
Semi-supervised Graph Clustering: A Kernel Approach

Brian Kulis kulis@cs.utexas.edu

Sugato Basu sugato@cs.utexas.edu

Inderjit Dhillon inderjit@cs.utexas.edu

Raymond Mooney mooney@cs.utexas.edu

Department of Computer Sciences, University of Texas at Austin, Austin, TX, 78712

Abstract

Semi-supervised clustering algorithms aim
to improve clustering results using limited
supervision. The supervision is generally
given as pairwise constraints; such con-
straints are natural for graphs, yet most semi-
supervised clustering algorithms are designed
for data represented as vectors. In this paper,
we unify vector-based and graph-based ap-
proaches. We show that a recently-proposed
objective function for semi-supervised clus-
tering based on Hidden Markov Random
Fields, with squared Euclidean distance and
a certain class of constraint penalty func-
tions, can be expressed as a special case of
the weighted kernel k -means objective. A re-
cent theoretical connection between kernel k -
means and several graph clustering objectives
enables us to perform semi-supervised clus-
tering of data given either as vectors or as a
graph. For vector data, the kernel approach
also enables us to find clusters with non-
linear boundaries in the input data space.
Furthermore, we show that recent work on
spectral learning (Kamvar et al., 2003) may
be viewed as a special case of our formula-
tion. We empirically show that our algorithm
is able to outperform current state-of-the-art
semi-supervised algorithms on both vector-
based and graph-based data sets.

1. Introduction

Semi-supervised clustering algorithms have recently
received a significant amount of attention in the ma-
chine learning and data mining communities. In tra-
ditional clustering algorithms, only unlabeled data is

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

used to generate clusterings; in semi-supervised clus-
tering, the goal is to incorporate prior information
about clusters into the algorithm in order to improve
the clustering results. A number of recent papers have
explored this problem (Wagstaff et al., 2001; Klein
et al., 2002; Xing et al., 2003; Kamvar et al., 2003;
Bar-Hillel et al., 2003; Basu et al., 2004).

As is common for most semi-supervised clustering al-
gorithms, we assume that we have pairwise must-link
constraints (pairs of points that should belong in the
same cluster) and cannot-link constraints (pairs of
points that should belong in different clusters) pro-
vided with the input. Pairwise constraints occur nat-
urally in many domains, e.g., the Database of Interact-
ing Proteins (DIP) data set in biology contains infor-
mation about proteins co-occurring in processes, which
can be viewed as must-link constraints during gene
clustering. Constraints of this form are also natural
in the context of the graph clustering problem (a.k.a.
graph partitioning or vertex partitioning), where edges
in the graph encode pairwise relationships.

Recently, a probabilistic framework for semi-
supervised clustering with pairwise constraints
was proposed based on Hidden Markov Random
Fields (Basu et al., 2004). This framework proposed
a general semi-supervised clustering objective based
on maximizing the joint likelihood of data and
constraints in the HMRF model, as well as a k -means
like iterative algorithm for optimizing the objective.
However, HMRF-kmeans can cluster input data
only in the form of vectors.

Our main contributions in this paper are as follows:

1. We show that the HMRF semi-supervised clus-
tering objective with squared Euclidean distance and
cluster-size weighted penalties is a special case of the
weighted kernel k -means objective function (Dhillon
et al., 2004a). Given input data in the form of vectors
and pairwise constraints, we show how to construct
a kernel such that running kernel k -means results in
a monotonic decrease of the semi-supervised cluster-

Semi-supervised Graph Clustering: A Kernel Approach

ing objective function at every iteration of the kernel
k -means algorithm.

2. The weighted kernel k -means algorithm can be used
to monotonically optimize a wide class of graph clus-
tering objectives such as minimizing the normalized
cut (Dhillon et al., 2004b). Hence, our approach can
easily be generalized to optimize a number of different
semi-supervised graph clustering objectives for which
constraint-based supervision is more natural. This
equivalence gives us a new semi-supervised clustering
algorithm SS-Kernel-kmeans that can cluster data
given either as vectors or a graph, along with supervi-
sion in the form of constraints.

3. For vector-based data we have the ability to apply
a kernel function, which allows SS-Kernel-kmeans

to discover clusters with non-linear boundaries in the
input space.

4. We show how a previously proposed algorithm
Spectral-learning (Kamvar et al., 2003) can be
viewed as a special case of our framework. The
Spectral-learning algorithm can be viewed as op-
timizing an underlying semi-supervised clustering ob-
jective; specifically, it optimizes a relaxed version of
semi-supervised ratio cut.

