
Convex Perturbations for Scalable Semidefinite Programming

Brian Kulis
UC Berkeley EECS and ICSI

Berkeley, CA 94720

Suvrit Sra
MPI for Biological Cybernetics

72076 T̈ubingen, Germany

Inderjit Dhillon
Department of Computer Sciences

University of Texas at Austin
Austin, TX 78712

Abstract

Many important machine learning problems are
modeled and solved via semidefinite programs;
examples include metric learning, nonlinear em-
bedding, and certain clustering problems. Of-
ten, off-the-shelf software is invoked for the as-
sociated optimization, which can be inappropri-
ate due to excessive computational and storage
requirements. In this paper, we introduce the use
of convex perturbations for solving semidefinite
programs (SDPs), and for a specific perturbation
we derive an algorithm that has several advan-
tages over existing techniques: a) it is simple, re-
quiring only a few lines of MATLAB , b) it is a
first-order method, and thereby scalable, and c)
it can easily exploit the structure of a given SDP
(e.g., when the constraint matrices are low-rank,
a situation common to several machine learning
SDPs). A pleasant byproduct of our method is a
fast, kernelized version of the large-margin near-
est neighbor metric learning algorithm (Wein-
berger et al., 2005). We demonstrate that our
algorithm is effective in finding fast approxima-
tions to large-scale SDPs arising in some ma-
chine learning applications.

1 INTRODUCTION

There has been a rapid rise in the use of semidefinite pro-
gramming in the machine learning community over the
last few years. Specific examples include nonlinear di-
mensionality reduction (Weinberger et al., 2004; Sha and
Saul, 2005), kernel matrix learning (Lanckriet et al., 2004),
maximum margin matrix factorization (Srebro et al., 2005),

Appearing in Proceedings of the12th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2009, Clearwater
Beach, Florida, USA. Volume 5 of JMLR: W&CP 5. Copyright
2009 by the authors.

graph clustering (Lang, 2005), and metric learning (Wein-
berger et al., 2005). Often, off-the-shelf software such as
SEDUMI (2007) or DSDP (Benson et al., 2000) are used
for solving the associated semidefinite programs (SDPs).
These software packages are effective in finding high-
accuracy SDP solutions, but it is difficult to specialize them
to particular SDPs. Moreover, the lack of scalability makes
generic software restrictive in the face of large problems.
For many machine learning applications high-accuracy so-
lutions are not critical, especially if the solution of the
SDP is only an intermediate goal—e.g., metric learning
for nearest-neighbor classification. In this paper, we trade
high-accuracy for speed and obtain an efficient SDP algo-
rithm that is particularly suited for some machine learning
applications.

More specifically, we introduce convex perturbations for
semidefinite programming and characterize their relation
to the unperturbed original. Instead of minimizingTr(CX)
subject to constraints onX, we minimize theperturbed
functionTr(CX)−ε log det(X). We show that for an appro-
priateε > 0, solving the perturbed problem for anyε ≤ ε
yields a solution to the original problem—in fact, it yields
the maximum determinantsolution. Subsequently, we de-
velop asimplefirst-order algorithm based on Bregman pro-
jections that has many benefits: a) it is simple to imple-
ment, typically requiring only a few lines of MATLAB code,
b) it takes advantage of the problem structure such as low-
rank constraints or a sparse cost matrix (both situations are
common for machine learning SDPs), and c) it is scalable
as it naturally trades off accuracy for speed—a behavior ad-
vantageous for several large-scale machine learning prob-
lems. We illustrate our method on varied machine learn-
ing problems: maximum variance unfolding (Weinberger
et al., 2004), min-balanced cut (Lang, 2005), and large-
margin nearest neighbor metric learning (LMNN) (Wein-
berger et al., 2005). For the LMNN problem in particu-
lar, our algorithm can naturally be kernelized, which al-
lows metric learning to be performed over arbitrarily high
dimensional spaces as long as a suitable input kernel is de-
fined.

Convex Perturbations for Scalable Semidefinite Programming

1.1 BACKGROUND AND RELATED WORK

Our idea of adding a strictly convex perturbation to a
traditional SDP is inspired by Mangasarian and Meyer
(1979), who analyzed nonlinear perturbations to linear pro-
grams. More recently, Friedlander and Tseng (2007) dis-
cussed perturbations for general convex programs; they
also presented necessary and sufficient conditions for the
solution of the perturbed problem to be a solution to the
original problem. Our specific perturbation function, i.e.,
− log det(X), goes beyond purely theoretical guarantees,
and is critical for obtaining our first-order algorithm. Man-
gasarian (1984) used a quadratic perturbation to a linear
program, and characterized the solution of the perturbed
problem as the leastℓ2-norm solution to the original linear
program. In a similar vein, we characterize the solution of
our perturbed problem as the maximum determinant solu-
tion to the original SDP. Other relevant references relatedto
perturbations include the work of Ferris and Mangasarian
(1991) who extend the perturbation results of Mangasarian
and Meyer (1979) to general convex programs by applying
them to linearizations of the latter. Tseng (1999) includes
several relevant references and also discusses perturbations
by separable nonlinear functions; in contrast, our perturba-
tion function is non-separable.

