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Abstract

This paper presents a novel algorithm, based upon the dependent Dirichlet pro-
cess mixture model (DDPMM), for clustering batch-sequential data containing
an unknown number of evolving clusters. The algorithm is derived via a low-
variance asymptotic analysis of the Gibbs sampling algorithm for the DDPMM,
and provides a hard clustering with convergence guarantees similar to those of the
k-means algorithm. Empirical results from a synthetic test with moving Gaussian
clusters and a test with real ADS-B aircraft trajectory data demonstrate that the al-
gorithm requires orders of magnitude less computational time than contemporary
probabilistic and hard clustering algorithms, while providing higher accuracy on
the examined datasets.

1 Introduction

The Dirichlet process mixture model (DPMM) is a powerful tool for clustering data that enables
the inference of an unbounded number of mixture components, and has been widely studied in the
machine learning and statistics communities [1–4]. Despite its flexibility, it assumes the observa-
tions are exchangeable, and therefore that the data points have no inherent ordering that influences
their labeling. This assumption is invalid for modeling temporally/spatially evolving phenomena, in
which the order of the data points plays a principal role in creating meaningful clusters. The depen-
dent Dirichlet process (DDP), originally formulated by MacEachern [5], provides a prior over such
evolving mixture models, and is a promising tool for incrementally monitoring the dynamic evolu-
tion of the cluster structure within a dataset. More recently, a construction of the DDP built upon
completely random measures [6] led to the development of the dependent Dirichlet process Mixture
model (DDPMM) and a corresponding approximate posterior inference Gibbs sampling algorithm.
This model generalizes the DPMM by including birth, death and transition processes for the clusters
in the model.

The DDPMM is a Bayesian nonparametric (BNP) model, part of an ever-growing class of prob-
abilistic models for which inference captures uncertainty in both the number of parameters and
their values. While these models are powerful in their capability to capture complex structures in
data without requiring explicit model selection, they suffer some practical shortcomings. Inference
techniques for BNPs typically fall into two classes: sampling methods (e.g., Gibbs sampling [2]

1



or particle learning [4]) and optimization methods (e.g., variational inference [3] or stochastic vari-
ational inference [7]). Current methods based on sampling do not scale well with the size of the
dataset [8]. Most optimization methods require analytic derivatives and the selection of an upper
bound on the number of clusters a priori, where the computational complexity increases with that
upper bound [3, 7]. State-of-the-art techniques in both classes are not ideal for use in contexts where
performing inference quickly and reliably on large volumes of streaming data is crucial for timely
decision-making, such as autonomous robotic systems [9–11]. On the other hand, many classical
clustering methods [12–14] scale well with the size of the dataset and are easy to implement, and
advances have recently been made to capture the flexibility of Bayesian nonparametrics in such
approaches [15]. However, as of yet there is no classical algorithm that captures dynamic cluster
structure with the same representational power as the DDP mixture model.

This paper discusses the Dynamic Means algorithm, a novel hard clustering algorithm for spatio-
temporal data derived from the low-variance asymptotic limit of the Gibbs sampling algorithm for
the dependent Dirichlet process Gaussian mixture model. This algorithm captures the scalability
and ease of implementation of classical clustering methods, along with the representational power
of the DDP prior, and is guaranteed to converge to a local minimum of a k-means-like cost function.
The algorithm is significantly more computationally tractable than Gibbs sampling, particle learning,
and variational inference for the DDP mixture model in practice, while providing equivalent or better
clustering accuracy on the examples presented. The performance and characteristics of the algorithm
are demonstrated in a test on synthetic data, with a comparison to those of Gibbs sampling, particle
learning and variational inference. Finally, the applicability of the algorithm to real data is presented
through an example of clustering a spatio-temporal dataset of aircraft trajectories recorded across
the United States.

