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Abstract

The classical mixture of Gaussians model
is related to K-means via small-variance
asymptotics: as the covariances of the Gaus-
sians tend to zero, the negative log-likelihood
of the mixture of Gaussians model ap-
proaches the K-means objective, and the
EM algorithm approaches the K-means algo-
rithm. Kulis & Jordan (2012) used this ob-
servation to obtain a novel K-means-like al-
gorithm from a Gibbs sampler for the Dirich-
let process (DP) mixture. We instead con-
sider applying small-variance asymptotics di-
rectly to the posterior in Bayesian nonpara-
metric models. This framework is indepen-
dent of any specific Bayesian inference algo-
rithm, and it has the major advantage that it
generalizes immediately to a range of models
beyond the DP mixture. To illustrate, we ap-
ply our framework to the feature learning set-
ting, where the beta process and Indian buf-
fet process provide an appropriate Bayesian
nonparametric prior. We obtain a novel ob-
jective function that goes beyond clustering
to learn (and penalize new) groupings for
which we relax the mutual exclusivity and
exhaustivity assumptions of clustering. We
demonstrate several other algorithms, all of
which are scalable and simple to implement.
Empirical results demonstrate the benefits of
the new framework.
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1. Introduction

Clustering is a canonical learning problem and ar-
guably the dominant application of unsupervised
learning. Much of the popularity of clustering revolves
around the K-means algorithm; its simplicity and scal-
ability make it the preferred choice in many large-scale
unsupervised learning problems—even though a wide
variety of more flexible algorithms, including those
from Bayesian nonparametrics, have been developed
since the advent of K-means (Steinley, 2006; Jain,
2010). Indeed, Berkhin (2006) writes that K-means
is “by far the most popular clustering tool used nowa-
days in scientific and industrial applications.”

K-means does have several known drawbacks. For one,
the K-means algorithm clusters data into mutually ex-
clusive and exhaustive clusters, which may not always
be the optimal or desired form of latent structure for
a data set. For example, pictures on a photo-sharing
website might each be described by multiple tags, or
social network users might be described by multiple
interests. In these examples, a feature allocation in
which each data point can belong to any nonnegative
integer number of groups—now called features—is a
more appropriate description of the data (Griffiths &
Ghahramani, 2006; Broderick et al., 2013a). Second,
the K-means algorithm requires advance knowledge of
the number of clusters, which may be unknown or
grow with the number of data points in some appli-
cations. A vast literature exists just on how to choose
a number of clusters using heuristics or extensions of
K-means (Steinley, 2006; Jain, 2010). A recent algo-
rithm called DP-means (Kulis & Jordan, 2012) pro-
vides another perspective on the choice of cluster car-
dinality. Recalling the small-variance asymptotic ar-
gument that takes the EM algorithm for mixtures of
Gaussians and yields the K-means algorithm, the au-
thors apply this argument to a Gibbs sampler for a
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Dirichlet process (DP) mixture (Antoniak, 1974; Es-
cobar, 1994; Escobar & West, 1995) and obtain a K-
means-like algorithm that does not fix the number of
clusters upfront.

Notably, this derivation of DP-means is specific to the
choice of the sampling algorithm and is also not im-
mediately amenable to the feature learning setting. In
this paper, we provide a more general perspective on
these small-variance asymptotics. We show that one
can obtain the objective function for DP-means (in-
dependent of any algorithm) by applying asymptotics
directly to the MAP estimation problem of a Gaus-
sian mixture model with a Chinese Restaurant Pro-
cess (CRP) prior (Blackwell & MacQueen, 1973; Al-
dous, 1985) on the latent clustering. The key is to ex-
press the posterior in terms of the exchangeable parti-
tion probability function (EPPF) of the CRP (Pitman,
1995).

A critical advantage of this more general view of small-
variance asymptotics is that it provides a framework
for extending beyond the DP mixture. The Bayesian
nonparametric toolbox contains many models that
may yield—via small-variance asymptotics—a range
of new algorithms that to the best of our knowledge
have not been discovered in the K-means literature.
We thus view our major contribution as providing new
directions for researchers working on K-means and re-
lated discrete optimization problems.

