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Abstract
In this paper, we study low-rank matrix nearness problems, with a focus on learning low-rank
positive semidefinite (kernel) matrices for machine learning applications. We propose efficient
algorithms that scale linearly in the number of data points and quadratically in the rank of the input
matrix. Existing algorithms for learning kernel matrices often scale poorly, with running times that
are cubic in the number of data points. We employ Bregman matrix divergences as the measures
of nearness—these divergences are natural for learning low-rank kernels since they preserve rank
as well as positive semidefiniteness. Special cases of our framework yield faster algorithms for
various existing learning problems, and experimental results demonstrate that our algorithms can
effectively learn both low-rank and full-rank kernel matrices.
Keywords: kernel methods, Bregman divergences, convex optimization, kernel learning, matrix
nearness

1. Introduction

Underlying many machine learning algorithms is a measure of distance, or divergence, between
data objects. A number of factors affect the choice of the particular divergence measure used: the
data may be intrinsically suited for a specific divergence measure, an algorithm may be faster or
easier to implement for some measure, or analysis may be simpler for a particular measure. For
example, the KL-divergence is popular when the data is represented as discrete probability vectors
(i.e., non-negative vectors whose sum is 1), and the `1-norm distance is often used when sparsity is
desired.

When measuring the divergence between matrices, similar issues must be considered. Typically,
matrix norms such as the Frobenius norm are used, but these measures are not appropriate for all
problems. Analogous to the KL-divergence for vectors, when the matrices under consideration are
positive semidefinite (i.e., they have non-negative eigenvalues), then one may want to choose a
divergence measure that is well-suited to such matrices; positive semidefinite (PSD) matrices arise
frequently in machine learning, in particular with kernel methods. Existing learning techniques
involving PSD matrices often employ matrix norms, but their use requires an additional constraint
that the matrix stay positive semidefinite, which ultimately leads to algorithms involving expensive
eigenvector computation. Kernel alignment, a measure of similarity between PSD matrices used
in some kernel learning algorithms (Cristianini et al., 2002), also requires explicit enforcement of
positive definiteness. On the other hand, the two main divergences used in this paper are defined only
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over the cone of positive semidefinite matrices, and our algorithms lead to automatic enforcement
of positive semidefiniteness.

This paper focuses on kernel learning using two divergence measures between PSD matrices—
the LogDet divergence and the von Neumann divergence. Our kernel learning goal is to find a
PSD matrix which is as close as possible (under the LogDet or von Neumann divergence) to some
input PSD matrix, but which additionally satisfies linear equality or inequality constraints. We
argue that these two divergences are natural for problems involving positive definite matrices. First,
they have several properties which make optimization computationally efficient and useful for a
variety of learning tasks. For example, the LogDet divergence has a scale-invariance property which
makes it particularly well-suited to machine learning applications. Second, these divergences arise
naturally in several problems; for example, the LogDet divergence arises in problems involving
the differential relative entropy between Gaussian distributions while the von Neumann divergence
arises in quantum computing and problems such as online PCA.

One of the key properties that we demonstrate and exploit is that, for low-rank matrices, the
divergences enjoy a range-space preserving property. That is, the LogDet divergence between two
matrices is finite if and only if their range spaces are identical, and a similar property holds for the
von Neumann divergence. This property leads to simple projection-based algorithms for learning
PSD (or kernel) matrices that preserve the rank of the input matrix—if the input matrix is low-rank
then the resulting learned matrix will also be low-rank. These algorithms are efficient; they scale
linearly with the number of data points n and quadratically with the rank of the input matrix. The
efficiency of the algorithms arises from new results developed in this paper which demonstrate that
Bregman projections for these matrix divergences can be computed in time that scales quadratically
with the rank of the input matrix. Our algorithms stand in contrast to previous work on learning
kernel matrices, which scale as O(n3) or worse, relying on semidefinite programming or repeated
eigenvector computation. We emphasize that our methods preserve rank, so they can learn low-rank
kernel matrices when the input kernel matrix has low rank; however our methods do not decrease
rank so they are not applicable to the non-convex problem of finding a low-rank solution given a
full (or higher) rank input kernel matrix.

One special case of our method is the DefiniteBoost optimization problem from Tsuda et al.
(2005); our analysis shows how to improve the running time of their algorithm by a factor of n,
from O(n3) time per projection to O(n2). This projection is also used in online-PCA (Warmuth
and Kuzmin, 2006), and we obtain a factor of n speedup for that problem as well. In terms of
experimental results, a direct application of our techniques is in learning low-rank kernel matrices
in the setting where we have background information for a subset of the data; we discuss and
experiment with learning low-rank kernel matrices for classification and clustering in this setting,
demonstrating that we can scale to large data sets. We also discuss the use of our divergences for
learning Mahalanobis distance functions, which allows us to move beyond the transductive setting
and generalize to new points. In this vein, we empirically compare our methods to existing metric
learning algorithms; we are particularly interested in large-scale applications, and discuss some
recent applications of the algorithms developed in this paper to computer vision tasks.