2 Background

The Dirichlet process (DP) is a prior over mixture models, where the number of mixture components
is not known a priori[16]. In general, we denote D ∼ DP(µ), where αµ ∈ R+ and µ : Ω →
R+,

∫
Ω

dµ = αµ are the concentration parameter and base measure of the DP, respectively. If
D ∼ DP, then D = {(θk, πk)}∞k=0 ⊂ Ω × R+, where θk ∈ Ω and πk ∈ R+[17]. The reader is
directed to [1] for a more thorough coverage of Dirichlet processes.

The dependent Dirichlet process (DDP)[5], an extension to the DP, is a prior over evolving mixture
models. Given a Poisson process construction[6], the DDP essentially forms a Markov chain of DPs
(D1, D2, . . . ), where the transitions are governed by a set of three stochastic operations: Points θk
may be added, removed, and may move during each step of the Markov chain. Thus, they become
parameterized by time, denoted by θkt. In slightly more detail, if Dt is the DP at time step t, then
the following procedure defines the generative model of Dt conditioned on Dt−1 ∼ DP(µt−1):

1. Subsampling: Define a function q : Ω → [0, 1]. Then for each point (θ, π) ∈ Dt−1,
sample a Bernoulli distribution bθ ∼ Be(q(θ)). Set D′t to be the collection of points (θ, π)
such that bθ = 1, and renormalize the weights. Then D′t ∼ DP(qµt−1), where (qµ)(A) =∫
A
q(θ)µ(dθ).

2. Transition: Define a distribution T : Ω × Ω → R+. For each point (θ, π) ∈ D′t, sample
θ′ ∼ T (θ′|θ), and set D′′t to be the collection of points (θ′, π). Then D′′t ∼ DP(Tqµt−1),
where (Tµ)(A) =

∫
A

∫
Ω
T (θ′|θ)µ(dθ).

3. Superposition: Sample F ∼ DP(ν), and sample (cD, cF ) ∼ Dir(Tqµt−1(Ω), ν(Ω)).
Then setDt to be the union of (θ, cDπ) for all (θ, π) ∈ D′′t and (θ, cFπ) for all (θ, π) ∈ F .
Thus, Dt is a random convex combination of D′′t and F , where Dt ∼ DP(Tqµt−1 + ν).

If the DDP is used as a prior over a mixture model, these three operations allow new mixture com-
ponents to arise over time, and old mixture components to exhibit dynamics and perhaps disappear
over time. As this is covered thoroughly in [6], the mathematics of the underlying Poisson point
process construction are not discussed in more depth in this work. However, an important result of
using such a construction is the development of an explicit posterior forDt given observations of the
points θkt at timestep t. For each point k that was observed in Dτ for some τ : 1 ≤ τ ≤ t, define:
nkt ∈ N as the number of observations of point k in timestep t; ckt ∈ N as the number of past
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observations of point k prior to timestep t, i.e. ckt =
∑t−1
τ=1 nkτ ; qkt ∈ (0, 1) as the subsampling

weight on point k at timestep t; and ∆tk as the number of time steps that have elapsed since point k
was last observed. Further, let νt be the measure for unobserved points at time step t. Then,

Dt|Dt−1 ∼ DP

(
νt +

∑
k:nkt=0

qktcktT (· |θk(t−∆tk)) +
∑

k:nkt>0

(ckt + nkt)δθkt

)
(1)

where ckt = 0 for any point k that was first observed during timestep t. This posterior leads directly
to the development of a Gibbs sampling algorithm for the DDP, whose low-variance asymptotics are
discussed further below.

3 Asymptotic Analysis of the DDP Mixture

The dependent Dirichlet process Gaussian mixture model (DDP-GMM) serves as the foundation
upon which the present work is built. The generative model of a DDP-GMM at time step t is

{θkt, πkt}∞k=1 ∼ DP(µt)

{zit}Nt
i=1 ∼ Categorical({πkt}∞k=1)

{yit}Nt
i=1 ∼ N (θzitt, σI)

(2)

where θkt is the mean of cluster k, πkt is the categorical weight for class k, yit is a d-dimensional
observation vector, zit is a cluster label for observation i, and µt is the base measure from equation
(1). Throughout the rest of this paper, the subscript kt refers to quantities related to cluster k at time
step t, and subscript it refers to quantities related to observation i at time step t.