To highlight this generality, we show how the frame-
work may be used in the feature learning setting. We
take as our point of departure the beta process (BP)
(Hjort, 1990; Thibaux & Jordan, 2007), which is the
feature learning counterpart of the DP, and the Indian
Buffet Process (IBP) (Griffiths & Ghahramani, 2006),
which is the feature learning counterpart of the CRP.
We show how to express the corresponding MAP in-
ference problem via an analogue of the EPPF that we
refer to as an “exchangeable feature probability func-
tion” (EFPF) (Broderick et al., 2013b). Taking an
asymptotic limit we obtain a novel objective function
for feature learning, as well as a simple and scalable
algorithm for learning features in a data set. The re-
sulting algorithm, which we call BP-means, is simi-
lar to the DP-means algorithm, but allows each data
point to be assigned to more than one feature. We
also use our framework to derive several additional al-
gorithms, including algorithms based on the Dirichlet-
multinomial prior as well as extensions to the marginal
MAP problem in which the cluster/feature means are
integrated out. We compare our algorithms to exist-
ing Gibbs sampling methods as well as existing hard
clustering methods in order to highlight the benefits

of our approach.

2. MAP Asymptotics for Clusters

We begin with the problem setting of Kulis & Jor-
dan (2012) but diverge in our treatment of the small-
variance asymptotics. We consider a Bayesian non-
parametric framework for generating data via a prior
on clusterings and a likelihood that depends on the
(random) clustering. Prior and likelihood yield a pos-
terior distribution. A point estimate of the clustering
(i.e., a hard clustering) may be achieved by choosing
a clustering that maximizes the posterior; the result is
a maximum a posteriori (MAP) estimate.

Consider a data set x1, . . . , xN , where xn is a D-
component vector. Let K+ denote the (random) num-
ber of clusters. Let znk equal one if data index n be-
longs to cluster k and 0 otherwise, so there is exactly
one value of k for each n such that znk = 1. We can
order the cluster labels k so that the first K+ clusters
are non-empty (i.e., znk = 1 for some n for each such
k). Together K+ and z1:N,1:K+ describe a clustering.

The Chinese restaurant process (CRP) (Blackwell &
MacQueen, 1973; Aldous, 1985) gives a prior on K+

and z1:N,1:K+ as follows. Let θ > 0 be a hyperparam-
eter of the model. The first customer (data index 1)
starts a new table in the restaurant; i.e., z1,1 = 1. Re-
cursively, the nth customer (data index n) sits at an
existing table k with probability in proportion to the
number of people sitting there (i.e., in proportion to
Sn−1,k :=

∑n−1
m=1 zmk) and at a new table with proba-

bility proportional to θ.

Suppose the final restaurant has K+ tables with N to-
tal customers sitting according to z1:N,1:K+ . Then the
probability of this clustering is found from the above
recursion:

P(z1:N,1:K+) = θK+−1 Γ(θ + 1)
Γ(θ + N)

K+∏

k=1

(SN,k − 1)!, (1)

a formula that is known as an exchangeable partition
probability function (EPPF) (Pitman, 1995).

A common choice for the likelihood is to assume that
data in cluster k are Gaussian with cluster-specific
mean µk and shared variance σ2ID (where ID is the
D × D identity matrix and σ2 > 0). Then the likeli-
hood of data x = x1:N given clustering z = z1:N,1:K+

and means µ = µ1:K+ is:

P(x|z, µ) =
K+∏

k=1

∏

n:zn,k=1

N (xn|µk, σ2ID).

Further suppose the µk are drawn iid Gaussian from
a prior with mean 0 in every dimension and vari-
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ance ρ2ID for hyperparameter ρ2 > 0: P(µ1:K+) =
∏K+

k=1 N (µk|0, ρ2ID).

The posterior distribution over the clustering given
the observed data, P(z, µ|x), is calculated from the
prior and likelihood using Bayes theorem: P(z, µ|x) ∝
P(x|z, µ)P(µ)P(z). We find the MAP point estimate
for the clustering and cluster means by maximiz-
ing the posterior: argmaxK+,z,µ P(z, µ|x). Note
that the point estimate will be the same if we
instead minimize the negative log joint likelihood:
argminK+,z,µ− log P(z, µ, x).

In general, calculating the posterior or MAP estimate
is difficult and usually requires approximation, e.g. via
Markov chain Monte Carlo or a variational method. A
different approximation can be obtained by taking the
limit of the objective function above as the cluster vari-
ances decrease to zero: σ2 → 0. Since the prior allows
an unbounded number of clusters, taking this limit will
result in each data point being assigned to its own clus-
ter in the MAP. To arrive at a limiting objective func-
tion that favors a non-trivial cluster assignment, we
modulate the number of clusters via the hyperparam-
eter θ, which varies linearly with the expected number
of clusters in the prior. In particular, we choose some
constant λ2 > 0 and let θ = exp(−λ2/(2σ2)), so that,
e.g., θ → 0 as σ2 → 0.

