular techniques for solving SDPs, espe-
cially after [1, 16] demonstrated their applicability. Thesoftware package SEDUMI implements an IP code
for SDPs, and is currently the method of choice for small to medium scale problems. The perturbation func-
tion f(X) = − log det(X) is the log-barrier used by many interior point SDP solvers, however, fundamental
differences exist between our approach and IP methods. We solve the perturbed problem as a constrained
optimization problem with a fixedε, whereinonly positive-definiteness is enforced via the log-det barrier
(the other constraints are tackled differently). In contrast, IP methods recast the original problem as an un-
constrained problem with varyingε, whereinall the constraints are enforced via appropriate logarithmic
barriers.

In addition to second-order IP methods, the nonlinear programming approach of Burer and Monteiro [4]
and the spectral bundle method of Helmberg and Rendl [11] arepopular for solving SDPs. Our method
presents a new approach that is simpler than existing techniques, both conceptually, as well as from an
implementation perspective—surprisingly, without sacrificing too much accuracy. For additional details and
references on semidefinite programming, we refer the readerto [20, 22].

2 Problem Formulation
A standard formulation for semidefinite programming (SDP) is

min Tr(CX)

subject toTr(AiX) ≤ bi, 1 ≤ i ≤ m

X º 0.

(P)

2

Problem (P) is a convex optimization problem, and as mentioned previously, for simplicity and scalability
we wish to develop a first-order method for solving large-scale problems. The key insight that enables us
to develop a first-order method is the introduction of a strictly convex perturbation to (P). Formally, instead
of (P) we propose to solve

min Tr(CX) − ε log det(X)

subject toTr(AiX) ≤ bi, 1 ≤ i ≤ m

X º 0,

(PT)

whereε ∈ [0, ε] is some pre-specified constant, andf(X) = − log det(X) is the perturbation function. Note
that other perturbation functions such as‖X‖2

F or Tr(X log X) can also be considered, but initially we restrict
our attention to the log-det perturbation. This perturbation brings in two crucial advantages: i) it makes the
problem strictly convex, thereby permitting us to adapt a successive projections technique for an efficient
solution, and ii) it enables our algorithm to easily enforcepositive-definiteness ofX because− log det(X) is
a “natural” barrier function for positive definite matrices.1

Remark: We solve the constrained optimization problem (PT) directly by successively enforcing each linear
inequality constraint. The positive-definiteness constraint is implicitly enforced by the log-det term. Interior
Point methods instead the following problem (or equivalently the dual formulation thereof)

min
X

Tr(CX) − εt log det(X) − γt

m
∑

i=1

log([Tr(AiX) − bi]+),

whereεt andγt are varied according to a prescribed schedule. In the limit,ast → ∞, these methods are
guaranteed to return a solution lying strictly in the interior of the feasible set. From this formulation it is easy
to see that IP methods can become computationally demandingwhen the number of constraints is very large,
a difficulty that our method is able to circumvent by going through the constraints one by one.

2.1 Analysis
To analyze the relationship between (P) and (PT) consider the following auxiliary problem:

min f(X) = − log det(X)

subject toTr(AiX) ≤ bi, 1 ≤ i ≤ m,

Tr(CX) ≤ θ̄, X º 0,

(AUX)

where θ̄ is the minimum value achieved by (P) (assuming it has a bounded minimum). Problem (AUX)
optimizes the convex perturbationf(X) over the set of optimal solutions of (P). This relation is formalized
by Theorem 2.1 below (adapted from [15]), which applies to not only f(X) = − log det(X), but also to other
convex perturbation functions such asf(X) = 1

2‖X‖
2
F andf(X) = Tr(X log X).

Theorem 2.1. Let S 6= ∅ be the set of optimal solutions of (P). Further, assume that f is differentiable on
S, strong duality holds for (P), and that (AUX) has a KKT point. Then, there exists an X ∈ S and an ε > 0,

such that for each ε ∈ [0, ε] there exist Z
pt

,νpt, such that
(

X,Z
pt

,νpt
)

is a KKT point of (PT), whence X

solves the perturbed problem (PT).

1Note that the log-det barrier function forces the solution to lie in the interior of the semidefinite cone. However, as withinterior
point methods, this does not cause any practical difficultieswhen dealing with SDPs.