The Gibbs sampling algorithm for the DDP-GMM iterates between sampling labels zit for dat-
apoints yit given the set of parameters {θkt}, and sampling parameters θkt given each group of
data {yit : zit = k}. Assuming the transition model T is Gaussian, and the subsampling func-
tion q is constant, the functions and distributions used in the Gibbs sampling algorithm are: the
prior over cluster parameters, θ ∼ N (φ, ρI); the likelihood of an observation given its cluster pa-
rameter, yit ∼ N (θkt, σI); the distribution over the transitioned cluster parameter given its last
known location after ∆tk time steps, θkt ∼ N (θk(t−∆tk), ξ∆tkI); and the subsampling function
q(θ) = q ∈ (0, 1). Given these functions and distributions, the low-variance asymptotic limits
(i.e. σ → 0) of these two steps are discussed in the following sections.

3.1 Setting Labels Given Parameters

In the label sampling step, a datapoint yit can either create a new cluster, join a current cluster, or
revive an old, transitioned cluster. Using the distributions defined previously, the label assignment
probabilities are

p(zit = k| . . . ) ∝


αt(2π(σ + ρ))−d/2 exp

(
− ||yit−φ||

2

2(σ+ρ)

)
k = K + 1

(ckt + nkt)(2πσ)−d/2 exp
(
− ||yit−θkt||2

2σ

)
nkt > 0

qktckt(2π(σ + ξ∆tk))−d/2 exp
(
− ||yit−θk(t−∆tk)||2

2(σ+ξ∆tk)

)
nkt = 0

(3)

where qkt = q∆tk due to the fact that q(θ) is constant over Ω, and αt = αν
1−qt
1−q where αν is the

concentration parameter for the innovation process, Ft. The low-variance asymptotic limit of this
label assignment step yields meaningful assignments as long as αν , ξ, and q vary appropriately with
σ; thus, setting αν , ξ, and q as follows (where λ, τ and Q are positive constants):

αν = (1 + ρ/σ)d/2 exp
(
− λ

2σ

)
, ξ = τσ, q = exp

(
− Q

2σ

)
(4)

yields the following assignments in the limit as σ → 0:

zit = arg min
k

{Jk} , Jk =


||yit − θkt||2 if θk instantiated

Q∆tk +
||yit−θk(t−∆tk)||2

τ∆tk+1 if θk old, uninstantiated
λ if θk new

. (5)

In this assignment step, Q∆tk acts as a cost penalty for reviving old clusters that increases with the
time since the cluster was last seen, τ∆tk acts as a cost reduction to account for the possible motion
of clusters since they were last instantiated, and λ acts as a cost penalty for introducing a new cluster.
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3.2 Setting Parameters given Labels

In the parameter sampling step, the parameters are sampled using the distribution

p(θkt|{yit : zit = k}) ∝ p({yit : zit = k}|θkt)p(θkt) (6)

There are two cases to consider when setting a parameter θkt. Either ∆tk = 0 and the cluster is new
in the current time step, or ∆tk > 0 and the cluster was previously created, disappeared for some
amount of time, and then was revived in the current time step.

New Cluster Suppose cluster k is being newly created. In this case, θkt ∼ N (φ, ρ). Using the
fact that a normal prior is conjugate a normal likelihood, the closed-form posterior for θkt is

θkt|{yit : zit = k} ∼ N (θpost, σpost)

θpost = σpost

(
φ

ρ
+

∑nkt

i=1 yit
σ

)
, σpost =

(
1

ρ
+
nkt
σ

)−1 (7)

Then letting σ → 0,

θkt =
(
∑nkt

i=1 yit)

nkt

def
= mkt (8)

where mkt is the mean of the observations in the current timestep.