A close relative of perturbation is the method of proxi-
mal minimization, which dates back to Martinet (1970)
and Rockafellar (1976), and generalizations of which have
been discussed by several authors, e.g., Censor and Zenios
(1997); Auslender and Teboulle (2006). Here, while mini-
mizing a convex functionf(x) one performs the following
iteration (forεk > 0):

xk ∈ argmin
x∈Ω

{

f(x) + ε−1
k d(x, xk−1)

}

, (1.1)

where theproximity-functiond(x, y) is chosen to enforce
either strict-convexity or to implicitly handle some difficult
constraints. Under appropriate conditions, the sequence
of iterates{xk} converges tox∗, an optimum solution to
minx∈Ω f(x). The key difference between perturbation
and proximal minimization is that the former assumes the
existence of a fixedε for which solving (1.1)onceyields a
solution to the original problem. Our methods in this paper
further require the perturbation to bestrictly-convex.

Algorithms: Interior point (IP) methods are amongst the
most popular techniques for solving SDPs (Alizadeh, 1995;
Nesterov and Nemirovski, 1994). The software package
SEDUMI implements an IP code for SDPs, and is popular
for small to medium scale problems. The log-det perturba-
tion function is also the barrier-function used by many inte-
rior point SDP solvers. However, fundamental differences
exist between our approach and IP methods. We solve the
perturbed problem as aconstrainedoptimization problem
with a fixedε, whereonly positive-definiteness is enforced

via the log-det barrier (the other constraints are tackled dif-
ferently). In contrast, IP methods recast the original prob-
lem as anunconstrainedproblem with varyingε, where
all the constraints are enforced via appropriate logarithmic
barriers.

In addition to second-order IP methods, the nonlinear pro-
gramming approach of Burer and Monteiro (2003) and the
spectral bundle method of Helmberg and Rendl (2000) are
popular for solving SDPs. Our method presents a new ap-
proach that is simpler than existing techniques, both con-
ceptually, as well as from an implementation perspective—
surprisingly, without sacrificing too much accuracy. For
additional details and references on semidefinite program-
ming, we refer the reader to Todd (2001); Vandenberghe
and Boyd (1996).

2 CONVEX PERTURBATIONS

A standard formulation for an SDP is

min
Xº0

Tr(C0X)

subject toTr(CiX) ≤ bi, 1 ≤ i ≤ m.
(P)

Problem (P) is convex, and therefore amenable to a wide
variety of optimization techniques. Below we develop a
new technique for solving (P) by deriving a scalable first-
order method that is also simple to understand and imple-
ment. The key insight here is the introduction of a strictly
convex perturbation, so that instead of (P) we solve

min
Xº0

Tr(C0X) − ε log det(X)

subject toTr(CiX) ≤ bi, 1 ≤ i ≤ m,
(PT)

whereε ∈ [0, ε) is a pre-specified constant. The most im-
portant ingredient here is the perturbation functionf(X) =
− log det(X) function—other functions such as‖X‖2

F or
‖X‖1 can also be considered, but they do not have the de-
sired algorithmic properties. The log-det perturbation is
crucial for adapting a successive projections technique to
obtain an efficient algorithm, especially because it enables
us to enforce positive-definiteness without any eigenvalue
computations.

The perturbation above is applicable to any semidefinite
program. However, our algorithm for optimizing (PT) will
be particularly useful for SDPs that feature low-rank con-
straint matrices (i.e., eachCi is low-rank) and for kerneliza-
tion of the large-margin nearest neighbor metric learning
algorithm of Weinberger et al. (2005).

2.1 ANALYSIS
To see how (PT) is helpful for solving (P), we briefly ana-
lyze their relationship below. Assuming (P) has a bounded
minimum θ̄, consider the following auxiliary problem:

min f(X) = − log det(X)

subject toTr(CiX) ≤ bi, 1 ≤ i ≤ m,

Tr(C0X) ≤ θ̄, X º 0.

(AUX)

Kulis, Sra, Dhillon

A feasible solution to (AUX) is optimal for (P), whereby
combining (AUX) with (P) yields insight into the behavior
of (PT). Theorem 2.1 below (adapted from Mangasarian
and Meyer (1979)), captures this relationship.
Theorem 2.1. LetS 6= ∅ be the set of optimal solutions of(P).
Further, assume thatf is differentiable onS, strong duality holds
for (P), and that(AUX) has a KKT point. Then, there exists an
X ∈ S and anε > 0, such that for eachε ∈ [0, ε] there exist

Z
pt

, νpt, such that
`

X, Z
pt

, νpt
´

is a KKT point of(PT), whence
X solves the perturbed problem(PT).

We sketch the proof in the appendix. This theorem shows
that for an appropriate value ofε, a solution of (P) is also
a solution of (PT). Since (PT) is strictly convex, solving
it allows us to pick auniquesolution from amongst all the
solutions of (P); the following corollary further qualifies
this statement.
Corollary 2.2. Assume the conditions of Theorem 2.1 hold, so
that ε ∈ [0, ε̄). Let S 6= ∅ be the set of optimal solutions of(P)
andX

∗ the solution to(PT). Then,

X
∗ = argmax

X∈S

det(X),

i.e.,X∗ is themaximum-determinantsolution to(P)1.