Substituting θ as a function of σ2 and letting σ2 → 0,
we find that −2σ2 log P(z, µ, x) satisfies

∼
K+∑

k=1

∑

n:znk=1

‖xn − µk‖2 + (K+ − 1)λ2, (2)

where f(σ2) ∼ g(σ2) here denotes f(σ2)/g(σ2)→ 1 as
σ2 → 0. The double sum originates from the exponen-
tial function in the Gaussian data likelihood, and the
penalty term—reminiscent of an AIC penalty (Akaike,
1974)—originates from the CRP prior (Sup. Mat. A).

From Eq. (2), we see that finding the MAP estimate
of the CRP Gaussian mixture model is asymptotically
equivalent to the following optimization problem:

argmin
K+,z,µ

K+∑

k=1

∑

n:znk=1

‖xn − µk‖2 + (K+ − 1)λ2. (3)

Kulis & Jordan (2012) derived a similar objective func-
tion, which they called the DP-means objective func-
tion (a name we retain for Eq. (3)), by first deriving
a K-means-style algorithm from a DP Gibbs sampler.
Here, by contrast, we have found this objective func-
tion directly from the MAP problem, with no refer-
ence to any particular inference algorithm and thereby
demonstrating a more fundamental link between the

MAP problem and Eq. (3). In the following, we show
that this focus on limits of a MAP estimate can yield
useful optimization problems in diverse domains.

Notably, the objective in Eq. (3) takes the form of the
K-means objective function (the double sum) plus a
penalty of λ2 for each cluster after the first; this offset
penalty is natural since any partition of a non-empty
set must have at least one cluster.1 Once we have
Eq. (3), we may consider efficient solution methods;
one candidate is the DP-means algorithm of Kulis &
Jordan (2012).

3. MAP Asymptotics for Features

Once more consider a data set x1:N , where xn is a D-
component vector. Now let K+ denote the (random)
number of features. Let znk equal one if data index n
is in feature k and zero otherwise. In the feature case,
while there must be a finite number of k values such
that znk = 1 for any n, it is not required that there be
exactly a single such k or even any such k. We order
the feature labels k so that the first K+ features are
non-empty; i.e., we have znk = 1 for some n for each
such k. Together K+ and z1:N,1:K+ describe a feature
allocation.

The Indian buffet process (IBP) (Griffiths & Ghahra-
mani, 2006) is a prior on z1:N,1:K+ that places strictly
positive probability on any finite, nonnegative value of
K+. Like the CRP, it is based on an analogy between
the customers in a restaurant and the data indices. In
the IBP, the dishes in the buffet correspond to features.
Let γ > 0 be a hyperparameter of the model. The first
customer (data index 1) samples K+

1 ∼ Pois(γ) dishes
from the buffet. Recursively, when the nth customer
(data index n) arrives at the buffet,

∑n−1
m=1 K+

m dishes
have been sampled by the previous customers. Sup-
pose dish k of these dishes has been sampled Sn−1,k

times by the first n− 1 customers. The nth customer
samples dish k with probability Sn−1,k/n. The nth
customer also samples K+

n ∼ Pois(γ/n) new dishes.

Suppose the buffet has been visited by N customers
who sampled a total of K+ dishes. Let z = z1:N,1:K+

represent the resulting feature allocation. Let H be
the number of unique values of the z1:N,k vector across
k; let K̃h be the number of k with the hth unique
value of this vector. We calculate an “exchangeable
feature probability function” (EFPF) (Broderick et al.,
2013b) by multiplying together the probabilities from
the N steps in the description and find that P(z) equals

1The objective of Kulis & Jordan (2012) penalizes all
K+ clusters; the optimal arguments are the same in each
case.
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(Griffiths & Ghahramani, 2006)

γK+
exp

{
−

∑N
n=1

γ
n

}

∏H
h=1 K̃h!