3

Proof. LetA(ν) =
∑

i νiAi, and(X,Z,ν, γ) be a KKT point of (AUX), whereby,

∇f(X) + A(ν) + γC − Z = 0,

Tr(CX) = θ̄,

Tr(AiX) ≤ bi, 1 ≤ i ≤ m,

νi

(

Tr(AiX) − bi

)

= 0, 1 ≤ i ≤ m,

X,Z º 0,ν ≥ 0, γ ≥ 0.

(2.1)

Note that the equalityTr(CX) = θ̄ must hold for a KKT point of (AUX), because any feasible pointof (AUX)
is also feasible for (P), and ifTr(CX) ≤ θ̄ is not satisfied with strict equality, it would contradict the assump-
tion thatθ̄ is the minimum value of (P). ThusX ∈ S.

SinceX is an optimal solution of (P), there is a KKT point(X,Z,ν) of (P) satisfying

C + A(ν) − Z = 0

Tr(AiX) ≤ bi, 1 ≤ i ≤ m,

νi(Tr(AiX) − bi) = 0, 1 ≤ i ≤ m,

X,Z º 0,ν ≥ 0.

(2.2)

We now combine (2.1) and (2.2) to construct a KKT point of (PT). Consider the following two cases (γ is
the dual variable corresponding to theTr(CX) ≤ θ̄ constraint):

Case 1: γ = 0. For anyε ≥ 0, (X, εZ + Z, εν + ν) is a KKT point of (PT). This is easily verified by
multiplying (2.1) byε and adding the result to (2.2). Formally,

ε∇f(X) + A(εν + ν) + C − (εZ + Z) = 0,

Tr(AiX) ≤ bi, 1 ≤ i ≤ m,

(ενi + νi)
(

Tr(AiX) − bi

)

= 0, 1 ≤ i ≤ m,

X, εZ + Z º 0, (εν + ν) ≥ 0,

are the KKT conditions for (PT). Note thatZ
pt

= εZ + Z andνpt = εν + ν.
Case 2: γ > 0. For anyλ ∈ [0, 1], (X,Z

pt
,νpt) is a KKT point of (PT), withε = λ/γ, Z

pt
=

(1−λ)Z + λ
γ
Z, andνpt = (1−λ)ν + λ

γ
ν. As for Case 1, this is easily verified by multiplying (2.1) byλ/γ,

(2.2) by1 − λ, and adding the two. Note thatε = 1/γ.
Finally, since the objective function of (PT) is strictly convex and we assume strong duality holds for (P),

strong duality also holds for (PT). Thus, the KKT conditionsare sufficient forX to be the minimum of (PT).

Theorem 2.1 above shows that a solution of (P) is also a solution of (PT) for an appropriateε. Since the
latter problem has a strictly convex objective, it has a unique minimum, whereby, solving it automatically
yields a solution to (P). In other words, solving (PT) leads to a solution of (P) because the perturbation
function allows us to pick aunique solution from amongst all the solutions to (P). This statement is formalized
by the following corollary to Theorem 2.1.

Corollary 2.2. Assume the conditions of Theorem 2.1 hold, so that ε ∈ [0, ε̄). Let S 6= ∅ be the set of optimal
solutions of (P) and X∗ the solution to (PT). Then,

X
∗ = argmax

X∈S

det(X),

i.e., X∗ is the maximum-determinantsolution to (P).

4

Proof. Let X be any solution of (P). BecauseX∗ is the solution to (PT), by Theorem 2.1X∗ it is also optimal
for (P). Thus,Tr(CX

∗) = Tr(CX), and sinceX∗ solves (PT), we further haveTr(CX
∗) − log det(X∗) ≤

Tr(CX) − log det(X). Therefore,− log det(X∗) ≤ − log det(X), or equivalentlydet(X∗) ≥ det(X).

Remark: If we usedf(X) = 1
2‖X‖

2
F as the perturbation function, we would obtain the minimum

Frobenius-norm solution to the original SDP. See Section 3.2 for details on this alternative.