Proof. Let X be any solution of (P). BecauseX∗ is the
solution to (PT), by Theorem 2.1,X∗ is also optimal for (P).
Thus, Tr(C0X

∗) = Tr(C0X), and sinceX∗ solves (PT),
we further haveTr(C0X

∗) − log det(X∗) ≤ Tr(C0X) −
log det(X). Therefore,− log det(X∗) ≤ − log det(X), or
equivalentlydet(X∗) ≥ det(X).

A question that arises is what happens if the hypotheses of
Theorem 2.1 are not satisfied—for example, when (AUX)
fails to have a KKT point due to infeasible constraints. De-
tecting such situationsa priori can be difficult, and it is
valuable to see how different the perturbed problem is com-
pared to the original. In practice we do not knowε̄ exactly,
when solving an SDP2. Fortunately, we can show that the
ε we choose yields a solution “close” to the true solution,
even if ε > ε̄. The theorem below (adapted from Fried-
lander and Tseng (2007)) shows that under fairly mild as-
sumptions, the solution to the perturbed problem is within
O(ε) of the unperturbed solution.

Theorem 2.3. LetX be feasible andX ∈ S be optimal for (P).
Suppose there existτ > 0 andγ > 0 such that

Tr(C0X) − Tr(C0X) ≥ τ dist(X, S)γ
, (2.1)

wheredist(X, S) = min
X∈S ‖X − X‖F. For anyε̄ > 0,

τ dist(X∗
, S)γ−1 ≤ ε‖X(ε)−1‖F , for all ε ∈ (0, ε̄],

where X
∗ is the optimal solution to (PT) andX(ε) =

argmin
X∈S ‖X − X

∗‖F.

1With f(X) = ‖X‖2

F as the perturbation, one obtains the min-
imum Frobenius-norm solution to (P).

2For specific SDPs, one can obtain intervals boundingε. For
ML applicationsε can be selected via cross-validation.

We sketch the proof of this theorem in the appendix. This
theorem shows that the solutions to the perturbed and un-
perturbed problems are close when‖X(ε)−1‖F is small,
which in turn occurs whenX(ε) is well-conditioned.

2.2 ALGORITHM
There are several potential methods for optimizing (PT).
However, the use of the log-det perturbation function lends
itself well to the use of a row-action technique, namely
Bregman’s method (Censor and Zenios, 1997), which en-
forces constraints one by one yielding a simple and scalable
algorithm. At each step, the algorithm makes a “Bregman
projection” to enforce the chosen constraint, while simulta-
neously making an appropriate correction (if needed). Un-
der mild assumptions, this method provably converges to
the globally optimal solution.

The most critical aspect of the method is the Bregman-
projection, which needs to be implemented efficiently for
the algorithm to be practical. Below, we show how to im-
plement this step for projecting onto a single affine equal-
ity or inequality constraint. For low-rank constraint ma-
tricesCi, the Bregman projection forh(X) = Tr(C0X) −
ε log det(X) can be performed inO(n2) time as a simple
low-rank update to the current solution.

2.2.1 Projection onto a Single Constraint

Following Davis et al. (2007) we can derive the updates
necessary for projecting the current solutionXt onto a sin-
gle constraint (via a Bregman projection) to formXt+1.
Given the constraintTr(CiXt) = bi, the Bregman projec-
tion to update fromXt to Xt+1 is given by

Xt+1 = (X−1
t − (α/ε)Ci)

−1, (2.2)

whereα is chosen so thatTr(CiXt+1) = bi. For general
constraint matricesCi, computingα and performing the
update can be expensive. But whenCi is low-rank, the
computation simplifies considerably. For a rank-one equal-
ity constraint of the formTr(Xtziz

T
i) = bi, the Bregman

projection is given by

Xt+1 = Xt +
α
ε
Xtziz

T
i Xt

1 − α
ε
zT

i Xtzi

, (2.3)

which follows by applying the Sherman-Morrison-
Woodbury formula to (2.2). We then solve the equation
Tr(Xt+1ziz

T
i) = z

T
i Xt+1zi = bi for α, which results in

α =
ε(bi − z

T
i Xtzi)

bi · zT
i Xtzi

.

We then use this choice ofα to updateXt+1. After solv-
ing for α, we updateXt+1 via (2.3); note that this update
is a rank-one update, and can be performed inO(n2) time.
Similar projections exist for rank-two and rank-three con-
straint matrices.

Convex Perturbations for Scalable Semidefinite Programming

Algorithm 1 First-order SDP method
Input: {Ci, bi}

m
i=1: input constraints,C0: input matrix

ε: tradeoff parameter
Output: X: output PSD matrix

1. InitializeX andλi such thatX ≻ 0,
λi ≥ 0 for inequality constraints, andX = ε(C0 +

P

i λiCi)
−1.

2. repeat

2.1. Pick a constraint (e.g., the most violated constraint)(Ci, bi).
2.2. Compute projection parameter forα.

{In closed form for rank-1 to rank-4 constraints}

2.3. If constrainti is an inequality constraint
α ← min(λi, α), λi ← λi − α.

2.4. X ← (X − α
ε
Ci)

−1.