K+∏

k=1

S−1
N,k

(
N

SN,k

)−1

. (4)

It remains to specify a probability for the observed
data x given the latent feature allocation z. The lin-
ear Gaussian model of Griffiths & Ghahramani (2006)
is a natural extension of the Gaussian mixture model
to the feature case. As previously, we specify a prior
on feature means µk

iid∼ N (0, ρ2ID) for some hyper-
parameter ρ2 > 0. Now data point n is drawn inde-
pendently with mean equal to the sum of its feature
means,

∑K+

k=1 znkµk, and variance σ2ID for some hy-
perparameter σ2 > 0. In the case where each data
point belongs to exactly one feature, this model is just
a Gaussian mixture. We often write the means as a
K ×D matrix A with kth row µk. Writing Z for the
N ×K matrix with (n, k) element znk and X for the
N × D matrix with nth row xn, we have P(X|Z, A)
equal to

1
(2πσ2)ND/2

exp
{
−tr((X − ZA)′(X − ZA))

2σ2

}
. (5)

As in the clustering case, we wish to find the joint
MAP estimate of the structural component Z and
group-specific parameters A. It is equivalent to find
the values of Z and A that minimize − log P(X, Z,A).
Finally, we wish to take the limit of this objective as
σ2 → 0. Lest every data point be assigned to its own
separate feature, we modulate the number of features
in the small-σ2 limit by choosing some constant λ2 > 0
and setting γ = exp(−λ2/(2σ2)).

Letting σ2 → 0, we find that asymptotically (Sup.
Mat. B)

−2σ2 log P(X, Z,A) ∼ tr[(X−ZA)′(X−ZA)]+K+λ2,

The trace originates from the matrix Gaussian, and
the penalty term originates from the IBP prior.

It follows that finding the MAP estimate for the fea-
ture learning problem is asymptotically equivalent to
solving:

argmin
K+,Z,A

tr[(X − ZA)′(X − ZA)] + K+λ2. (6)

We follow Kulis & Jordan (2012) in referring to the
underlying random measure when naming objective
functions derived from Bayesian nonparametric pri-
ors. Recalling that the beta process (BP) (Hjort, 1990;
Thibaux & Jordan, 2007) is the random measure un-
derlying the IBP, we call the objective in Eq. (6) the

Algorithm 1 BP-means.

Iterate until no changes are made:
1. For n = 1, . . . , N

• For k = 1, . . . ,K+, choose the optimal value (0
or 1) of znk.

• Let Z ′ equal Z but with one new feature (la-
beled K+ + 1) containing only data index n.
Set A′ = A but with one new row: A′

K++1,· ←
Xn,· − Zn,·A.

• If the triplet (K+ + 1, Z ′, A′) lowers the ob-
jective from the triplet (K+, Z,A), replace the
latter triplet with the former.

2. Set A← (Z ′Z)−1Z ′X.

BP-means objective. The trace term in Eq. (6) forms
a K-means-style objective on a feature matrix Z and
feature means A when the number of features (i.e., the
number of columns of Z or rows of A) is fixed. The
second term enforces a penalty of λ2 for each feature.
In contrast to the DP-means objective, even the first
feature is penalized since K+ = 0 is allowed here.

We formulate a BP-means algorithm to solve the op-
timization problem in Eq. (6) and discuss its conver-
gence properties. In Alg. 1, note that Z ′Z is invertible
so long as no two features have the same collection of
indices. If that is not the case, we simply combine the
two features into a single feature before performing the
inversion.

Proposition 1. The BP-means algorithm converges
after a finite number of iterations to a local minimum
of the BP-means objective in Eq. (6).

See Sup. Mat. G for the proof. Though the proposition
guarantees convergence, it does not guarantee conver-
gence to the global optimum—an analogous result to
those available for the K-means and DP-means algo-
rithms (Kulis & Jordan, 2012). Many authors have
noted the problem of local optima in the clustering
literature (Steinley, 2006; Jain, 2010). One expects
that the issue of local optima is only exacerbated in
the feature domain, where the combinatorial landscape
is much more complex. In clustering, this issue is of-
ten addressed by multiple random restarts and careful
choice of cluster initialization; in Section 5 below, we
also make use of random algorithm restarts and pro-
pose a feature initialization akin to one with provable
guarantees for K-means clustering (Arthur & Vassil-
vitskii, 2007).
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4. Extensions

We demonstrate our methodology using different pri-
ors on Z below and using different likelihoods in Sup.
Mat. F.