5. We empirically demonstrate that SS-Kernel-

kmeans outperforms a current state-of-the-art algo-
rithm HMRF-kmeans (Basu et al., 2004); we run ex-
periments on a synthetic data set and a real-life hand-
written character recognition set to show that using a
kernel function to map vectors to a higher-dimensional
space significantly improves results. We also compare
SS-Kernel-kmeans to Spectral-Learning on a
gene network data set and demonstrate how we im-
prove graph clustering results with the addition of con-
straints. This network is a graph-based data set that
HMRF-kmeans cannot cluster.

2. Background and Related Work

In this section, we will give the necessary background
for our proposed kernel-based semi-supervised cluster-
ing algorithm SS-Kernel-kmeans, and also describe
related research.

2.1. Graph Clustering and Kernel k-means

In graph clustering (Chan et al., 1994; Shi & Ma-
lik, 2000), the input is assumed to be a graph G =
(V, E , A), where V is the set of vertices, E is the set of
edges, and A is the edge affinity matrix. Aij represents
the edge-weight between vertex i and j.

Let links(A,B) =
∑

i∈A,j∈B Aij . Furthermore, let

Name Objective Function

Ratio Association maximize
V1,...,Vk

∑k
c=1

links(Vc,Vc)
|Vc|

Ratio Cut minimize
V1,...,Vk

∑k
c=1

links(Vc,V\Vc)
|Vc|

Normalized Cut minimize
V1,...,Vk

∑k
c=1

links(Vc,V\Vc)

degree(Vc)

Table 1. Examples of graph clustering objectives

degree(A) = links(A,V). We seek to find a k -way
disjoint partitioning1 {Vc}

k
c=1 of V to minimize a par-

ticular objective. Table 1 gives a list of some common
graph clustering objectives.

To make the connection between graph clustering and
vector-based clustering, we introduce the weighted ker-
nel k -means objective function (Dhillon et al., 2004a).
Given a set of data vectors X = {xi}

n
i=1 with xi ∈ R

n,
the goal of weighted kernel k -means is to find a k -
way disjoint partitioning {πc}

k
c=1 of the data (where

πc represents the cth cluster) such that the following
objective is minimized:

J ({πc}
k
c=1) =

k∑

c=1

∑

xi∈πc

αi‖φ(xi) − mc‖
2

where mc =

∑
xi∈πc

αiφ(xi)∑
xi∈πc

αi

Each vector xi has a pre-specified non-negative weight
αi associated with it, and φ is a function mapping vec-
tors in X to a (generally) higher-dimensional space. If
all weights are set to one and φ is the identity function,
this reduces to standard k -means.

If we expand the distance computation ‖φ(xi)−mc‖
2

in the weighted kernel k -means objective function, we
obtain the following:

φ(xi) · φ(xi) −
2
∑

xj∈πc
αjφ(xi) · φ(xj)∑
xj∈πc

αj

+

∑
xj ,xl∈πc

αjαlφ(xj) · φ(xl)

(
∑

xj∈πc
αj)2

.

Notice that all computation involving data points is in
the form of inner products. As a result, we can use
the kernel trick : if we can compute the dot product
Kij = φ(xi)·φ(xj) between φ(xi) and φ(xj) efficiently,
we are able to compute distances between points in this
mapped space without explicitly knowing the mapping
of xi and xj to φ(xi) and φ(xj) respectively. It can
easily be shown that any positive semidefinite matrix
K can be thought of as a kernel matrix (Cristianini &
Shawe-Taylor, 2000).

1
k disjoint data subsets, whose union is the whole data

Semi-supervised Graph Clustering: A Kernel Approach

Using the kernel matrix K, the distance computation
is rewritten as:

Kii −
2
∑

xj∈πc
αjKij∑

xj∈πc
αj

+

∑
xj ,xl∈πc

αjαlKjl

(
∑

xj∈πc
αj)2

. (1)

Algorithm 1: Basic Weighted Kernel k-means.