Revived Cluster Suppose there are ∆tk time steps where cluster k was not observed, but there
are now nkt data points with mean mkt assigned to it in this time step. In this case,

p(θkt) =

∫
θ

T (θkt|θ)p(θ) dθ, θ ∼ N (θ′, σ′). (9)

Again using conjugacy of normal likelihoods and priors,

θkt|{yit : zit = k} ∼ N (θpost, σpost)

θpost = σpost

(
θ′

ξ∆tk + σ′
+

∑nkt

i=1 yit
σ

)
, σpost =

(
1

ξ∆tk + σ′
+
nkt
σ

)−1 (10)

Similarly to the label assignment step, let ξ = τσ. Then as long as σ′ = σ/w, w > 0 (which holds
if equation (10) is used to recursively keep track of the parameter posterior), taking the asymptotic
limit of this as σ → 0 yields:

θkt =
θ′(w−1 + ∆tkτ)−1 + nktmkt

(w−1 + ∆tkτ)−1 + nkt
(11)

that is to say, the revived θkt is a weighted average of estimates using current timestep data and
previous timestep data. τ controls how much the current data is favored - as τ increases, the weight
on current data increases, which is explained by the fact that our uncertainty in where the old θ′
transitioned to increases with τ . It is also noted that if τ = 0, this reduces to a simple weighted
average using the amount of data collected as weights.

Combined Update Combining the updates for new cluster parameters and old transitioned cluster
parameters yields a recursive update scheme:

θk0 = mk0

wk0 = nk0
and

γkt =
(
(wk(t−∆tk))

−1 + ∆tkτ
)−1

θkt =
θk(t−∆tk)γkt + nktmkt

γkt + nkt
wkt = γkt + nkt

(12)

where time step 0 here corresponds to when the cluster is first created. An interesting interpre-
tation of this update is that it behaves like a standard Kalman filter, in which w−1

kt serves as the
current estimate variance, τ serves as the process noise variance, and nkt serves as the inverse of the
measurement variance.
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Algorithm 1 Dynamic Means

Input: {Yt}
tf
t=1,Q, λ, τ

C1 ← ∅
for t = 1→ tf do

(Kt,Zt, Lt)←CLUSTER(Yt, Ct,Q, λ, τ )
Ct+1 ←UPDATEC(Zt,Kt, Ct)

end for
return {Kt,Zt, Lt}

tf
t=1

Algorithm 2 CLUSTER

Input: Yt, Ct,Q, λ, τ
Kt ← ∅, Zt ← ∅, L0 ←∞
for n = 1→∞ do

(Zt,Kt)←ASSIGNLABELS(Yt, Zt,Kt, Ct)
(Kt, Ln)←ASSIGNPARAMS(Yt, Zt, Ct)
if Ln = Ln−1 then

returnKt, Zt, Ln

end if
end for

4 The Dynamic Means Algorithm

In this section, some further notation is required for brevity:

Yt = {yit}Nt
i=1, Zt = {zit}Nt

i=1

Kt = {(θkt, wkt) : nkt > 0}, Ct = {(∆tk, θk(t−∆tk), wk(t−∆tk))}
(13)

where Yt andZt are the sets of observations and labels at time step t,Kt is the set of currently active
clusters (some are new with ∆tk = 0, and some are revived with ∆tk > 0), and Ct is the set of old
cluster information.

4.1 Algorithm Description

As shown in the previous section, the low-variance asymptotic limit of the DDP Gibbs sampling
algorithm is a deterministic observation label update (5) followed by a deterministic, weighted least-
squares parameter update (12). Inspired by the original K-Means algorithm, applying these two
updates iteratively yields an algorithm which clusters a set of observations at a single time step
given cluster means and weights from past time steps (Algorithm 2). Applying Algorithm 2 to a
sequence of batches of data yields a clustering procedure that is able to track a set of dynamically
evolving clusters (Algorithm 1), and allows new clusters to emerge and old clusters to be forgotten.
While this is the primary application of Algorithm 1, the sequence of batches need not be a temporal
sequence. For example, Algorithm 1 may be used as an any-time clustering algorithm for large
datasets, where the sequence of batches is generated by selecting random subsets of the full dataset.