Collapsed objectives. It is believed that collaps-
ing out the cluster or feature means from a Bayesian
model by calculating instead the marginal structural
posterior can improve MCMC sampler mixing in many
scenarios (Liu, 1994). In the clustering case, col-
lapsing translates to forming the posterior P(z|x) =∫

µ P(z, µ|x). Note that even in the cluster case, we
may use the matrix representations Z, X, and A
so long as we make the additional assumption that∑K+

k=1 znk = 1 for each n. Finding the MAP esti-
mate argmaxZ P(Z|X) may, as usual, be accomplished
by minimizing the negative log joint distribution with
respect to Z. P(Z) is given by the CRP (Eq. (1)).
P(X|Z) takes the form:

exp
{
−

tr
“

X′(IN−Z(Z′Z+ σ2

ρ2 ID)−1Z′)X
”

2σ2

}

(2πσ2)ND/2(ρ2/σ2)K+D/2|Z ′Z + σ2

ρ2 ID|D/2
. (7)

Eq. (7) was derived by Griffiths & Ghahramani (2006)
for linear-Gaussian features but applies to Gaussian
clusters when Z encodes a clustering. Using the same
asymptotics in σ2 and θ as before, we find the limiting
optimization problem (Sup. Mat. C):

argmin
K+,Z

tr(X ′(IN−Z(Z ′Z)−1Z ′)X)+(K+−1)λ2. (8)

The first term in this objective was proposed, via in-
dependent considerations, by Gordon & Henderson
(1977).

Simple algebraic manipulations allow us to rewrite the
objective in a more intuitive format (Sup. Mat. C.1):

argmin
K+,Z

K+∑

k=1

∑

n:znk=1

‖xn,· − x̄(k)‖22 + (K+ − 1)λ2, (9)

where x̄(k) := S−1
N,k

∑
m:zmk=1 xm,· is the kth empiri-

cal cluster mean, i.e., the mean of all data points as-
signed to cluster k. This collapsed DP-means objec-
tive is just the original DP-means objective in Eq. (3)
with the cluster means replaced by empirical cluster
means. A corresponding optimization algorithm ap-
pears in Alg. 2. A similar proof to that of Kulis &
Jordan (2012) shows that this algorithm converges in
a finite number of iterations to a local minimum of the
objective.

We have already noted that the likelihood associated
with the Gaussian mixture model conditioned on a

Algorithm 2 Collapsed DP-means.

Iterate until no changes are made:
1. For n = 1, . . . , N

• Assign xn to the closest cluster if the contribu-
tion to the objective in Eq. (9) from the squared
distance is at most λ2.

• Otherwise, form a new cluster with just xn.

Algorithm 3 Collapsed BP-means.

Repeat the following step until no changes are
made:
1. For n = 1, . . . , N

• Choose zn,1:K+ to minimize the objective in
Eq. (10). Delete any redundant features.

• Add a new feature (indexed K+ +1) with only
data index n if doing so decreases the objective
and if the feature would not be redundant.

clustering is just a special case of the linear Gaussian
model conditioned on a feature matrix. Therefore, it
is not surprising that Eq. (7) also describes P(X|Z)
when Z is a feature matrix. Now, P(Z) is given by
the IBP (Eq. (4)). Using the same asymptotics in σ2

and γ as in the joint MAP case, the MAP problem
for feature allocation Z asymptotically becomes (Sup.
Mat. D):

argmin
K+,Z

tr(X ′(IN − Z(Z ′Z)−1Z ′)X) + K+λ2. (10)

The key difference with Eq. (8) is that here Z may
have any finite number of ones in each row. We call the
objective in Eq. (10) the collapsed BP-means objective.

Just as the collapsed DP-means objective has an
empirical cluster means interpretation, so does the
collapsed BP-means objective have an interpretation
in which the feature means matrix A in Eq. (6) is
replaced by its empirical estimate (Z ′Z)−1ZX (cf.
Sup. Mat. G). In particular, we can rewrite the ob-
jective in Eq. (10) as tr[(X − Z(Z ′Z)−1Z ′X)′(X −
Z(Z ′Z)−1Z ′X)] + K+λ2. A corresponding optimiza-
tion algorithm appears in Alg. 3. A similar proof to
that of Proposition 1 shows that this algorithm con-
verges in a finite number of iterations to a local mini-
mum of the objective.

Parametric objectives. The generative models
studied so far are nonparametric in the usual Bayesian
sense; there is no a priori bound on the number of
cluster or feature parameters. The objectives above
are similarly nonparametric. Parametric models, with
a fixed bound on the number of clusters or features, are
often useful as well. See Sup. Mat. E for derivations
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Algorithm 4 K-features.

Repeat until no changes are made:
1. For n = 1, . . . , N

• For k = 1, . . . ,K, set zn,k to minimize
‖xn,1:K − zn,1:KA‖2.