2.2 Error-bounds

The hypotheses of Theorem 2.1 may not always be satisfied. In particular, there could be problem instances
for which (AUX) might not possess a KKT point (due to the rigidconstraint that forces the interior of the
feasible set to be empty). Detecting such a situationa priori can be difficult and it is valuable to assess how
different the perturbed problem can be in comparison to the original. Furthermore, in practice we do not
know ε̄ when solving an SDP, so we hope that theε that we choose will yield a solution that is “close” to the
solution of the unperturbed problem even ifε > ε̄. The theorem below (adapted from [10]) shows that under
fairly mild assumptions, the solution to the perturbed problem is close to the solution of the unperturbed
problem when the unperturbed solution is well-conditioned. We formalize this as follows:

Theorem 2.3. Let X∗ ∈ S denote an optimal solution to (P). Suppose there exist τ > 0 and γ > 1 such that

Tr(CX) − Tr(CX
∗) ≥ τ dist(X, S)γ for all X feasible for (P), (2.3)

where dist(X, S) = min
X∗∈S ‖X − X∗‖F. Then, for any ε̄ > 0, there exists τ̄ > 0, such that

dist(X(ε), S)γ−1 ≤ τ̄ ε, for all ε ∈ (0, ε̄],

where X(ε) is the optimal solution to (PT).

Proof. For anyε > 0, let X∗(ε) = argmin
X∗∈S ‖X(ε) − X∗‖F, so that

Tr(CX
∗(ε)) − ε log det(X∗(ε)) ≥ Tr(CX(ε)) − ε log det(X(ε)),

sinceX(ε) is the optimal solution to (PT). Now, using (2.3) we obtain

Tr(CX(ε)) − ε log det(X(ε)) ≥ Tr(CX
∗(ε)) + τ‖X(ε) − X

∗(ε)‖γ
F − ε log det(X(ε)),

which implies
τ‖X(ε) − X

∗(ε)‖γ
F ≤ ε

(

log det(X(ε)) − log det(X∗(ε))
)

.

Exploiting the concavity oflog det, we have

log det(X(ε)) − log det(X∗(ε)) ≤
〈

(X∗(ε))−1, X(ε) − X
∗(ε)

〉

≤ ‖(X∗(ε))−1‖F‖X(ε) − X
∗(ε)‖F,

which we can combine with the former inequality to finally obtain

τ‖X(ε) − X
∗(ε)‖γ−1

F ≤ ε‖(X∗(ε))−1‖F.

Settingτ̄ = ‖(X∗(ε))−1‖F

τ
completes the proof.

From the theorem above, we see that the solutions to the perturbed and unperturbed problems are close
when‖(X∗(ε))−1‖F is small (which is true when the eigenvalues ofX∗(ε) are large). We refer the reader
to [10] for more discussion and references related to error-bounds such as the one described above.

5

3 Algorithms
There are many potential methods for optimizing (PT). However, the use of the log-det perturbation function
lends itself well to Bregman’s method, a general technique for minimizing a strictly convex function subject
to linear equality and inequality constraints [6]. This method proceeds iteratively by choosing a single con-
straint at each iteration, projecting the current solutiononto that constraint, and performing an appropriate
correction. The projection done at each step is not an orthogonal projection, but rather aBregman projection,
which is tailored to the particular convex function to be minimized. Under mild assumptions, this method
provably converges to the globally optimal solution. Equivalently, we may view Bregman’s method as a
dual-coordinate ascent procedure, where we choose a singledual variable (corresponding to one constraint),
fix all other dual variables, and maximize the dual with respect to the chosen dual variable.

Below, we sketch out the computation involved in projectingthe current solution onto a single affine
equality or inequality constraint. As we will see, for low-rank constraint matricesAi, the Bregman projection
for h(X) = Tr(CX)−ε log det(X) can be performed inO(n2) time as a simple low-rank update to the current
solution.

We further discuss the Frobenius perturbation in Section 3.2, wheref(X) = 1
2‖X‖

2
F, and we briefly

describe methods for optimizing SDPs with the Frobenius perturbation.

3.1 Projection onto a Single Constraint
The gradient ofh with respect toX is given by∇h(X) = C − εX−1. Bregman’s method chooses a single
constrainti at every iteration, and projects the current matrixXt onto that constraint via a Bregman projection
to formXt+1. For equality constraints, the Bregman projection is performed by solving the following system
of nonlinear equations forα andXt+1 (this is derived by differentiating the Lagrangian with respect toX and
the dual variables):

∇h(Xt+1) = ∇h(Xt) + αAi

Tr(Xt+1Ai) = bi. (3.1)

Simplifying the top equation yieldsXt+1 = (X−1
t − α

ε
Ai)

−1. WhenAi is of low-rank, then the Sherman-
Morrison-Woodbury inverse formula may be applied to this update. For example, ifAi = ziz

T
i , then the top

equation simplifies to

Xt+1 = Xt +
α
ε
Xtziz

T
i Xt

1 − α
ε
zT

i Xtzi

. (3.2)

Given thatTr(Xt+1ziz
T
i) = zT

i Xt+1zi = bi, we can solve for the projection parameterα in closed form as:

α =
ε(bi − zT

i Xtzi)

bi · zT
i Xtzi

.