3. until convergence

If the constraint is an inequality constraint, then addition-
ally a correction must be enforced to ensure that the corre-
sponding dual variable remains non-negative. Letλi be the
dual variable for constrainti. After solving forα as in the
equality case, we setα′ = min(λi, α) andλi = λi − α′.
Finally, we update toXt+1 using (2.3) withα′ in place of
α. Note that the dual variablesλi and the starting matrix
X0 are initialized so that∇h(X0) = −

∑

i λiCi, X0 ≻ 0,
andλi ≥ 0 for all inequality constraints.

This general approach is summarized as Algorithm 1,
which converges to the globally optimal solution to (PT).
For further details on the convergence of Bregman’s pro-
jection method, see Censor and Zenios (1997). In practice,
when choosing a constraint at each iteration, we choose
the constraint that is the most violated. For low-rank con-
straints, determining the most violated constraint can usu-
ally be performed efficiently; for example, if each con-
straint can be evaluated in constant time, then the most
violated constraint can be found inO(m) time, which is
generally much less than the cost of a single projection.

3 APPLICATIONS
We now discuss some of the machine learning applications
of the algorithm. In particular, SDPs with low-rank con-
straint matrices are especially relevant. We also show how
the kernelization of LMNN falls out naturally as a conse-
quence of our algorithm.

3.1 EXAMPLE SDPS
Nonlinear Embedding: Semidefinite embedding (Wein-
berger et al., 2004) (maximum variance unfolding) is a
nonlinear dimensionality reduction problem that aims to
find a low-dimensional embedding of the input data so that
the variance in the data is maximized while the distances
among a set of nearest neighborsS are maintained, and a
centering constraint is enforced. The total number of con-
straints isnk, wheren is the number of data points andk
is the number of nearest neighbors, and all constraints are
rank-one. Given a setS of neighbor pairs, each with a tar-

get distanceDij , the semidefinite embedding problem can
be formalized as:

max
Xº0

Tr(X)

subject to Xii + Xjj − 2Xij = Dij , (i, j) ∈ S

e
T Xe = 0.

A related problem is the robust Euclidean embedding prob-
lem (Cayton and Dasgupta, 2006), which seeks to find the
closest (in vectorℓ1-norm) Euclidean distance matrixD to
a given input dissimilarity matrixD0. Appropriate manip-
ulation transforms it into an SDP with rank-two constraint
matrices.

Graph Cuts: Several graph cut problems can be relaxed
as SDPs. For example, the minimum balanced cut prob-
lem (Lang, 2005) has been used for finding balanced clus-
ters of skewed-degree distribution graphs (such as power-
law graphs). A relaxation to the minimum balanced cut
problem may be posed as an SDP with|V | + 1 rank-one
constraints, with|V | the number of vertices in the graph.
Given a graph LaplacianL, the min balanced cut problem
can be expressed as:

min
Xº0

Tr(LX)

subject to diag(X) = e, e
T
Xe = 0.

(3.1)

Metric Learning: Various metric learning algorithms have
been posed as SDPs. In particular, the method of large-
margin nearest neighbors (LMNN) (Weinberger et al.,
2005) guarantees that distances between nearest neighbors
in the same class are much smaller than distances between
points in different classes. The resulting SDP has rank-3
constraints. The method of Weinberger et al. (2005) at-
tempts to find a Mahalanobis distance matrixA such that
two neighboring points in the same class have distances
much smaller than two points in different classes. Let
ηij = 1 if points i andj are neighbors (and 0 otherwise),
yij = 1 if the labels of pointsi andj match (and 0 other-
wise),ξijl correspond to slack variables for the constraints,
andC0 =

∑

ij ηij(xi − xj)(xi − xj)
T . Then the corre-

sponding SDP to be solved is formalized as:

min
A,ξ

Tr(C0A) + γ
∑

ijl

ηij(1 − yjl)ξijl

subject todA(xi,xl) − dA(xi,xj) ≥ 1 − ξijl,

ξijl ≥ 0, A º 0.

(3.2)

Collaborative Filtering: The maximum margin matrix
factorization SDP for collaborative filtering (Srebro et al.,
2005) has simple, low-rank constraints. Other first-order
methods have been proposed; however, these methods
work on a slightly different (non-convex) optimization
problem, which may lead to poor local optima.

Kulis, Sra, Dhillon

3.2 KERNELIZATION OF LMNN
We now show an intriguing application of our algorithm,
namely, the kernelization of LMNN metric learning. We
note that another recent result (Chatpatanasiri et al., 2008)
has discussed kernelization of some metric learning algo-
rithms including LMNN, though via a different analysis
independent of convex perturbations. Recall the matrix
update from Algorithm 1:A ← (A − (α/ε)Ci)

−1. In
the case of LMNN, we implicitly maintainA º 0 and
ξijl ≥ 0 via our perturbation, so all constraints are of
the formdA(xi,xl) − dA(xi,xj) ≥ 1 − ξijl and the the
corresponding constraint matricesCi are rank-three. The
resulting update (after repeated applications of Sherman-
Morrison) is:

A ← A+A
(

β1wijw
T
ij+β2wilw

T
il+β3wijw

T
il+β3wilw

T
ij

)

A,

wherewij = xi − xj and β1, β2, β3 are obtained after
solving for the projection parameterα, which is the root
of a third-order polynomial. By multiplying the update on
the left by the matrixXT of data points (X = [x1x2...xn])
and on the right byX, and lettingK = XT AX, the update
becomes

K ← K+K
(

β1dijd
T
ij +β2dild

T
il +β3dijd

T
il +β3dild

T
ij

)

K,

wheredij = (ei − ej). Thus, we maintainK instead ofA;
note that the size ofK is independent of the dimensionality
of the data points. Furthermore, the slack variables are up-
dated asξijl ← ξijl − β4γξ2

ijl, whereβ4 is also computed
after solving the projection parameter.

The next step is to compute the initial matrixK0 = XT A0X.
Settingλi = 0 initially for all constraints, the resulting ini-
tialization for our method is given byA0 = ε(

∑

ij ηij(xi−

xj)(xi − xj)
T)−1. By addingεI to the sum in the inverse

to guarantee positive definiteness, we can once again re-
peatedly apply Sherman-Morrison-Woodbury to compute
XT A0X using only inner products.

Finally, we must be able to computedA(xi,xj) using the
matrix K returned by the optimization algorithm, and the
original kernel functionκ(xi,xj). For this, we follow the
method described in Davis et al. (2007), which shows how
the distance function in kernel space can be computed by
unrolling the updates and maintaining an appropriate ma-
trix of coefficients. See Davis et al. (2007) for further de-
tails.

Note that this procedure solves the perturbed SDP for
LMNN exactly, but in kernel space. As a result, we do not
sacrifice convexity—this stands in contrast to the method
of Torresani and Lee (2007) that sacrifices convexity in or-
der to kernelize LMNN.

4 EXPERIMENTS

In Section 4.1, we compare our approach to existing first-
order and second-order SDP software on the min balanced

cut problem to assess the viability of our algorithm for
some benchmark SDPs. Here we observe empirically how
close the solutions of the perturbed problems are to the
unperturbed SDPs. In Section 4.2, we present results on
LMNN. We demonstrate that a non-kernelized version of
our method is faster than the original method of Wein-
berger et al. (2005) on several data sets; then we show
applications of high-dimensional metric learning with our
kernelized-LMNN on a computer vision task and standard
UCI datasets. In all experiments, we setε = 10−1; we
found that the solutions obtained by our algorithm are very
close to the globally optimal solutions.

4.1 MIN BALANCED CUT AND MVU

In this section we show results for two machine learning
SDPs—min-balanced cut and semidefinite embedding or
maximum variance unfolding (MVU). These SDPs have
low-rank constraints, making them appropriate for our
method. We compare with SEDUMI (2007), which imple-
ments both first-order and second-order solvers. Our soft-
ware and SEDUMI use the MATLAB interface, with code
written in C and MATLAB . It is difficult to compare various
software packages for SDPs, especially given the number
of tunable parameters, so in all experiments, we used the
(reasonable) default parameters for SEDUMI.

Table 1 lists accuracy results for min-balanced cut on some
of the UCI data sets3 tested over the first-order SEDUMI al-
gorithm (SEDUMI-1), the second-order SEDUMI algorithm
(SEDUMI-2), and our approach (SDPLogDet). The graphs
for this SDP were constructed using the Gram matrix of the
data points and scaled so that edge weights were between 0
and 1. The accuracy of our method in terms of the final ob-
jective function value is very close to that of both the first
and second-order SEDUMI solvers, generally differing only
in the third significant digit; further improvements may be
gained by settingε to be smaller or running more iterations
of our algorithm. Our maximum violation is higher since
we set our convergence criterion to stop when the max vi-
olation was smaller than10−3. These results show that our
method yields reasonable approximate solutions.

For these datasets we found that SEDUMI-2 was in general
the fastest, followed by SDPLogDet, and finally, SEDUMI-
1. Since the convergence criteria were different among the
algorithms, to compare timings we ran the algorithms until
they reached a maximum violation of10−8 and measured
maximum violation as a function of the CPU time of the
algorithms. In Figure 1, we show comparisons between
SEDUMI-1 and SDPLogDet on three of the UCI data sets.
SDPLogDet shows consistent linear convergence, and typi-
cally has faster convergence during early iterations as com-
pared to SEDUMI-1. This demonstrates our method’s abil-
ity to reach low to medium accuracy solutions quickly in
comparison to an existing state-of-the-art first-order solver;

3Available at http://www.ics.uci.edu/˜mlearn/MLRepository.html.