2. Background and Related Work

In this section, we briefly review relevant background material and related work.
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2.1 Kernel Methods

Given a set of training points a1, ...,an, a common step in kernel algorithms is to transform the data
using a nonlinear function ψ. This mapping, typically, represents a transformation of the data to a
higher-dimensional feature space. A kernel function κ gives the inner product between two vectors
in the feature space:

κ(ai,a j) = ψ(ai) ·ψ(a j).

It is often possible to compute this inner product without explicitly computing the expensive map-
ping of the input points to the higher-dimensional feature space. Generally, given n points ai, we
form an n× n matrix K, called the kernel matrix, whose (i, j) entry corresponds to κ(ai,a j). In
kernel-based algorithms, the only information needed about the input data points is the inner prod-
ucts; hence, the kernel matrix provides all relevant information for learning in the feature space. A
kernel matrix formed from any set of input data points is always positive semidefinite. See Shawe-
Taylor and Cristianini (2004) for more details.

2.2 Low-Rank Kernel Representations and Kernel Learning

Despite the popularity of kernel methods in machine learning, many kernel-based algorithms scale
poorly; low-rank kernel representations address this issue. Given an n× n kernel matrix K, if the
matrix is of low rank, say r < n, we can represent the kernel matrix in terms of a factorization
K = GGT , with G an n× r matrix.

In addition to easing the burden of memory overhead from O(n2) storage to O(nr), this low-rank
decomposition can lead to improved efficiency. For example, Fine and Scheinberg (2001) show that
SVM training reduces from O(n3) to O(nr2) when using a low-rank decomposition. Empirically,
the algorithm in Fine and Scheinberg (2001) outperforms other SVM training algorithms in terms
of training time by several factors. In clustering, the kernel k-means algorithm (Dhillon et al., 2004)
has a running time of O(n2) per iteration, which can be improved to O(nrc) time per iteration with
a low-rank kernel representation, where c is the number of desired clusters. Low-rank kernel rep-
resentations are often obtained using incomplete Cholesky decompositions (Fine and Scheinberg,
2001). Recently, work has been done on using labeled data to improve the quality of low-rank
decompositions (Bach and Jordan, 2005).

Low-rank decompositions have also been employed for solving a number of other machine
learning problems. For example, in Kulis et al. (2007b), low-rank decompositions were employed
for clustering and embedding problems. In contrast to work in this paper, their focus was on using
low-rank decompositions to develop algorithms for such problems as k-means and maximum vari-
ance unfolding. Other examples of using low-rank decompositions to speed up machine learning
algorithms include Weinberger et al. (2006) and Torresani and Lee (2006).

In this paper, our focus is on using distance and similarity constraints to learn a low-rank kernel
matrix. In related work, Lanckriet et al. (2004) have studied transductive learning of the kernel
matrix and multiple kernel learning using semidefinite programming. In Kwok and Tsang (2003),
a formulation based on idealized kernels is presented to learn a kernel matrix when some labels
are given. Another recent paper (Weinberger et al., 2004) considers learning a kernel matrix for
nonlinear dimensionality reduction; like much of the research on learning a kernel matrix, they
use semidefinite programming and the running time is at least cubic in the number of data points.
Our work is closest to that of Tsuda et al. (2005), who learn a (full-rank) kernel matrix using von
Neumann divergence under linear constraints. However, our framework is more general and our
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emphasis is on low-rank kernel learning. Our algorithms are more efficient than those of Tsuda
et al.; we use exact instead of approximate projections to speed up convergence, and we consider
algorithms for the LogDet divergence in addition to the von Neumann divergence. For the case
of the von Neumann divergence, our algorithm also corrects a mistake in Tsuda et al. (2005); see
Appendix B for details.

An earlier version of our work appeared in Kulis et al. (2006). In this paper, we substantially
expand on the analysis of Bregman matrix divergences, giving a formal treatment of low-rank Breg-
man matrix divergences and proving several new properties. We also present further algorithmic
analysis for the LogDet and von Neumann algorithms, provide connections to semidefinite pro-
gramming and metric learning, and present additional experiments, including ones on much larger
data sets.

3. Optimization Framework

We begin with an overview of the optimization framework applied to the problem studied in this
paper. We introduce Bregman matrix divergences—the matrix divergence measures considered in
this paper—and discuss their properties. Then we overview Bregman’s method, the optimization
algorithm that is used to learn low-rank kernel matrices.