Kernel-kmeans(K, k, tmax, α, {π
(0)
c }k

c=1)
Input: K: kernel matrix, k: number of clusters,
tmax: optional maximum number of iterations, α:

weight vector, {π
(0)
c }k

c=1: optional initial clusters
Output: {πc}

k
c=1: final partitioning of the points

1. Initialize the k clusters from {π
(0)
c }k

c=1, if pro-
vided as input, else randomly.
2. Set t = 0.
3. For each point xi and every cluster c, compute
d(xi,mc) as in Eqn. (1).
4. Find c∗(xi) = argmincd(xi,mc), resolving ties
arbitrarily.
5. Compute the updated clusters as

π(t+1)
c = {xi : c∗(xi) = c}.

6. If not converged or tmax > t, set t = t+1 and go
to Step 3; Otherwise, stop and output final clusters

{π
(t+1)
c }k

c=1.

As a result, we may derive an algorithm analogous to
k -means to monotonically decrease the weighted kernel
k -means objective function without knowledge of the
map φ. As shown in Algorithm 1, this algorithm is
identical to standard k -means except for the fact that
distances are computed using the kernel matrix.

When we consider such a weighted form of the ker-
nel k -means objective function, it has been shown that
many graph clustering objectives can be viewed as spe-
cial cases of this objective (Dhillon et al., 2004b). As a
result, the weighted kernel k -means algorithm can be
used to optimize a number of graph clustering objec-
tives. This allows us the flexibility of having as input
to the algorithm either a graph or data vectors that
have been mapped to a kernel space.

Table 2 shows how to set the weights and kernel for
three popular graph clustering objectives to be equiv-

alent to the weighted kernel k -means objective func-
tion. The node weights in this table are weights on
the nodes in the graph that correspond to the weights
of the data vectors in k -means. Here, D is a diag-
onal matrix whose entries correspond to the sum of
the rows of the affinity matrix A, L is the Laplacian
matrix (D − A), and σ is a real number chosen to
be sufficiently large such that K is positive definite.

See Dhillon et al. (2004b) for further details about
this mathematical equivalence.

2.2. Semi-supervised Clustering

Often when clustering, we have some background
knowledge about the cluster structure. As mentioned
previously, in this work we assume that this knowledge
comes in the form of pairwise must-link or cannot-link
constraints. Such constraints are natural for graphs, as
pairwise relationships are explicitly captured via edges
in a graph. However, most semi-supervised clustering
with pairwise constraints assumes that the input is in
the form of data vectors (Wagstaff et al., 2001; Klein
et al., 2002; Xing et al., 2003; Bar-Hillel et al., 2003;
Basu et al., 2004). Recent work by Bansal et al. (2002)
in semi-supervised clustering considers inputs only in
the form of constraints.

2.2.1. HMRF model

Let us briefly describe a recently proposed objective
for semi-supervised clustering of data vectors, which
we will use in our formulation. Basu et al. (2004)
proposed a framework for semi-supervised clustering
based on Hidden Markov Random Fields (HMRFs).
Choosing squared Euclidean distance as the cluster
distortion measure and the generalized Potts poten-
tial as the constraint violation potential, the semi-
supervised clustering objective can be expressed as:

J ({πc}
k
c=1) =

k∑

c=1

∑

xi∈πc

‖xi − mc‖
2

+
∑

xi, xj ∈ M
s.t. li 6= lj

wij +
∑

xi, xj ∈ C
s.t. li = lj

wij (2)

where M is the set of must-link constraints, C is the
set of cannot-link constraints, wij is the penalty cost
for violating a constraint between xi and xj , and li
refers to the cluster label of xi. The first term in this
objective function is the standard k -means objective
function, the second term is a penalty function for vi-
olating must-link constraints, while the third term is a
penalty function for violating cannot-link constraints.
The algorithms developed for minimizing this objec-
tive (Basu et al., 2004) use an iterative relocation ap-
proach like k -means.

2.2.2. Spectral Learning

Recently, spectral methods have become increasingly
popular for clustering. These algorithms cluster data
given in the form of a graph. One spectral ap-
proach to semi-supervised clustering is the Spectral-

learning algorithm of Kamvar et al. (2003):

Semi-supervised Graph Clustering: A Kernel Approach

Objective Node Weights Kernel
Ratio Association 1 for all nodes K = σI + A
Ratio Cut 1 for all nodes K = σI − L
Normalized Cut Degree of the node K = σD−1 + D−1AD−1

Table 2. Popular graph clustering objectives and corresponding weights and kernels given affinity matrix A

1. Form the affinity matrix A: the entries of A are
assumed to be normalized between 0 and 1.

2. For all points i, j that have a must-link constraint,
set Aij = 1; for all points i, j that have a cannot-link
constraint, set Aij = 0.