The ASSIGNPARAMS function is exactly the update from equation (12) applied to each k ∈ Kt.
Similarly, the ASSIGNLABELS function applies the update from equation (5) to each observation;
however, in the case that a new cluster is created or an old one is revived by an observation, AS-
SIGNLABELS also creates a parameter for that new cluster based on the parameter update equation
(12) with that single observation. Note that the performance of the algorithm depends on the order
in which ASSIGNLABELS assigns labels. Multiple random restarts of the algorithm with different
assignment orders may be used to mitigate this dependence. The UPDATEC function is run after
clustering observations from each time step, and constructs Ct+1 by setting ∆tk = 1 for any new or
revived cluster, and by incrementing ∆tk for any old cluster that was not revived:

Ct+1 = {(∆tk + 1, θk(t−∆tk), wk(t−∆tk)) : k ∈ Ct, k /∈ Kt} ∪ {(1, θkt, wkt) : k ∈ Kt} (14)

An important question is whether this algorithm is guaranteed to converge while clustering data in
each time step. Indeed, it is; Theorem 1 shows that a particular cost function Lt monotonically
decreases under the label and parameter updates (5) and (12) at each time step. Since Lt ≥ 0, and it
is monotonically decreased by Algorithm 2, the algorithm converges. Note that the Dynamic Means
is only guaranteed to converge to a local optimum, similarly to the k-means[12] and DP-Means[15]
algorithms.
Theorem 1. Each iteration in Algorithm 2 monotonically decreases the cost function Lt, where

Lt =
∑
k∈Kt


New Cost︷ ︸︸ ︷

λ [∆tk = 0] +

Revival Cost︷ ︸︸ ︷
Q∆tk +

Weighted-Prior Sum-Squares Cost︷ ︸︸ ︷
γkt||θkt − θk(t−∆tk)||22 +

∑
yit∈Yt
zit=k

||yit − θkt||22

 (15)

The cost function is comprised of a number of components for each currently active cluster k ∈ Kt:
A penalty for new clusters based on λ, a penalty for old clusters based on Q and ∆tk, and finally
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a prior-weighted sum of squared distance cost for all the observations in cluster k. It is noted that
for new clusters, θkt = θk(t−∆tk) since ∆tk = 0, so the least squares cost is unweighted. The
ASSIGNPARAMS function calculates this cost function in each iteration of Algorithm 2, and the
algorithm terminates once the cost function does not decrease during an iteration.

4.2 Reparameterizing the Algorithm

In order to use the Dynamic Means algorithm, there are three free parameters to select: λ, Q, and τ .
While λ represents how far an observation can be from a cluster before it is placed in a new cluster,
and thus can be tuned intuitively, Q and τ are not so straightforward. The parameter Q represents
a conceptual added distance from any data point to a cluster for every time step that the cluster is
not observed. The parameter τ represents a conceptual reduction of distance from any data point
to a cluster for every time step that the cluster is not observed. How these two quantities affect the
algorithm, and how they interact with the setting of λ, is hard to judge.

Instead of pickingQ and τ directly, the algorithm may be reparameterized by pickingNQ, kτ ∈ R+,
NQ > 1, kτ ≥ 1, and given a choice of λ, setting

Q =λ/NQ τ =
NQ(kτ − 1) + 1

NQ − 1
. (16)

If Q and τ are set in this manner, NQ represents the number (possibly fractional) of time steps a
cluster can be unobserved before the label update (5) will never revive that cluster, and kτλ repre-
sents the maximum squared distance away from a cluster center such that after a single time step, the
label update (5) will revive that cluster. As NQ and kτ are specified in terms of concrete algorithmic
behavior, they are intuitively easier to set than Q and τ .