Convex Perturbations for Scalable Semidefinite Programming

Objective Function Value Maximum Constraint Violation
Data Set SEDUMI-2 SEDUMI-1 SDPLogDet SEDUMI-2 SEDUMI-1 SDPLogDet

Iris 1.020 × 104 1.020 × 104 1.022 × 104 2.005 × 10−11 1.269 × 10−10 9.633 × 10−4

Wine 5.657 × 103 5.657 × 103 5.672 × 103 8.854 × 10−12 3.761 × 10−12 9.953 × 10−4

Ionosphere 6.755 × 103 6.755 × 103 6.766 × 103 1.486 × 10−11 1.683 × 10−5 9.532 × 10−4

Soybean 1.239 × 105 1.188 × 105 1.239 × 105 1.125 × 10−11 4.143 × 10−2 9.937 × 10−4

Autos 3.394 × 103 3.394 × 103 3.415 × 103 4.379 × 10−12 2.123 × 10−10 9.851 × 10−4

Audiology 9.709 × 103 9.709 × 103 9.729 × 103 3.633 × 10−11 2.402 × 10−11 9.814 × 10−4

Breast Cancer 2.509 × 104 2.509 × 104 2.511 × 104 8.455 × 10−12 3.050 × 10−10 8.768 × 10−4

Colic 2.279 × 104 2.279 × 104 2.282 × 104 7.387 × 10−11 4.343 × 10−7 9.796 × 10−4

Dermatology 2.622 × 104 2.622 × 104 2.623 × 104 3.136 × 10−12 5.259 × 10−6 9.510 × 10−4

Table 1: Accuracy Results on Min Balanced Cut

0 5 10 15 20 25 30 35 40 45
10

−8

10
−6

10
−4

10
−2

10
0

10
2

CPU Time (seconds)

M
a

x
im

u
m

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n

SDPLogDet
Sedumi−1

0 10 20 30 40 50 60
10

−8

10
−6

10
−4

10
−2

10
0

10
2

CPU Time (seconds)

M
a

x
im

u
m

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n

SDPLogDet
Sedumi−1

0 20 40 60 80 100 120
10

−15

10
−10

10
−5

10
0

10
5

CPU Time (seconds)

M
a

x
im

u
m

 C
o

n
s
tr

a
in

t
V

io
la

ti
o

n

SDPLogDet
Sedumi−1

(a) Wine (b) Autos (c) Audiology

Figure 1: Convergence comparison between SDPLogDet and SEDUMI-1 over three example UCI data sets for the min
balanced cut problem. SDPLogDet shows consistent linear convergence, while SEDUMI-1 converges less consistently and
has slower convergence during early iterations.

additional speed can be gained by more algorithmic refine-
ments, and remains a part of our ongoing efforts.

Name No. of points No. of dims

Iris 150 4
Wine 178 13
Ionosphere 351 34
Soybean 683 35
Diabetes 768 8

Table 2: UCI Data Sets

The key advantage to using a first-order SDP algorithm
as opposed to a second-order method is in scalability to
very large data sets. In an additional experiment, we com-
pared memory consumption of the methods for the maxi-
mum variance unfolding problem. In Table 3, we show the
maximum memory overhead needed for performing semi-
definite embedding on synthetic data. The valuen refers
to the number of rows/columns of the semi-definite ma-
trix (the number of variables to solve for in the SDP is
n(n + 1)/2); in these experiments,k = 5. SEDUMI-2 re-
quires the most memory, and was unsuccessful in running
on problems wheren was greater than 1500. Interestingly,
SEDUMI-1 also required significant memory overhead, and
does not scale to problems larger thann = 1500. DSDP,
another second-order method (Benson et al., 2000), scales
to n = 3000 (i.e., 4.5 million variables), whereas SD-

n SEDUMI-1 SEDUMI-2 DSDP SDPLogDet
100 7 13 3 1
500 165 222 67 5
1000 779 881 263 35
1500 1821 1930 586 52
2000 — — 1033 92
2500 — — 1608 144
3000 — — 2170 207
3500 — — — 253

Table 3: Memory overhead (in megabytes) for performing
semi-definite embedding. A ‘—’ indicates that the method
could not run due to memory requirements.

PLogDet requires no memory overhead beyond the storage
of the semi-definite matrix and the constraints. Thus it is
feasible to scale the proposed method to even larger SDPs.

4.2 METRIC LEARNING EXPERIMENTS

We now compare our solver (SDPLogDet) to specialized
software for the LMNN problem, which employs sub-
gradient methods; note that SEDUMI could not be used for
LMNN due to the large number of constraints. Also note
that, unlike the algorithm of Weinberger et al. (2005) (or the
more recent highly-tuned version (Weinberger and Saul,
2008)), we have not specialized our SDP algorithm in any
way for LMNN. We test on standard UCI data sets. In all
experiments, the parameterγ is tuned via cross-validation.

Kulis, Sra, Dhillon

Test Error Running Time (secs)
Data Set Euclidean Weinberger et al. SDPLogDet Weinberger et al. SDPLogDet
Iris .031 .024 .021 1.24 .119
Wine .306 .038 .036 8.77 .323
Ionosphere .164 .123 .119 9.74 10.54
Soybean .122 .082 .079 21.95 13.25
Diabetes .311 .296 .298 47.50 16.08

Table 4: Comparisons of Large-Margin Nearest Neighbors: Test Error and Running Times. SEDUMI cannot be used for
this SDP due to the large number of constraints. Our method gives comparable test error and superior running times.