We then use this choice ofα to updateXt+1. After solving forα, we updateXt+1 via (3.2); note that this
update is a rank-one update, and can be performed inO(n2) time.

If instead the constraint is an inequality constraint, thena correction must be enforced to make sure that
the corresponding dual variable remains non-negative. Letλi correspond to the dual variable for constraint
i. After solving forα as in the equality case, we setα′ = min(λi, α) andλi = λi − α′. Finally, we update
to Xt+1 using (3.2) withα′ in place ofα. Note that the dual variablesλi and the starting matrixX0 are
initialized so that∇h(X0) = −

∑

i λiAi, X0 ≻ 0, andλi ≥ 0 for all inequality constraints.
This general approach is summarized as Algorithm 1, which converges to the globally optimal solution

to (PT). For further details on the convergence of Bregman’sprojection method, see [6]. In practice, when
choosing a constraint at each iteration, we choose the constraint that is the most violated. For low-rank
constraints, determining the most violated constraint canusually be performed efficiently; for example, if

6

Algorithm 1 Semidefinite programming with Bregman’s method
Input: {Ai, bi}

m

i=1: input constraints,C: input matrix,ε: tradeoff parameter
Output: X: output PSD matrix

1. InitializeX andλi such thatX ≻ 0, λi ≥ 0 for inequality constraints, andX = ε(C +
P

i
λiAi)

−1.
2. repeat

2.1. Pick a constraint (e.g., the most violated constraint)(Ai, bi).
2.2. Solve (3.1) forα. {Can be done in closed form for rank-1 to rank-4 constraints}
2.3. If constrainti is an inequality constraint,α ← min(λi, α), λi ← λi − α.

2.4. X ← (X − α

ε
Ai)

−1.

3. until convergence

each constraint can be evaluated in constant time, then the most violated constraint can be found inO(m)
time, which is generally much less than the cost of a single projection.

Note that when the constraint matricesAi are high-rank (greater than 4), it is not possible to solve for
α in closed-form; this is because the equation for solving forα with rank-k constraint matrices involves
finding the roots of a polynomial of degreek. In such higher-rank cases, we can performapproximate
Bregman projections using the secant method to calculate an approximateα [6]. UpdatingX also becomes
commensurately more expensive for higher-rank constraints.

3.2 Frobenius norm perturbation

So far we have mainly focused our attention on the log-det perturbation for SDPs. In this section, we briefly
digress to look at two simple approaches for handling the Frobenius norm perturbation, i.e.,f(X) = 1

2‖X‖
2
F.

Bregman projections alone are not applicable for the Frobenius perturbation; they cannot be applied to the
semi-definiteness constraint due to its non-polyhedral nature. With log-det, the domain of the perturbation
function is the set of positive-definite matrices, and so positive definiteness is automatically enforced. For the
Frobenius perturbation, we must find a way to explicitly maintain positive definiteness.

To tackle this new difficulty imposed by the semidefinitenessconstraint we propose two methods below.
The first approach invokes Dykstra’s method [8], while the second one calls upon the gradient ascent scheme
of [3]. Both these approaches are based upon replacing the original SDP by its perturbed version, which is
then interpreted as aleast-squares SDP. To the best of our knowledge, both these approaches to solving SDPs
are new.

3.2.1 Least-squares SDP

With f(X) = 1
2‖X‖

2
F, Problem (P) becomes

min Tr(CX) + ε 1
2‖X‖

2
F,

subject toTr(AiX) ≤ bi, 1 ≤ i ≤ m

X º 0,

which may be rewritten as the least-squares SDP problem

min 1
2‖X + ε−1

C‖2
F

subject toTr(AiX) ≤ bi, 1 ≤ i ≤ m

X º 0.

(PT2)

7

3.2.2 Solving (PT2)via Dykstra’s Method

Dykstra’s method is similar to Bregman’s method, except that it is able to handle arbitrary convex constraint
sets, though at the same time being restricted to only quadratic objective functions. Intuitively, Dykstra’s
method cycles through the constraints like Bregman’s method. At each step, it first deflects the current iterate
by a small amount before projecting onto the associated constraint. After the projection, it accumulates the
difference between the projected and un-projected variables into the deflection term, which is then used again
the next time around when projecting onto the same constraint. By maintaining these extra history variables
(analogous to the dual variables maintained by Bregman’s method), Dykstra’s method ensures convergence
to the optimum, rather than just to a point in the intersection of the convex constraints.