2. Set A = (Z ′Z)−1Z ′X.

of objectives for clustering and feature learning in the
parametric case. Since below we apply the paramet-
ric version for the feature learning setting, which we
call K-features (analogous to K-means but for feature
learning), we include its description in Alg. 4.

5. Experiments
We examine collections of unlabeled data to discover
latent shared features. We have already seen the BP-
means and collapsed BP-means algorithms when the
number of features is unknown. A third algorithm that
we evaluate here involves running the K-features algo-
rithm for different values of K and choosing the joint
values of K, Z,A that minimize the BP-means objec-
tive in Eq. (6); we call this the stepwise K-features
algorithm. If we assume the plot of the minimized K-
features objective (Eq. (14)) as a function of K has
increasing increments (i.e., decreasing negative incre-
ments), then we need only run the K-features algo-
rithm for increasing K until the objective increases.

It is well known that the K-means algorithm is sensi-
tive to the choice of cluster initialization (Peña et al.,
1999). Potential methods of addressing this issue
include multiple random initializations and choosing
initial, random cluster centers according to the K-
means++ algorithm (Arthur & Vassilvitskii, 2007). In
the style of K-means++, we introduce a similar feature
means initialization.

We first consider fixed K. In K-means++, the ini-
tial cluster center is chosen uniformly at random from
the data set. However, we note that empirically, the
various feature algorithms discussed tend to prefer the
creation of a base feature, shared amongst all the data.
So start by assigning every data index to the first fea-
ture, and let the first feature mean be the mean of all
the data points. Recursively, for feature k with k > 1,
calculate the distance from each data point xn,· to its
feature representation zn,·A for the construction thus
far. Choose a data index n with probability propor-
tional to this distance squared. Assign Ak,· to be the
nth distance. Assign zm,k for all m = 1, . . . , N to op-
timize the K-features objective. In the case where K
is not known in advance, we repeat the recursive step
as long as doing so decreases the objective.

Another important consideration in running these al-
gorithms without a fixed number of clusters or features
is choosing the relative penalty effect λ2. One option is
to solve for λ2 from a proposed K value via a heuristic
(Kulis & Jordan, 2012) or validation on a data sub-
set. Rather than assume K and return to it in this
roundabout way, in the following we aim merely to
demonstrate that there exist reasonable values of λ2

that return meaningful results. More carefully exam-
ining the translation from a discrete (K) to continuous
(λ2) parameter space may be a promising direction for
future work.

Tabletop data. Using a LogiTech digital webcam,
Griffiths & Ghahramani (2006) took 100 pictures of
four objects (a prehistoric handaxe, a Klein bottle, a
cellular phone, and a $20 bill) placed on a tabletop.
The images are in JPEG format with 240 pixel height,
320 pixel width, and 3 color channels. Each object
may or may not appear in a given picture; the experi-
menters endeavored to place each object (by hand) in
a respective fixed location across pictures.

This setup lends itself naturally to the feature alloca-
tion domain. We expect to find a base feature depict-
ing the tabletop and four more features, respectively
corresponding to each of the four distinct objects.
Conversely, clustering on this data set would yield ei-
ther a cluster for each distinct feature combination—a
much less parsimonious and less informative represen-
tation than the feature allocation—or some averages
over feature combinations. The latter case again fails
to capture the combinatorial nature of the data.

We emphasize a further point about identifiability
within this combinatorial structure. One “true” fea-
ture allocation for this data is the one described above.
But an equally valid allocation, from a combinatorial
perspective, is one in which the base feature contains
all four objects and the tabletop. There are four fur-
ther features, each of which deletes an object and re-
places it with tabletop so that every possible combi-
nation of objects on the tabletop can be constructed
from the features. Indeed, any combination of objects
on the tabletop could equally well serve as a base fea-
ture; the four remaining features serve to add or delete
objects as necessary.

We run PCA on the data and keep the first D = 100
principal components to form the data vector for each
image. This pre-processing is the same as that per-
formed by Griffiths & Ghahramani (2006), except the
authors in that case first average the three color chan-
nels of the images.

We consider the Gibbs sampling algorithm of Griffiths
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Alg Per run Total #
Gibbs 8.5 · 103 — 10
Collap 11 1.1 · 104 5
BP-m 0.36 3.6 · 102 6
FeatK 0.10 1.55 · 102 5

Figure 1. Left : A comparison of results for the IBP Gibbs
sampler (Griffiths & Ghahramani, 2006), the collapsed BP-
means algorithm, the basic BP-means algorithm, and the
stepwise K-features algorithm. The first column shows the
time for each run of the algorithm in seconds; the second
column shows the total running time of the algorithm (i.e.,
over multiple repeated runs for the final three); and the
third column shows the final number of features learned
(the IBP # is stable for > 900 final iterations). Right : A
histogram of collections of the final K values found by the
IBP for a variety of initializations and parameter starting
values.