3.1 Bregman Matrix Divergences

To measure the nearness between two matrices, we will use Bregman matrix divergences, which
are generalizations of Bregman vector divergences. Let ϕ be a real-valued strictly convex function
defined over a convex set S = dom(ϕ) ⊆ R

m such that ϕ is differentiable on the relative interior of
S. The Bregman vector divergence (Bregman, 1967) with respect to ϕ is defined as

Dϕ(x,y) = ϕ(x)−ϕ(y)− (x−y)T ∇ϕ(y).

For example, if ϕ(x) = xT x, then the resulting Bregman divergence is Dϕ(x,y) = ‖x−y‖2
2. An-

other example is ϕ(x) = ∑i(xi logxi− xi), where the resulting Bregman divergence is the (unnor-
malized) relative entropy Dϕ(x,y) = KL(x,y) = ∑i(xi log xi

yi
− xi + yi). Bregman divergences gen-

eralize many properties of squared loss and relative entropy. See Censor and Zenios (1997) for more
details.

We can naturally extend this definition to real, symmetric n×n matrices, denoted by Sn. Given
a strictly convex, differentiable function φ : Sn→R, the Bregman matrix divergence is defined to be

Dφ(X ,Y ) = φ(X)−φ(Y )− tr((∇φ(Y ))T (X−Y )),

where tr(A) denotes the trace of matrix A. Examples include φ(X) = ‖X‖2
F , which leads to the

well-known squared Frobenius norm ‖X −Y‖2
F . In this paper, we will extensively study two less

well-known divergences. Let φ be the entropy of the eigenvalues of a positive definite matrix.
Specifically, if X has eigenvalues λ1, ...,λn, let φ(X) = ∑i(λi logλi−λi), which may be expressed
as φ(X) = tr(X logX−X), where logX is the matrix logarithm.1 The resulting Bregman divergence
is

DvN(X ,Y ) = tr(X logX−X logY −X +Y ), (1)

1. If X = V ΛV T is the eigendecomposition of the positive definite matrix X , the matrix logarithm can be written as
V logΛV T , where logΛ is the diagonal matrix whose entries contain the logarithm of the eigenvalues. The matrix
exponential can be defined analogously.

344



LOW-RANK KERNEL LEARNING WITH BREGMAN MATRIX DIVERGENCES

and we call it the von Neumann divergence. This divergence is also called quantum relative entropy,
and is used in quantum information theory (Nielsen and Chuang, 2000). Another important matrix
divergence arises by taking the Burg entropy of the eigenvalues, that is, φ(X) =−∑i logλi, or equiv-
alently as φ(X) =− logdetX . The resulting Bregman divergence over positive definite matrices is

D`d(X ,Y ) = tr(XY−1)− logdet(XY−1)−n, (2)

and is commonly called the LogDet divergence (we called it the Burg matrix divergence in Kulis
et al. (2006)). For now, we assume that X is positive definite for both divergences; later we will
discuss extensions when X is positive semidefinite, that is, low-rank.

3.2 Properties

It is important to justify the use of the divergences introduced above for kernel learning, so we now
discuss some important properties of the divergences.

The most obvious computational benefit of using the divergences for kernel learning arises from
the fact that they are defined only over positive definite matrices. Because of this, our algorithms
will not need to explicitly constrain our learned matrices to be positive definite, which in turn leads
to efficient algorithms. Beyond automatic enforcement of positive definiteness, we will see later
that the divergences have a range-space preserving property, which leads to further computational
benefits.

Appendix A covers some important properties of the divergences. Examples include the scale-
invariance of the LogDet divergence (D`d(X ,Y ) = D`d(αX ,αY )) and, more generally, transformation-
invariance (D`d(X ,Y ) = D`d(MT XM,MTY M) for any square, non-singular M), which are useful
properties for learning algorithms. For instance, if we have applied a linear kernel over a set of
data vectors, scale-invariance implies that we can scale all the features of our data vectors, and our
learned kernel will simply be scaled by the same factor. Similarly, if we scale each of the features in
our data vectors differently (for example, if some features are measured in feet and others in meters
as opposed to all features measured in feet), then the learned kernel will be scaled by an appropriate
diagonal transformation. Note that this natural property does not hold for loss functions such as the
Frobenius norm distance.

Another critical property concerns generalization to new points. Typically kernel learning algo-
rithms work in the transductive setting, meaning that all of the data is given up-front, with some of
it labeled and some unlabeled, and one learns a kernel matrix over all the data points. If some new
data point is given, there is no way to compare it to existing data points, so a new kernel matrix must
be learned. However, as has recently been shown in Davis et al. (2007), we can move beyond the
transductive setting when using the LogDet divergence, and can evaluate the kernel function over
new data points. A similar result can be shown for the von Neumann divergence. We overview this
recent work in Section 6.1, though the main focus in this paper remains in the transductive setting.