For the perturbed problem (PT2), the resulting adaptation of Dysktra’s method is provided by Algorithm 2
below. For mathematical details pertinent to Dykstra’s algorithm, the reader is referred to [7].

Algorithm 2 Semidefinite programming with Dykstra’s method
Input: {Ai, bi}

m

i=1: input constraints,C: input matrix,ε: tradeoff parameter
Output: X: output PSD matrix

1. InitializeXold = −ε−1
C, Λi = 0 for i = 1, . . . , m + 1.

2. repeat

2.1. Fori = 1 to m + 1 (each constraint):
Xnew ← Pi(Xold + Λi)
Λi ← Xold − Xnew + Λi

{Pi(X) denotes orthogonal projection ofX ontoi-th constraint}

3. until convergence

Note that in Algorithm 2 we have (arbitrarily) numbered the semi-definiteness constraint to be the(m+1)-
th constraint. The orthogonal projections should naturally be implemented to exploit the sparsity of the input
problem. Thehistory matricesΛi should also not be stored explicitly to avoid excess storage.

3.2.3 Solving (PT2)via Projected Gradients

Boyd and Xiao [3] remarked in their paper that their method for the least-squares SDP could also be solved via
a standard SDP package, though this approach is inefficient.Here we are suggesting the opposite, i.e., using
our Frobenius norm perturbation, several SDPs (in particular those with negative-definite cost matricesC)
can be solved by converting them into least-squares SDP problems that can be easily tackled by the projected
gradient approach of [3].

After some simple algebra, it can be shown that the dual of (PT2) is given by

min ψ(Z,µ) =
1

2
‖Z − ǫ−1

C − A(µ)‖2
F +

1

2ǫ2
‖C‖2

F − µT b

subject to Z º 0, µ ≥ 0,
(3.3)

whereA(µ) =
∑

i µiAi. The dual problem (3.3) can be solved by the following simpleprojected (sub)gradient
method (illustrated as Algorithm 3). See [3] for more details.

If Problem (PT2) is strictly feasible, then for small enoughstep-sizeγ, Algorithm 3 is guaranteed to
converge, i.e.,X andµ converge to their optimal values. As usual, too small a valueof γ can lead to slow-
convergence, whereby depending upon the problem one must select it appropriately. Further note that in
practice, several implementation details need to be handled for making Algorithm 3 efficient. A discussion
of such issues may also be found in [3].

8

Algorithm 3 Semidefinite programming using Projected Gradients
Input: {Ai, bi}

m

i=1: input constraints,C: input matrix,γ: step size parameter
Output: X: output PSD matrix

1. InitializeX0 = −ε−1
C, µ = 0.

2. repeat
Let X = (X0 − A(µ))+ {Projection onto semidefinite cone}
Projected gradient update forµ

2.1. Evaluate∂ψ/∂µi = Tr(AiX) − bi

2.2. Letµi =
`

µi + γ(∂ψ/∂µi)
´

+

3. until convergence

3.3 Examples

We briefly highlight a few SDPs from machine learning that arewell-suited to our algorithmic framework, as
they feature low-rank constraint matrices.
Nonlinear Embedding: Semidefinite embedding [24] (also called maximum variance unfolding) is a non-
linear dimensionality reduction problem which aims to find alow-dimensional embedding of the input data
such that the variance in the data is maximized while the distances among a set of nearest neighborsS is
maintained, and a centering constraint is enforced. The total number of constraints isnk, wheren is the
number of data points andk is the number of nearest neighbors, and all constraints are rank-one. Given a set
S of neighbor pairs, each with a target distanceDij , the semidefinite embedding problem can be formalized
as:

max
X

Tr(X)

subject to Xii + Xjj − 2Xij = Dij , (i, j) ∈ S

eT Xe = 0

X º 0.

A related problem is the robust Euclidean embedding problem[5], which seeks to find the closest (squared)
Euclidean distance matrixD to some given input dissimilarity matrixD0 under the elementwiseℓ1 loss:
‖D − D0‖1. Appropriate manipulation of this objective transforms itinto an SDP with rank-two constraint
matrices.
Graph Cuts: Several graph cut problems can be relaxed as SDPs. For example, the minimum balanced cut
problem [13] has been successfully used when finding balanced clusters of skewed-degree distribution graphs
(such as power-law graphs). A relaxation to the minimum balanced cut problem may be posed as an SDP
with |V | + 1 rank-one constraints, with|V | the number of vertices in the graph. Given a graph LaplacianL,
the min balanced cut problem can be expressed as:

min
X

Tr(LX)

subject to diag(X) = e

eT Xe = 0

X º 0.