We use a 70/30 training/test split, and use ak-nearest
neighbor classifier (k = 3) for classification. Table 4 com-
pares Weinberger et al.’s implementation of LMNN with
our proposed algorithm averaged over 10 runs. The run-
ning times are in seconds, and we provide the baseline Eu-
clidean test error (i.e., test error with no metric learning)
for comparison. Our test error results are comparable to
Weinberger et al., but with faster running times.

Next we consider K-LMNN, our kernelized version of
LMNN. For the following experiment, the data is repre-
sented in kernelized form (no explicit vector representa-
tion). As a result, the non-kernelized LMNN algorithms
cannot be applied, and so we will compare to software for
information-theoretic metric learning (ITML) (Davis et al.,
2007), which can be kernelized. Again, we usek-nearest
neighbor classification.

5 10 15 20

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Number of Training Points per Class

A
cc

ur
ac

y

K−LMNN
ITML
Baseline

Figure 2: Comparison of nearest neighbor methods for the
Caltech-101 data set. K-LMNN outperforms ITML for 5–
20 training examples per class.

We learned a metric using ITML and K-LMNN for the
Caltech-101 data set (Fei-Fei et al., 2004), a common
benchmark for object classification in computer vision.
This data set contains 3969 images in 101 categories. We
set k = 7 for classification and, as is standard for this
data set, measured performance over an increasing num-
ber of training examples per class (5, 10, 15, 20). As our
initial kernel function, we used the kernel of Zhang et al.
(2006) that achieves 40 percent accuracy over this data set
with 15 training examples per class. Both K-LMNN and
ITML (averaged over 5 runs) significantly outperform the
baseline (Euclidean)k-nearest neighbor classifier, and K-
LMNN performs better than ITML on average. In fact, K-

LMNN seems to be competitive with the best classification
results on this data set for single-kernel methods (see Zhang
et al. (2006)).

Additionally, we ran K-LMNN on the UCI datasets using
a Gaussian kernel. Some example test-errors are reported
in Table 5. We see that for some datasets, e.g., ionosphere,
using K-LMNN leads to significant improvement over non-
kernelized metric learning. One would expect that applying
such a kernel function would help in cases where the data
is not linearly separable.

Data Set LMNN K-LMNN
Iris .021 .021

Ionosphere .119 .072
Balance-Scale .182 .127
Breast-Cancer .299 .271

Table 5: Metric learning test errors on UCI datasets

5 CONCLUSIONS

In this paper we presented a perturbation based approach to
solving SDPs, where we replaced the original linear objec-
tive function by a strictly convex objective function. We de-
veloped a scalable first-order algorithm based on Bregman
projections for solving the perturbed problem that obtains
the maximum determinant solution to the original unper-
turbed problem. We also showed how the perturbations nat-
urally yield kernelization of a popular metric learning algo-
rithm. Our experimental results are encouraging and they
show that despite its simplicity, our method achieves solu-
tions competitive to other SDP methods. Furthermore, due
to its modest memory requirements our method is highly
scalable, as compared to several standard SDP packages.

AcknowledgementsThis research was supported by NSF
grants CCF-0431257 and CCF-072887. We thank Stefanie
Jegelka for initial discussions on the results in this paper.

References
F. Alizadeh. Interior point methods in semidefinite programming

with applications to combinatorial optimization.SIAM J. Opt.,
5:13–51, 1995.

A. Auslender and M. Teboulle. Interior gradient and proximal

Convex Perturbations for Scalable Semidefinite Programming

methods for convex and conic optimization.SIAM J. Optim.,
16(3):697–725, 2006.

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse
semidefinite programs for combinatorial optimization.SIAM
J. Opt., 10(2):443–461, 2000.

S. Burer and R. C. Monteiro. A nonlinear programming algorithm
for solving semidefinite programs via low-rank factorization.
Math. Prog. Ser. B, 95:329–357, 2003.

L. Cayton and S. Dasgupta. Robust Euclidean embedding. In
ICML, 2006.

Y. Censor and S. A. Zenios.Parallel Optimization: Theory, Algo-
rithms, and Applications. Oxford University Press, 1997.

R. Chatpatanasiri, T. Korsrilabutr, P. Tangchanacha-
ianan, and B. Kijsirikul. On kernelization of super-
vised Mahalanobis distance learners. ArXiv, 2008.
http://arxiv.org/pdf/0804.1441.

J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon. Information-
theoretic metric learning. InICML, 2007.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual
models from few training examples: an incremental Bayesian
approach tested on 101 object cateories. InWorkshop on Gen-
erative Model Based Vision, Washington, D.C., June 2004.

M. C. Ferris and O. L. Mangasarian. Finite perturbation of convex
programs. Applied Mathematics and Optimization, 23:263–
273, 1991.

M. P. Friedlander and P. Tseng. Exact regularization of convex
programs.SIAM J. Opt., 2007.

C. Helmberg and F. Rendl. A spectral bundle method for semidef-
inite programming.SIAM J. Opt., 10:673–696, 2000.

G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui, and M. I. Jor-
dan. Learning the kernel matrix with semidefinite program-
ming. JMLR, 5:27–72, 2004.