3. Re-normalize the matrix using additive normaliza-
tion (Kamvar et al., 2003): N = 1

dmax
(A+dmaxI−D).

4. Take the top k eigenvectors of A to be the columns
of the matrix V , and cluster the rows of V .

In the above algorithm, dmax is the maximum row-
sum of A and D is the degree matrix. Notice that the
additive normalization is equal to I − 1

dmax
L, which is

equivalent to dmaxI − L up to a scalar factor, where
L = D−A is the Laplacian of A. In the presentation of
Kamvar et al. (2003), the Spectral-learning algo-
rithm does not have an explicit underlying objective
function. However in Section 3.4, we will show that
this algorithm can be viewed as a special case of our
unified semi-supervised clustering framework. Note
that the Spectral Learning algorithm needs O(kn)
memory to store the k eigenvectors for n points, which
can be a substantial overhead for large graphs.

Another recent paper (Yu & Shi, 2004) considered a
semi-supervised formulation of the normalized cut ob-
jective and had a spectral algorithm associated with
it. The main differences between this work and our al-
gorithm are: (1) only must-link constraints are consid-
ered in their formulation, and there is no way to specify
penalty weights for constraint violations: SS-Kernel-

kmeans considers both must-link and cannot-link con-
straints and allows constraint violation with an asso-
ciated penalty, thereby making it mode robust to con-
straint noise; (2) their formulation solves an expen-
sive constrained eigen-decomposition problem while
SS-Kernel-kmeans uses an efficient iterative algo-
rithm, making it easily scalable to large data sets.

3. Kernel-based Semi-supervised

Clustering

This section describes our proposed semi-supervised
clustering algorithm SS-Kernel-kmeans that unifies
vector-based and graph-based approaches using a ker-
nel approach. Let us first show how to connect the ker-

nel k -means objective with the semi-supervised clus-
tering objective.

3.1. Constructing the Kernel

Recall the objective for semi-supervised clustering on
a HMRF from Eqn. (2), using squared Euclidean dis-
tance as the clustering distortion measure and the gen-
eralized Potts potential for constraint penalty. Let us
alter this penalty function: instead of adding a penalty
term for a must-link violation if the two points are
in different clusters, we give a reward for constraint
satisfaction if the points are in the same cluster, by
subtracting the corresponding penalty term from the
objective. If the sum of weights for all must-link con-
straints is a constant, then this is equivalent to the
original objective function up to an additive constant.
Therefore minimizing J ({πc}

k
c=1) is equivalent to min-

imizing:

k∑

c=1

∑

xi∈πc

‖xi − mc‖
2 −

∑

xi, xj ∈ M
li = lj

wij +
∑

xi, xj ∈ C
li = lj

wij .

We also introduce the notion of cluster-size weighted
penalties, dividing each wij by the size of the cluster
that the points are in. This gives us:

J ({πc}
k
c=1) =

k∑

c=1

∑

xi∈πc

‖xi − mc‖
2

−
∑

xi, xj ∈ M
li = lj

wij

|πi|
+

∑

xi, xj ∈ C
li = lj

wij

|πi|
. (3)

Using the following result from Duda and Hart (1973):

k∑

c=1

∑

xi∈πc

2‖xi − mc‖
2 =

k∑

c=1

∑

xi,xj∈πc

‖xi − xj‖
2

|πc|
,

and re-writing the sums, minimizing the objective in
Eqn. (3) becomes equivalent to minimizing:

J ({πc}
k
c=1) =

k∑

c=1

∑

xi,xj∈πc

‖xi − xj‖
2

|πc|

−

k∑

c=1

∑

xi, xj ∈ πc

(xi, xj) ∈ M

2wij

|πc|
+

k∑

c=1

∑

xi, xj ∈ πc

(xi, xj) ∈ C

2wij

|πc|
.

Semi-supervised Graph Clustering: A Kernel Approach

Let E be the matrix of pairwise squared Euclidean
distances among the data points, such that Eij = ‖xi−
xj‖

2 and W be the constraint matrix such that Wij

is −wij for a cannot link, wij for a must link, and
0 otherwise. Furthermore, we introduce an indicator
vector zc for cluster c. This vector is of length n and
zc(i) = 0 if xi is not in cluster c, and 1 otherwise.
We can now write the above objective in the following
way:

J ({πc}
k
c=1) =

k∑

c=1

zT
c (E − 2W)zc

zT
c zc

.

where zT
c zc is the size of cluster πc, and zT

c (E−2W)zc

gives the sum of Eij − 2Wij over all xi and xj in πc.