Metric Learning: Various metric learning algorithms have been posed as SDPs.In particular, the method
of large-margin nearest neighbors (LMNN) [23] guarantees that distances between nearest neighbors in the
same class is much smaller than distances between points in different classes. The resulting SDP has rank-3
constraints. The method of [23] attempts to find a Mahalanobis distance matrixA such that two neighboring

9

Table 1: Accuracy Results on Min Balanced Cut
Trace Value Max. Violation

Data Set SEDUMI SDPLogDet SEDUMI SDPLogDet

Iris 1.020 × 104 1.021 × 104 9.252 × 10−11 9.633 × 10−4

Wine 5.657 × 103 5.672 × 103 8.290 × 10−10 9.995 × 10−4

Ionosphere 6.755 × 103 6.766 × 103 9.912 × 10−4 9.912 × 10−4

Soybean 1.239 × 105 1.239 × 105 2.978 × 10−11 9.937 × 10−4

Diabetes 1.704 × 104 1.711 × 104 3.785 × 10−11 9.454 × 10−4

points in the same class have distances much smaller than twopoints in different classes. Letηij = 1 if
pointsi andj are neighbors (and 0 otherwise),yij = 1 if the labels of pointsi andj match (and 0 otherwise),
ξijl correspond to slack variables for the constraints, andC0 =

∑

ij ηij(xi − xj)(xi − xj)
T . Then the

corresponding SDP to be solved is formalized as:

min
A,ξ

Tr(C0A) + γ
∑

ijl

ηij(1 − yjl)ξijl

subject todA(xi,xl) − dA(xi,xj) ≥ 1 − ξijl,

ξijl ≥ 0, A º 0.

(3.4)

Collaborative Filtering: The maximum margin matrix factorization SDP for collaborative filtering [19] has
simple, low-rank constraints. Other first-order methods have been proposed; however, these methods work
on a slightly different (non-convex) optimization problem, which may lead to poor local optima.

4 Experiments
We now present initial results comparing our proposed semidefinite programming algorithm (SDPLogDet)
to existing SDP software. We considered several SDPs while experimenting with our software: semidefinite
embedding, LMNN, min balanced cut, and robust Euclidean embedding. These SDPs all have constraints that
are rank-one, rank-two, or rank-three, making them appropriate for our method. We compare with DSDP [2]
and SEDUMI [17], both standard off-the-shelf SDP solvers, as well as Weinberger et al.’s [23] implementation
of LMNN (obtained from the authors)—a special-purpose sub-gradient algorithm that outperforms standard
solvers on the LMNN problem—and the sub-gradient algorithm for robust Euclidean embedding described
in [5]. All software uses the MATLAB interface, with code written in C and MATLAB. It is difficult to
compare various software packages for SDPs, especially given the number of tunable parameters, so in all
experiments, we used the default parameters for SEDUMI and DSDP. We tested the above algorithms and
problems on standard UCI data sets2, as well as on synthetic data sets. In all experiments, we setε = 10−1;
we observed empirically that smallerε led to slower convergence, and that withε = 10−1, the solutions
obtained by our algorithm were very close to the globally optimal solutions. Furthermore, we demonstrate
that our algorithm performs well when the SDP is ultimately used for a machine learning task; in particular,
we see that classification results for metric learning usingthe output of our algorithm are as good as those
obtained using existing methods.

4.1 Accuracy and Scalability of the Proposed Method

We first determine the accuracy and scalability of the proposed methods on some simple SDPs: min balanced
cut and semidefinite embedding. In order to judge the accuracy of our method, Table 1 lists results for
min balanced cut on some of the UCI data sets tested. The graphs for this SDP were constructed using

2Available at http://www.ics.uci.edu/˜mlearn/MLRepository.html.

10

the Gram matrix of the data points (and scaled so that edge weights were between 0 and 1). We see that the
accuracy of our method in terms of the final objective function value is very close to the accuracy of SEDUMI;
further improvements may be gained by settingε to be smaller or running more iterations of our algorithm.
Our maximum violation is higher since we set our convergencecriterion to stop when the max violation
was smaller than10−3. As expected, we exhibited slower convergence (total time taken to converge) than
SEDUMI for this SDP (our method is a first-order algorithm).