10111 11111 11010 10000

(subtract) (subtract) (add) (add)

Figure 2. Upper row: Four example images in the tabletop
data set. Second row: Feature assignments of each image.
The first feature is the base feature, which depicts the Klein
bottle and $20 bill on a tabletop and is almost identical to
the fourth picture in the first row. The remaining four
features are shown in order in the third row. The fourth
row indicates whether the picture is added or subtracted
when the feature is present.

& Ghahramani (2006) with initialization (mass param-
eter 1 and feature mean variance 0.5) and number
of sampling steps (1000) determined by the authors;
we explore alternative initializations below. We com-
pare to the three feature means algorithms described
above—all with λ2 = 1. Each of the final three al-
gorithms uses the appropriate variant of greedy ini-
tialization analogous to K-means++. We run 1000
random initializations of the collapsed and BP-means
algorithms to mitigate local minima. We run 300 ran-
dom initializations of K-features for each value of K
and note that K = 2, . . . , 6 are (dynamically) explored
by the algorithm. All code was run in Matlab on the
same computer. Timing and feature count results are
on the left of Fig. 1.

While it is notoriously difficult to compare compu-

tation times for deterministic, hard-assignment algo-
rithms such K-means to stochastic algorithms such as
Gibbs sampling, particularly given the practical need
for reinitialization to avoid local minima in the for-
mer, and difficult-to-assess convergence in the latter,
it should be clear from the first column in the left-
hand table of Fig. 1 that there is a major difference
in computation time between Gibbs sampling and the
new algorithms. Even when the BP-means algorithm
is run 1000 times in a reinitialization procedure, the
total time consumed is still an order of magnitude less
than that for a single run of Gibbs sampling. Stepwise
K-features is the fastest of the new algorithms.

We further note that if we were to take advantage of
parallelism, additional drastic advantages could be ob-
tained for the new algorithms. The Gibbs sampler
requires each Gibbs iteration to be performed sequen-
tially whereas the random initializations of the various
feature means algorithms can be performed in parallel.
A certain level of parallelism may even be exploited
for the steps within each iteration of the collapsed and
BP-means algorithms while the zn,1:K optimizations of
K-features may all be performed in parallel across n

Another difficulty in comparing algorithms is that
there is no clear single criterion with which to measure
accuracy of the final model in unsupervised learning
problems such as these. We do note, however, that
theoretical considerations suggest that the IBP is not
designed to find either a fixed number of features as N
varies nor roughly equal sizes in those features it does
find (Broderick et al., 2012). This observation may
help explain the distribution of observed feature counts
over a variety of IBP runs with the given data. To
obtain feature counts from the IBP, we tried running
in a variety of different scenarios—combining different
initializations (one shared feature, 5 random features,
10 random features, initialization with the BP-means
result) and different starting parameter values2 (mass
parameter values ranging logarithmically from 0.01 to
1 and mean-noise parameter values ranging logarith-
mically from 0.1 to 10). The final 100 K draws for each
of these combinations are aggregated and summarized
in a histogram on the right of Fig. 1. Feature counts
lower than 7 were not obtained in our experiments,
which suggests these values are, at least, difficult to
obtain using the IBP with the given hyperpriors.

On the other hand, the feature counts for the new K-
means-style algorithms suggest parsimony is more eas-
ily achieved in this case. The lower picture and text
rows of Fig. 2 show the features (after the base fea-

2We found convergence failed for some parameter ini-
tializations outside this range.
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Figure 3. 1st row: Four sample faces. 2nd row: The base
feature (left) and other 2 features returned by stepwise
K-features with λ2 = 5. The final pictures are the cluster
means from K-means with K = 3 (3rd row) and K = 4 (4th
row). The righthand text shows how the sample pictures
are assigned to features/clusters by each algorithm.

ture) found by stepwise K-features: as desired, there
is one feature per tabletop object. The upper text row
of Fig. 2 shows the features to which each of the exam-
ple images in the top row are assigned by the optimal
feature allocation. For comparison, the collapsed al-
gorithm also finds an optimal feature encoding. The
BP-means algorithm adds an extra, superfluous fea-
ture containing both the Klein bottle and $20 bill.