Now define a matrix Z̃ such that Z̃·c, the column c
of Z̃, is equal to zc/(zT

c zc)
1/2. Z̃ is an orthonormal

matrix (Z̃T Z̃ = Ik), and the objective that we want
to minimize can be re-written as:

k∑

c=1

Z̃T
·c(E − 2W)Z̃·c = trace(Z̃T (E − 2W)Z̃).

It has been shown that the kernel k -means objective
function can also be expressed as a trace optimization
problem (Dhillon et al., 2004a). In particular, the ker-
nel k -means objective is written as a maximization of
trace(Y T KY), with Y analogous to Z̃ (an orthonor-
mal indicator matrix). The only difference between
these objectives is that our semi-supervised objective
is expressed as a trace minimization, while kernel k -
means is expressed as a trace maximization. To make
our problem into a maximization problem, we note
that for squared Euclidean distance, ‖xi − xj‖

2 =
xi · xi + xj · xj − 2xi · xj . Let S be the similarity

matrix (Sij = xi · xj) and let S̃ be the matrix such

that S̃ij = Sii + Sjj . Then E = S̃ − 2S.

We replace E in the trace minimization, leading to
a minimization of trace(Z̃T (S̃ − 2S − 2W)Z̃). Since
trace(Z̃T S̃Z̃) is a constant, this leads to a maximiza-
tion of trace(Z̃T (S + W)Z̃). We define a matrix
K = S + W ; with this matrix, we get that our prob-
lem is expressed as a maximization of trace(Z̃T KZ̃),
and is mathematically equivalent to unweighted kernel
k -means.

Note that this matrix K may not be positive semidef-
inite, a requirement for kernel k -means to converge.
One can avoid this problem by performing diagonal
shifting (Dhillon et al., 2004b) for kernelizing K, as
shown in Step 2 of Algorithm 2. In our experience, one
can run kernel k -means directly on K – even though
there is no theoretical guarantee in this case, the algo-
rithm generally monotonically converges in practice.

Algorithm 2: Semi-Supervised Kernel k-means.

SS-Kernel-kmeans(S, k, M, C, W , tmax)
Input: S: input similarity matrix, k: number of
clusters, M: set of must-link constraints, C: set
of cannot-link constraints, W : constraint penalty
matrix, tmax: optional maximum number of itera-
tions
Output: {πc}

k
c=1: final partitioning of the points

1. Form the matrix K = S + W .
2. Diagonal-shift K by adding σI to guarantee pos-
itive definiteness of K.
3. Get initial clusters {π

(0)
c }k

c=1 using constraints.
4. Return {πc}

k
c=1 = Kernel-kmeans(K, k, tmax,

1, {π
(0)
c }k

c=1), where 1 is the vector of all ones.

3.2. The Algorithm

Summarizing the result from the previous section, we
have shown an equivalence between unweighted kernel
k -means and HMRF-kmeans with squared Euclidean
distance and cluster-size weighted penalties. We can
now develop an algorithm for semi-supervised cluster-
ing by constructing the appropriate kernel matrix K
(see Algorithm 2). This algorithm simply constructs
the kernel as derived in the previous section, performs
proper cluster initialization and runs kernel k -means.

A key advantage to this approach is that the algorithm
assumes a similarity matrix as input. This similarity
matrix may come about as the result of applying a
kernel function on vector data, or if the input is a
graph affinity matrix (diagonal-shifting this matrix to
enforce positive definiteness does not change the glob-
ally optimal solution).

For cluster initialization, we follow the approach of
Basu et al. (2004): we take the transitive closure of
the constraints to form neighborhoods, and then per-
form a size-weighted farthest-first traversal on these
neighborhoods to get the k initial clusters.

3.3. Generalized Semi-supervised Graph

Clustering

As mentioned previously, there is a direct mathemat-
ical connection between the weighted kernel k -means
objective function and a wide class of graph clustering
objectives. So far we have considered the unweighted
case while deriving the connection between HMRF-

kmeans and kernel k -means. In this section, we gen-
eralize this result – due to space restrictions, we skip
the detailed analysis and only state the results.