Table 2: UCI Data Sets
Name No. of points No. of dims

Iris 150 4
Wine 178 13
Ionosphere 351 34
Soybean 683 35
Diabetes 768 8

Table 3: Memory overhead (in megabytes) for performing semi-definite embedding. A ‘—’ indicates that the
method could not run due to memory requirements.

n SEDUMI DSDP SDPLogDet

100 13 3 1
500 222 67 5
1000 881 263 35
1500 1930 586 52
2000 — 1033 92
2500 — 1608 144
3000 — 2170 207
3500 — — 253

The key advantage to using our method on these SDPs is its scalability to very large data sets. In an
additional experiment, we found that for the splice data set, which is a UCI dataset with 3190 data points,
SEDUMI could not run on our machine due to its excessive memory consumption (over 2GB). On the other
hand, the SDPLogDet algorithm requires approximately 80MBfor this data, and ran successfully.

The scalability of the algorithms is even more drastic for SDPs with a greater number of constraints.
While the minimum balanced cut SDP hasn constraints, the semidefinite embedding problem hasnk con-
straints, wherek is the number of nearest neighbors. In Table 3, we show the maximum memory overhead
needed for performing semi-definite embedding on syntheticdata. The valuen refers to the number of
rows/columns of the semi-definite matrix; in these experiments,k = 5. SEDUMI requires the most memory,
and was unsuccessful in running on problems wheren was greater than 1500. DSDP scales ton = 3000,
whereas LogDet requires no memory overhead beyond the storage of the semi-definite matrix and the con-
straints. Thus it is feasible to scale the proposed method tovery large SDPs.

Table 4 lists preliminary results for the min-balanced cut as achieved using an implementation of our
Dykstra based SDP algorithm (with Frobenius norm perturbation). The initial results are promising, though
it still remains a challenge to decide when to terminate the Dykstra iterations.

4.2 Comparison to Sub-Gradient Methods
We compared our solver to specialized software for the LMNN problem, which employs sub-gradient meth-
ods. Table 5 compares Weinberger et al.’s implementation ofLMNN with our proposed algorithm. Here we
are considering the use of SDPs as one of the steps in an overall machine learning problem (in this case,

11

Table 4: Min-balanced cut with Dykstra based SDP solver. Relative eigenvalues violation (REV) =
∑

j |λ
−
j (X)|/

∑

i |λi(X)| measures the departure from positive-definiteness.
Dataset Obj. Maxviol. REV Time (s)
Iris 1.022e4 4.53e-7 .021 2.3
Wine 5.645e3 6.04e-12 .026 5.3
Soybean 1.236e5 3.37e-9 .065 34.3
Ionosphere 6.755e3 2.21e-9 .092 66
Balance 1.332e5 1.47e-5 .025 47.9
Autos 3.408e3 4.27e-7 .054 7.1
Audiology 9.705e3 1.32e-9 .033 14.4
Breast-cancer 2.508e4 3.17e-10 .029 19.3
Colic 2.284e4 3.30e-10 .037 24.9
Dermatology 2.623e4 1.09e-10 .030 29.1

Table 5: Comparisons of Large-Margin Nearest Neighbors: Test Error and Running Times. SEDUMI cannot
be used for this SDP due to the large number of constraints. Our method gives comparable test error and
superior running times.

Test Error Running Time (secs)
Data Set Euclidean Weinberger et al. SDPLogDet Weinberger et al. SDPLogDet

Iris .031 .024 .021 1.24 .119
Wine .306 .038 .036 8.77 .323
Ionosphere .164 .123 .119 9.74 10.54
Soybean .122 .082 .079 21.95 13.25
Diabetes .311 .296 .298 47.50 16.08

metric learning). The running times are in seconds and represent the average time for the optimization to
complete, and we provide the baseline Euclidean test error (i.e., test error with no metric learning) for com-
parison. Overall, we see that, on all data sets, our test error results are comparable to Weinberger et al., and
that on four of the five data sets, the running time is faster.

As we are ultimately interested in test error for this learning problem, in Figure 1, we plot the test error
after each projection on the wine data set. For this figure, our algorithm was run on wine until the maximum
violation was10−12. Interestingly, the test error is lowest after approximately 110 projections, suggesting
that solving this problem to optimality will not always leadto the lowest test error. It therefore may be
sufficient to terminate early, thus highlighting another advantage to using first-order methods for machine
learning problems.