Faces data. Next, we analyze the FEI face database,
consisting of 400 pre-aligned images of faces (Thomaz
& Giraldi, 2010). 200 different individuals are pic-
tured, each with one smiling and one neutral expres-
sion. Each picture has height 300 pixels, width 250
pixels, and one grayscale channel. Four example pic-
tures appear in the first row of Fig. 3. This time, we
compare the stepwise K-features algorithm to classic
K-means. We keep the top 100 principal components
to form the data vectors for both algorithms.

Given λ2 = 5, stepwise K-features chooses one base
feature (lefthand picture in the second row of Fig. 3)
plus two additional features as optimal; the central and
righthand pictures in the second row of Fig. 3 depict
the sum of the base feature plus the corresponding fea-
ture. The second feature codes for longer hair and a
shorter chin relative to the base feature. The third fea-
ture codes for darker skin and slightly different facial
features. The feature combinations of each picture in
the first row appear in the first text row on the right;

all four possible combinations are represented.

K-means with 2 clusters and K-features with 2 fea-
tures both encode exactly 2 distinct, disjoint groups.
For larger numbers of groups though, the two repre-
sentations diverge. For instance, consider a 3-cluster
model of the face data, which has the same number
of parameters as the 3-feature model. The result-
ing cluster means appear in the third row of Fig. 3.
While the cluster means appear similar to the feature
means, the assignment of faces to clusters is quite dif-
ferent. The second righthand text row in Fig. 3 shows
to which cluster each of the four first-row faces is as-
signed. The feature allocation of the fourth picture
in the top row tells us that the subject has long hair
and certain facial features, roughly, whereas the clus-
tering tells us that the subject’s hair is more dom-
inant than facial structure in determining grouping.
Globally, the counts of faces for clusters (1,2,3) are
(154,151,95) while the counts of faces for feature com-
binations (100,110,101,111) are (139,106,80,75).

We might also consider a clustering of size 4 since there
are 4 groups specified by the 3-feature model. The re-
sulting cluster means are in the bottom row of Fig. 3,
and the cluster assignments of the sample pictures are
in the bottom, righthand text row. None of the sample
pictures falls in cluster 4. Again, the groupings pro-
vided by the feature allocation and the clustering are
quite different. Notably, the clustering has divided up
the pictures with shorter hair into 3 separate clusters.
In this case, the counts of faces for clusters (1,2,3,4)
are (121,150,74,55). The feature allocation here seems
to provide a sparser and more interpretable represen-
tation relative to both cluster cardinalities.

6. Conclusions
We have developed a general methodology for obtain-
ing hard-assignment objective functions from Bayesian
MAP problems. The key idea is to include the struc-
tural variables explicitly in the posterior using combi-
natorial functions such as the EPPF and the EFPF.
We apply this methodology to a number of genera-
tive models for unsupervised learning, with particu-
lar emphasis on latent feature models. We show that
the resulting algorithms are capable of modeling latent
structure out of reach of clustering algorithms but are
also much faster than existing feature allocation learn-
ers from Bayesian nonparametrics.
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pirical comparison of four initialization methods for
the K-Means algorithm. Pattern Recognition Let-
ters, 20(10):1027–1040, 1999.

Pitman, J. Exchangeable and partially exchangeable
random partitions. Probability Theory and Related
Fields, 102(2):145–158, 1995.

Steinley, D. K-means clustering: A half-century syn-
thesis. British Journal of Mathematical and Statis-
tical Psychology, 59(1):1–34, 2006.

Sung, K. and Poggio, T. Example-based learning for
view-based human face detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
20(1):39–51, 1998.

Thibaux, R. and Jordan, M. I. Hierarchical beta pro-
cesses and the Indian buffet process. In Proceedings
of the International Conference on Artificial Intelli-
gence and Statistics, volume 11, 2007.

Thomaz, C. E. and Giraldi, G. A. A new ranking
method for principal components analysis and its
application to face image analysis. Image and Vi-
sion Computing, 28(6):902–913, June 2010. We use
files http://fei.edu.br/~cet/frontalimages_
spatiallynormalized_partX.zip with X=1,2.

file://localhost/Users/tb/Documents/projects/kmeans/submissions/icml2013_camera_ready/1,2
http://fei.edu.br/~cet/frontalimages_spatiallynormalized_partX.zip
http://fei.edu.br/~cet/frontalimages_spatiallynormalized_partX.zip
file://localhost/Users/tb/Documents/projects/kmeans/submissions/icml2013_camera_ready/X