K. Lang. Fixing two weaknesses of the spectral method. InNIPS,
2005.

O. L. Mangasarian. Normal solution of linear programs.Math.
Prog. Study, 22:206–216, 1984.

O. L. Mangasarian and R. R. Meyer. Nonlinear Perturbation of
Linear Programs.SIAM J. Cont. & Opt., 17(6):745–752, 1979.

B. Martinet. Ŕegularisation d’ińequations variationelles par ap-
proximations successives.RAIRO Rech. Oṕer., 4(R3), 1970.

Y. Nesterov and A. Nemirovski.Interior Point Polynomial Algo-
rithms in Convex Programming. Number 13 in SIAM Studies
in Applied Mathematics. SIAM, 1994.

R. T. Rockafellar. Monotone operators and the proximal point
algorithm.SIAM J. Control Optim., 14, 1976.

Sedumi. SeDuMi: Package for optimization over symmetric
cones. http://sedumi.mcmaster.ca, 2007.

F. Sha and L. Saul. Analysis and extension of spectral methods
for nonlinear dimensionality reduction. InICML, 2005.

N. Srebro, J. Rennie, and T. Jaakkola. Maximum Margin Matrix
Factorizations. InNIPS, 2005.

M. J. Todd. Semidefinite optimization.Acta Numerica, 10:515–
560, 2001.

L. Torresani and K. Lee. Large margin component analysis. In
NIPS, 2007.

P. Tseng. Convergence and error bounds for perturbation of linear
programs.Computational Optimization and Applications, 13
(1–3):221–230, April 1999.

L. Vandenberghe and S. Boyd. Semidefinite programming.SIAM
Review, 38:49–95, 1996.

K. Weinberger, F. Sha, and L. Saul. Learning a kernel matrix for
nonlinear dimensionality reduction. InICML, 2004.

K. Weinberger, J. Blitzer, and L. Saul. Distance metric learning
for large margin nearest neighbor classification. InNIPS, 2005.

K. Q. Weinberger and L. K. Saul. Fast solvers and efficient im-
plementations for distance metric learning. InICML, 2008.

H. Zhang, A. Berg, M. Maire, and J. Malik. SVM-KNN: Dis-

criminative nearest neighbor classification for visual category
recognition. InCVPR, 2006.

A PROOF SKETCHES

Proof. (Theorem 2.1). LetA(ν) =
∑

i νiAi, and
(X,Z,ν, γ) be a KKT point of (AUX). ThenX,Z º 0,ν ≥
0, γ ≥ 0, and

∇f(X) + A(ν) + γC − Z = 0, Tr(CX) = θ̄,

Tr(AiX) ≤ bi, νi

(

Tr(AiX) − bi

)

= 0, 1 ≤ i ≤ m,

(A.1)

SinceX is an optimal solution of (P), there is a KKT point
(X,Z,ν) of (P) satisfyingX,Z º 0,ν ≥ 0, and

C + A(ν) − Z = 0

Tr(AiX) ≤ bi, νi(Tr(AiX) − bi) = 0, 1 ≤ i ≤ m,

(A.2)

We combine (A.1) and (A.2) to get a KKT point of (PT).
Consider the two casesγ = 0 andγ > 0 (γ is the dual
variable corresponding to theTr(CX) ≤ θ̄ constraint):

Case 1:γ = 0. For anyε ≥ 0, (X, εZ + Z, εν + ν) is a
KKT point of (PT). This is easily verified by multiplying
(A.1) by ε and adding the result to (A.2).

Case 2:γ > 0. For anyλ ∈ [0, 1], (X,Z
pt

,νpt) is a KKT

point of (PT), withε = λ/γ, Z
pt

= (1 − λ)Z + λ
γ
Z, and

ν
pt = (1−λ)ν + λ

γ
ν. As for Case 1, this is easily verified

by multiplying (A.1) byλ/γ, (A.2) by 1 − λ, and adding
the two. Note thatε = 1/γ.

Finally, since the objective function of (PT) is strictly con-
vex and we assume strong duality holds for (P), strong du-
ality also holds for (PT). Thus, the KKT conditions are
sufficient forX to be the minimum of (PT).

Proof. (Theorem 2.3) Let X∗(ε) =
argmin

X∗∈S ‖X(ε) − X∗‖F, so that Tr(CX
∗(ε)) −

ε log det(X∗(ε)) ≥ Tr(CX(ε)) − ε log det(X(ε)),
since X(ε) is the optimal solution to (PT). Now, us-
ing (2.1) we obtainTr(CX(ε)) − ε log det(X(ε)) ≥
Tr(CX

∗(ε))+τ‖X(ε) − X∗(ε)‖γ
F −ε log det(X(ε)), which

implies

τ‖X(ε) − X
∗(ε)‖γ

F ≤ ε
(

log det(X(ε)) − log det(X∗(ε))
)

.

Exploiting the concavity of log det, we
have log det(X(ε)) − log det(X∗(ε)) ≤
〈

(X∗(ε))−1, X(ε) − X∗(ε)
〉

≤
‖(X∗(ε))−1‖F‖X(ε) − X∗(ε)‖F, which we can com-
bine with the former inequality to finally obtain

τ‖X(ε) − X
∗(ε)‖γ−1

F ≤ ε‖(X∗(ε))−1‖F.

Settingτ̄ = ‖(X∗(ε))−1‖F

τ
completes the proof.