On many SDPs, the large number of constraints make it infeasible to run standard off-the-shelf software
such as SEDUMI or DSDP. For example, on the robust Euclidean embedding problem, SEDUMI did not scale
to data sets larger than 100 points, which is consistent withthe observations in [5].

5 Conclusions and Future Work
In this paper we presented a perturbation based approach to solving SDPs, where we replaced the original
linear objective function by a strictly convex objective function. We developed a scalable first-order algorithm
based on Bregman projections for solving the perturbed problem that obtains the maximum determinant
solution to the original unperturbed problem. Our experimental results are encouraging and they show that
despite its simplicity, our method achieves solutions competitive to other SDP methods. Furthermore, due
to its modest memory requirements our method is highly scalable, as compared to several standard SDP
packages.

Two further directions of future work are open. First is the potential of further improvements to our

12

Figure 1: Test error as a function of the number of projections on the wine data set

0 50 100 150 200 250 300 350 400 450 500
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of Projections

T
es

t E
rr

or

algorithm by either using some second-order information orby a combination with methods such as conjugate
gradients. The second is the exploitation of low-rank optimization techniques, particularly for SDPs where
the optimal solution can be of much smaller rank than the problem dimensionality.

References
[1] F. Alizadeh. Interior point methods in semidefinite programming with applications to combinatorial optimization.

SIAM J. Opt., 5:13–51, 1995.

[2] S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combinatorial optimization.
SIAM J. Opt., 10(2):443–461, 2000.

[3] S. Boyd and L. Xiao. Least-squares covariance matrix adjustment.SIAM J. Matrix Anal. Appl., 27(2):532–546,
2005.

[4] S. Burer and R. C. Monteiro. A nonlinear programming algorithm forsolving semidefinite programs via low-rank
factorization.Math. Prog. Ser. B, 95:329–357, 2003.

[5] L. Cayton and S. Dasgupta. Robust Euclidean embedding. InICML, 2006.

[6] Y. Censor and S. A. Zenios.Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press,
1997.

[7] F. R. Deutsch.Best Approximation in Inner Product Spaces. Springer Verlag, first edition, 2001.

[8] R. L. Dykstra. An algorithm for restricted least squares regression. J. Amer. Statist. Assoc., 78, 1983.

[9] M. C. Ferris and O. L. Mangasarian. Finite perturbation of convex programs.Applied Mathematics and Optimiza-
tion, 23:263–273, 1991.

[10] M. P. Friedlander and P. Tseng. Exact regularization of convexprograms.SIAM J. Opt., 2007.

[11] C. Helmberg and F. Rendl. A spectral bundle method for semidefinite programming.SIAM J. Opt., 10:673–696,
2000.

[12] G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite
programming.JMLR, 5:27–72, 2004.

13

[13] K. Lang. Fixing two weaknesses of the spectral method. InNIPS, 2005.

[14] O. L. Mangasarian. Normal solution of linear programs.Math. Prog. Study, 22:206–216, 1984.

[15] O. L. Mangasarian and R. R. Meyer. Nonlinear Perturbation of Linear Programs.SIAM J. Cont. & Opt., 17(6):
745–752, 1979.

[16] Y. Nesterov and A. Nemirovski.Interior Point Polynomial Algorithms in Convex Programming. Number 13 in
SIAM Studies in Applied Mathematics. SIAM, 1994.

[17] Sedumi. SeDuMi: Package for optimization over symmetric cones. http://sedumi.mcmaster.ca, 2007.

[18] F. Sha and L. Saul. Analysis and extension of spectral methods for nonlinear dimensionality reduction. InICML,
2005.

[19] N. Srebro, J. Rennie, and T. Jaakkola. Maximum Margin Matrix Factorizations. InNIPS, 2005.

[20] M. J. Todd. Semidefinite optimization.Acta Numerica, 10:515–560, 2001.

[21] Paul Tseng. Convergence and error bounds for perturbationof linear programs.Computational Optimization and
Applications, 13(1–3):221–230, April 1999.

[22] L. Vandenberghe and S. Boyd. Semidefinite programming.SIAM Review, 38:49–95, 1996.

[23] K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning forlarge margin nearest neighbor classification. In
NIPS, 2005.

[24] W. Weinberger, F. Sha, and L. Saul. Learning a kernel matrix for nonlinear dimensionality reduction. InICML,
2004.

14