Consider a semi-supervised version of the normalized

Semi-supervised Graph Clustering: A Kernel Approach

graph cut problem, which seeks to minimize:

k∑

c=1

links(Vc,V \ Vc)

degree(Vc)

−
∑

xi, xj ∈ M
li = lj

wij

deg(Vli)
+

∑

xi, xj ∈ C
li = lj

wij

deg(Vli)
· (4)

Notice that, instead of cluster-size weighted penalties,
we use degree-weighted penalties. Combining the anal-
ysis of (Dhillon et al., 2004b) with the analysis earlier
in this paper, we can arrive at a trace maximization
for this objective function. In the resulting algorithm,
given affinity matrix A and constraint matrix W as be-
fore, we set A′ = A+W as in the unweighted case, and
run weighted kernel k -means on σD−1 + D−1A′D−1

with node weights equal to the degree of the node.
Running weighted kernel k -means with this kernel and
weights will then monotonically decrease the objective
in Eqn. (4) for a graph with affinity matrix A.

Similar results may be obtained for semi-supervised
ratio cut and semi-supervised ratio association. For
example, for semi-supervised ratio cut, we would set
A′ = A+W as in the unweighted case (adding weights
based on the constraints), and then we would run
weighted kernel k -means on σI − L (L is the Lapla-
cian of A′ here) with all node weights equal to one. In
general, one simply uses the same kernels as in Table 2
with the prior addition of the constraint matrix to the
affinity matrix as is done in the unweighted case; con-
straint penalties are the sum of the node weights of all
nodes in a cluster.

3.4. Spectral Learning and Semi-supervised

Ratio Cut

We can view Spectral-learning (Kamvar et al.,
2003), described in Section 2.2.2, in our framework as
follows: for a must-link constraint, if Aij is the similar-
ity between xi and xj , we set Wij = 1−Aij (and hence
the corresponding value in A + W is 1). Similarly, for
cannot-links, we set Wij = −Aij (and hence the cor-
responding value in A + W is 0). With this particular
choice of constraint weights, the matrix A+W is iden-
tical to the matrix from Spectral-learning before
additive normalization. This leaves just the additive
normalization step, which is the same normalization
required for semi-supervised ratio cut (up to a diago-
nal shift, which does not change the globally optimal
solution).

A well-known relaxation to our trace maximization
problem, trace(Y T KY), is achieved by taking the top
k eigenvectors of K. The matrix formed by these

eigenvectors is the optimal Y matrix, under the re-
laxation that Y is an arbitrary orthonormal matrix.
Such a relaxation leads to the Spectral-learning

algorithm that was detailed in Section 2.2.2.

To summarize, the Spectral-learning algorithm
of Kamvar et al. (2003) may be viewed as solving a
relaxed semi-supervised ratio cut objective. Moreover,
our earlier analysis shows that the fast iterative kernel
k -means algorithm can be used to optimize this objec-
tive, thus removing any requirement for the expensive
operation (for large data sets) of eigen-decomposition.

4. Experimental Results

In this section, we present experimental results
comparing SS-Kernel-kmeans to HMRF-kmeans,
which optimizes an HMRF-based objective function
using squared Euclidean distance as the distortion
measure. We present results on a synthetic data set
and a real-world handwritten character recognition
data set, demonstrating that SS-Kernel-kmeans has
better performance on these data sets with a proper
choice of the kernel. We also present the results of SS-

Kernel-kmeans on a gene network, which cannot be
clustered with HMRF-kmeans since the input is in
the form of a graph.

4.1. Data sets

We performed experiments on the following 3 datasets:

1. TwoCircles: A synthetic data set comprising of
200 data points in 2 dimensions — 100 points in an
inner circle are labeled to be in one class, and 100
data points in a surrounding outer circle are labeled
to be in another class, as shown in Figure 1.

2. Digits: A subset of 10% of the data points chosen
randomly from three classes {3, 8, 9} of the Pendigits

handwritten character recognition data set from the
UCI Machine Learning Repository2. It has 317 points
in a 16 dimensional-space.

3. GeneNetwork: An interaction network between 216
yeast genes, where each gene is labeled with one of 3
KEGG (Ogata et al., 1999) functional pathway labels.
This data is a subgraph of a high-quality probabilistic
functional network of yeast genes (Lee et al., 2004):
each edge weight in this network represents a proba-
bility of linkage between two genes, estimated by inte-
grating diverse functional genomic data sources. The
genes do not have an explicit vector representation in
this data set.