5 Related Work

Prior k-means clustering algorithms that determine the number of clusters present in the data have
primarily involved a method for iteratively modifying k using various statistical criteria [13, 14, 18].
In contrast, this work derives this capability from a Bayesian nonparametric model, similarly to
the DP-Means algorithm [15]. In this sense, the relationship between the Dynamic Means algo-
rithm and the dependent Dirichlet process [6] is exactly that between the DP-Means algorithm and
Dirichlet process [16], where the Dynamic Means algorithm may be seen as an extension to the
DP-Means that handles sequential data with time-varying cluster parameters. MONIC [19] and
MC3 [20] have the capability to monitor time-varying clusters; however, these methods require dat-
apoints to be identifiable across timesteps, and determine cluster similarity across timesteps via the
commonalities between label assignments. The Dynamic Means algorithm does not require such
information, and tracks clusters essentially based on similarity of the parameters across timesteps.
Evolutionary clustering [21, 22], similar to Dynamic Means, minimizes an objective consisting of
a cost for clustering the present data set and a cost related to the comparison between the current
clustering and past clusterings. The present work can be seen as a theoretically-founded extension
of this class of algorithm that provides methods for automatic and adaptive prior weight selection,
forming correspondences between old and current clusters, and for deciding when to introduce new
clusters. Finally, some sequential Monte-Carlo methods (e.g. particle learning [23] or multi-target
tracking [24, 25]) can be adapted for use in the present context, but suffer the drawbacks typical of
particle filtering methods.

6 Applications

6.1 Synthetic Gaussian Motion Data

In this experiment, moving Gaussian clusters on [0, 1] × [0, 1] were generated synthetically over a
period of 100 time steps. In each step, there was some number of clusters, each having 15 data points.
The data points were sampled from a symmetric Gaussian distribution with a standard deviation of
0.05. Between time steps, the cluster centers moved randomly, with displacements sampled from
the same distribution. At each time step, each cluster had a 0.05 probability of being destroyed.
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Figure 1: (1a - 1c): Accuracy contours and CPU time histogram for the Dynamic Means algorithm. (1d - 1e): Comparison with Gibbs
sampling, variational inference, and particle learning. Shaded region indicates 1σ interval; in (1e), only upper half is shown. (1f): Comparison
of accuracy when enforcing (Gibbs, DynMeans) and not enforcing (Gibbs NC, DynMeans NC) correct cluster tracking.

This data was clustered with Dynamic Means (with 3 random assignment ordering restarts), DDP-
GMM Gibbs sampling [6], variational inference [3], and particle learning [4] on a computer with
an Intel i7 processor and 16GB of memory. First, the number of clusters was fixed to 5, and the
parameter space of each algorithm was searched for the best possible cluster label accuracy (taking
into account correct cluster tracking across time steps). The results of this parameter sweep for
the Dynamic Means algorithm with 50 trials at each parameter setting are shown in Figures 1a–1c.
Figures 1a and 1b show how the average clustering accuracy varies with the parameters after fixing
either kτ or TQ to their values at the maximum accuracy parameter setting over the full space. The
Dynamic Means algorithm had a similar robustness with respect to variations in its parameters as
the comparison algorithms. The histogram in Figure 1c demonstrates that the clustering speed is
robust to the setting of parameters. The speed of Dynamic Means, coupled with the smoothness of
its performance with respect to its parameters, makes it well suited for automatic tuning [26].

Using the best parameter setting for each algorithm, the data as described above were clustered in
50 trials with a varying number of clusters present in the data. For the Dynamic Means algorithm,
parameter values λ = 0.04, TQ = 6.8, and kτ = 1.01 were used, and the algorithm was again given
3 attempts with random labeling assignment orders, where the lowest cost solution of the 3 was
picked to proceed to the next time step. For the other algorithms, the parameter values α = 1 and
q = 0.05 were used, with a Gaussian transition distribution variance of 0.05. The number of samples
for the Gibbs sampling algorithm was 5000 with one recorded for every 5 samples, the number of
particles for the particle learning algorithm was 100, and the variational inference algorithm was run
to a tolerance of 10−20 with the maximum number of iterations set to 5000.