2http://www.ics.uci.edu/ mlearn/MLRepository.html

Semi-supervised Graph Clustering: A Kernel Approach

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 1. TwoCircles data set with correct clustering

100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

Number of Constraints

N
M

I V
al

ue

HMRF−KMeans
SS−Kernel−KMeans−Linear
SS−Kernel−KMeans−Exp

Figure 2. Results on TwoCircles data set

100 200 300 400 500
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Constraints

N
M

I V
al

ue

HMRF−KMeans
SS−Kernel−KMeans−Linear
SS−Kernel−KMeans−Exp

Figure 3. Results on Digits data set

100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Constraints

N
M

I V
al

ue

SS−Kernel−KMeans−NormCut
SS−Kernel−KMeans−RatioAssoc
SS−Kernel−KMeans−RatioCut
SpectralLearning

Figure 4. Results on GeneNetwork data set

4.2. Methodology

Figures 2-4 show learning curves with 2-fold cross val-
idation. These plots show the improvement in clus-
tering quality on the test set with increasing amount
of pairwise supervision provided from the training set.
Each point on the learning curve is an average of re-
sults over 20 runs. We generate constraints only using
the training set, cluster the whole data without the la-
bels, and evaluate the cluster quality only on the test
set (Basu et al., 2004). We set each penalty weight
wij to be equal to n/(kC), where n is the number
of data points, k is the number of clusters, and C is
the total number of constraints. To evaluate clusters,
we use Normalized Mutual Information (NMI): it is
a standard technique for determining the quality of
clusters, by measuring the amount of statistical infor-
mation shared by the random variables representing
the cluster distribution and the underlying class dis-
tribution of the data points (Strehl et al., 2000).

4.3. Results and Discussion

Figure 2 shows the results on the TwoCircle data set.
This synthetic dataset is used to demonstrate the ef-

fectiveness of SS-Kernel-kmeans: this data set is
not linearly separable in the original input space, but
an exponential kernel K(x,y) = exp(−‖x − y‖2/2σ2)
is able to linearly separate the 2 classes in the mapped
space. SS-Kernel-kmeans with the exponential ker-
nel (SS-Kernel-KMeans-Exp) gives improved results
with increasing number of pairwise constraints, till
it reaches a NMI score of 1.0 on the test set. On
the other hand, HMRF-kmeans and SS-Kernel-

kmeans with a linear kernel (SS-Kernel-KMeans-
Linear) are not able to get any improvement in per-
formance on this dataset (NMI close to 0), since both
algorithms split the data linearly into two clusters and
are completely unable to re-construct the non-linear
class structure, even with as many as 200 constraints.

Figure 3 shows the results on the Digits dataset.
SS-Kernel-kmeans gives the best performance when
used with an exponential kernel, outperforming both
HMRF-kmeans with squared Euclidean distance and
SS-Kernel-kmeans with a linear kernel.

Since the GeneNetwork dataset is not vector-based, it
cannot be clustered using HMRF-kmeans. Three
graph clustering objectives were used while clus-
tering this dataset using SS-Kernel-kmeans —

Semi-supervised Graph Clustering: A Kernel Approach

normalized cut (SS-Kernel-KMeans-NormCut), ratio
cut (SS-Kernel-KMeans-RatioCut) and ratio associ-
ation (SS-Kernel-KMeans-RatioAssoc). The fourth
plot in the figure (Spectral-Learning) corresponds to
the Spectral-learning algorithm (Kamvar et al.,
2003). As shown in Figure 4, all these algorithms have
an improvement in performance with increasing super-
vision, but SS-Kernel-kmeans with normalized cut
has the best performance for this dataset.

The benefit of using SS-Kernel-kmeans is clearly
demonstrated in this experiment. A closer look showed
that the GeneNetwork data set has 3 clusters of dif-
ferent sizes and different edge densities, which ex-
plains why performing degree normalization in the
normalized cut objective gives good results. While
Spectral-learning can only use the ratio cut objec-
tive, SS-Kernel-kmeans can work with other graph
clustering objectives like normalized cut, therefore
making it useful in domains where graph clustering
objectives other than ratio cut are more effective.

5. Conclusions and Future Work

In this paper, a new algorithm SS-Kernel-kmeans

was developed to optimize a semi-supervised cluster-
ing objective that can cluster both vector-based and
graph-based data. The analysis for this algorithm used
kernel methods: by constructing an appropriate ker-
nel, we were able to prove an equivalence between
a special case of the HMRF-based semi-supervised
clustering objective and the kernel k -means objective
function. The resulting algorithm provided a num-
ber of advantages over previously studied methods
for semi-supervised clustering: (1) our analysis allows
us to (locally) optimize the semi-supervised objective
for both vector-based and graph-based inputs; (2) for
vector-based inputs, the inputs can be mapped to a
higher-dimensional kernel space to get non-linear clus-
ter boundaries; (3) we can easily generalize the result
to handle a number of semi-supervised graph cluster-
ing objectives; (4) the analysis allows us to link prior
work on spectral learning to our semi-supervised clus-
tering framework.

There are a number of interesting potential avenues for
future research in kernel methods for semi-supervised
clustering. Along with learning the kernel matrix be-
fore the clustering, one could additionally incorporate
kernel matrix learning into the clustering iteration, as
was done in Basu et al. (2004). One way to incor-
porate learning into the clustering step is to devise a
way to learn the weights in weighted kernel k -means,
by using the constraints. Another possibility would
be to explore the generalization of techniques in this

paper beyond squared Euclidean distance, for unify-
ing semi-supervised graph clustering with kernel-based
clustering on an HMRF using other popular clustering
distortion measures, e.g., KL-divergence, cosine dis-
tance (Basu et al., 2004).

Acknowledgments: This research was supported
by NSF grant CCF-0431257, NSF-ITR award IIS-
0325116, NSF Career Award ACI-0093404, and a
Google Research Grant.

References

Bansal, N., Blum, A., & Chawla, S. (2002). Correlation
clustering. Proc. of the 43rd IEEE Symp. on Founda-
tions of Computer Science (FOCS-02) (pp. 238–247).

Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D.
(2003). Learning distance functions using equivalence
relations. Proc. 20th Intl. Conf. on Machine Learning.

Basu, S., Bilenko, M., & Mooney, R. (2004). A probabilis-
tic framework for semi-supervised clustering. Proc. 10th
Intl. Conf. on Knowledge Discovery and Data Mining.

Chan, P., Schlag, M., & Zien, J. (1994). Spectral k -way
ratio cut partitioning. IEEE Trans. CAD-Integrated Cir-
cuits and Systems, 13, 1088–1096.

Cristianini, N., & Shawe-Taylor, J. (2000). Introduction to
support vector machines. Cambridge University Press.

Dhillon, I., Guan, Y., & Kulis, B. (2004a). Kernel k -means,
spectral clustering and normalized cuts. Proc. 10th Intl.
Conf. on Knowledge Discovery and Data Mining.

Dhillon, I., Guan, Y., & Kulis, B. (2004b). A unified view of
kernel k-means, spectral clustering and graph cuts (Tech-
nical Report TR-04-25). University of Texas at Austin.

Duda, R. O., & Hart, P. E. (1973). Pattern classification
and scene analysis. Wiley.

Kamvar, S. D., Klein, D., & Manning, C. (2003). Spec-
tral learning. Proc. 17th Intl. Joint Conf. on Artificial
Intelligence.

Klein, D., Kamvar, D., & Manning, C. (2002). From
instance-level constraints to space-level constraints:
Making the most of prior knowledge in data clustering.
Proc. 19th Intl. Conf. on Machine Learning.

Lee, I., Date, S. V., Adai, A. T., & Marcotte, E. M. (2004).
A probabilistic functional network of yeast genes. Sci-
ence, 306(5701), 1555–1558.

Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H.,
& Kanehisa, M. (1999). KEGG: Kyoto encyclopedia of
genes and genomes. Nucleic Acids Res., 27, 29–34.

Shi, J., & Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 22, 888–905.

Strehl, A., Ghosh, J., & Mooney, R. (2000). Impact of
similarity measures on web-page clustering. Workshop
on Artificial Intelligence for Web Search (AAAI).

Wagstaff, K., Cardie, C., Rogers, S., & Schroedl, S. (2001).
Constrained k-means clustering with background knowl-
edge. Proc. 18th Intl. Conf. on Machine Learning.

Xing, E. P., Ng, A. Y., Jordan, M. I., & Russell, S. (2003).
Distance metric learning, with application to clustering
with side-information. Advances in Neural Information
Processing Systems 15.

Yu, S., & Shi, J. (2004). Segmentation given partial group-
ing constraints. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 26, 173–183.