In Figures 1d and 1e, the labeling accuracy and clustering time (respectively) for the algorithms is
shown. The sampling algorithms were handicapped to generate Figure 1d; the best posterior sample
in terms of labeling accuracy was selected at each time step, which required knowledge of the true
labeling. Further, the accuracy computation included enforcing consistency across timesteps, to
allow tracking individual cluster trajectories. If this is not enforced (i.e. accuracy considers each
time step independently), the other algorithms provide accuracies more comparable to those of the
Dynamic Means algorithm. This effect is demonstrated in Figure 1f, which shows the time/accuracy
tradeoff for Gibbs sampling (varying the number of samples) and Dynamic Means (varying the
number of restarts). These examples illustrate that Dynamic Means outperforms standard inference
algorithms in both label accuracy and computation time for cluster tracking problems.
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Figure 2: Results of the GP aircraft trajectory clustering. Left: A map (labeled with major US city airports) showing the overall aircraft flows
for 12 trajectories, with colors and 1σ confidence ellipses corresponding to takeoff region (multiple clusters per takeoff region), colored dots
indicating mean takeoff position for each cluster, and lines indicating the mean trajectory for each cluster. Right: A track of plane counts for
the 12 clusters during the week, with color intensity proportional to the number of takeoffs at each time.

6.2 Aircraft Trajectory Clustering

In this experiment, the Dynamic Means algorithm was used to find the typical spatial and tem-
poral patterns in the motions of commercial aircraft. Automatic dependent surveillance-broadcast
(ADS-B) data, including plane identification, timestamp, latitude, longitude, heading and speed,
was collected from all transmitting planes across the United States during the week from 2013-3-22
1:30:0 to 2013-3-28 12:0:0 UTC. Then, individual ADS-B messages were connected together based
on their plane identification and timestamp to form trajectories, and erroneous trajectories were fil-
tered based on reasonable spatial/temporal bounds, yielding 17,895 unique trajectories. Then, for
each trajectory, a Gaussian process was trained using the latitude and longitude of each ADS-B
point along the trajectory as the inputs and the North and East components of plane velocity at those
points as the outputs. Next, the mean latitudinal and longitudinal velocities from the Gaussian pro-
cess were queried for each point on a regular lattice across the USA (10 latitudes and 20 longitudes),
and used to create a 400-dimensional feature vector for each trajectory. Of the resulting 17,895
feature vectors, 600 were hand-labeled (each label including a confidence weight in [0, 1]). The
feature vectors were clustered using the DP-Means algorithm on the entire dataset in a single batch,
and using Dynamic Means / DDPGMM Gibbs sampling (with 50 samples) with half-hour takeoff
window batches.

Table 1: Mean computational time & accuracy
on hand-labeled aircraft trajectory data

Alg. % Acc. Time (s)
DynM 55.9 2.7× 102

DPM 55.6 3.1× 103

Gibbs 36.9 1.4× 104

The results of this exercise are provided in Figure 2 and Table 1.
Figure 2 shows the spatial and temporal properties of the 12 most
popular clusters discovered by Dynamic Means, demonstrating
that the algorithm successfully identified major flows of commer-
cial aircraft across the US. Table 1 corroborates these qualitative
results with a quantitative comparison of the computation time
and accuracy for the three algorithms tested over 20 trials. The
confidence-weighted accuracy was computed by taking the ratio between the sum of the weights
for correctly labeled points and the sum of all weights. The DDPGMM Gibbs sampling algorithm
was handicapped as described in the synthetic experiment section. Of the three algorithms, Dynamic
Means provided the highest labeling accuracy, while requiring orders of magnitude less computation
time than both DP-Means and DDPGMM Gibbs sampling.

7 Conclusion

This work developed a clustering algorithm for batch-sequential data containing temporally evolving
clusters, derived from a low-variance asymptotic analysis of the Gibbs sampling algorithm for the
dependent Dirichlet process mixture model. Synthetic and real data experiments demonstrated that
the algorithm requires orders of magnitude less computational time than contemporary probabilistic
and hard clustering algorithms, while providing higher accuracy on the examined datasets. The
speed of inference coupled with the convergence guarantees provided yield an algorithm which
is suitable for use in time-critical applications, such as online model-based autonomous planning
systems.
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