Furthermore, both the LogDet divergence and the von Neumann divergence have precedence in
a number of areas. The von Neumann divergence is used in quantum information theory (Nielsen
and Chuang, 2000), and has been employed in machine learning for online principal component
analysis (Warmuth and Kuzmin, 2006). The LogDet divergence is called Stein’s loss in the statistics
literature, where it has been used as a measure of distance between covariance matrices (James and
Stein, 1961). It has also been employed in the optimization community; the updates for the BFGS
and DFP algorithms (Fletcher, 1991), both quasi-Newton algorithms, can be viewed as LogDet
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optimization programs. In particular, the update to the approximation of the Hessian given in these
algorithms is the result of a LogDet minimization problem with linear constraints (given by the
secant equation).

For all three divergences introduced above, the generating convex function of the Bregman ma-
trix divergence can be viewed as a composition φ(X) = (ϕ◦λ)(X), where λ(X) is the function that
lists the eigenvalues in algebraically decreasing order, and ϕ is a strictly convex function defined
over vectors (Dhillon and Tropp, 2007). In general, every such ϕ defines a Bregman matrix di-
vergence over real, symmetric matrices via the eigenvalue mapping. For example, if ϕ(x) = xT x,
then the resulting composition (ϕ◦λ)(X) is the squared Frobenius norm. We call such divergences
spectral Bregman matrix divergences.

Consider a spectral Bregman matrix divergence Dφ(X ,Y ), where φ = ϕ ◦λ. We now show an
alternate expression for Dφ(X ,Y ) based on the eigenvalues and eigenvectors of X and Y , which will
prove to be useful when motivating extensions to the low-rank case.

Lemma 1 Let the eigendecompositions of X and Y be V ΛV T and UΘUT respectively, and assume
that ϕ is separable, that is, φ(X) = (ϕ◦λ)(X) = ∑i ϕi(λi). Then

Dφ(X ,Y ) = ∑
i, j

(vT
i u j)

2(ϕi(λi)−ϕ j(θ j)− (λi−θ j)∇ϕ j(θ j)).

Proof We have

Dφ(X ,Y ) = φ(X)−φ(Y )− tr((X−Y )T (∇φ(Y )))

= ∑
i

ϕi(λi)−∑
j

ϕ j(θ j)− tr((V ΛV T −UΘUT )T (∇φ(Y )))

= ∑
i, j

(vT
i u j)

2ϕi(λi)−∑
i, j

(vT
i u j)

2ϕ j(θ j)− tr((V ΛV T −UΘUT )T (∇φ(Y ))).

The second line above uses the separability of ϕ, while the third line uses the fact that ∑i(v
T
i u j)

2 =

∑ j(v
T
i u j)

2 = 1. We can express ∇φ(Y ) as:

∇φ(Y ) = U







∇ϕ1(θ1) 0 . . .
0 ∇ϕ2(θ2) . . .
...

...
. . .






UT ,

and so we have tr(UΘUT ∇φ(Y )) = ∑ j θ j∇ϕ j(θ j) = ∑i, j(v
T
i u j)

2θ j∇ϕ j(θ j). Finally, the term
tr(V ΛV T ∇φ(Y )) can be expanded as ∑i, j(v

T
i u j)

2λi∇ϕ j(θ j). Putting this all together, we have:

Dφ(X ,Y ) = ∑
i, j

(vT
i u j)

2(ϕi(λi)−ϕ j(θ j)−∇ϕ j(θ j) · (λi−θ j)).

Note that each of the divergences discussed earlier—the squared Frobenius divergence, the
LogDet divergence, and the von Neumann divergence—arise from separable convex functions. Fur-
thermore, in these three cases, the functions ϕi do not depend on i (so we denote ϕ = ϕ1 = . . . = ϕn)
and the corollary below follows:
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Corollary 2 Given X = V ΛV T and Y = UΘUT , the squared Frobenius, von Neumann and LogDet
divergences satisfy:

Dφ(X ,Y ) = ∑
i, j

(vT
i u j)

2Dϕ(λi,θ j). (3)

This formula highlights the connection between a separable spectral matrix divergence and the
corresponding vector divergence. It also illustrates how the divergence relates to the geometrical
properties of the argument matrices as represented by the eigenvectors.

3.3 Problem Description

We now give a formal statement of the problem that we study in this paper. Given an input kernel
matrix X0, we attempt to solve the following for X :

minimize Dφ(X ,X0)

subject to tr(XAi)≤ bi, 1≤ i≤ c,

rank(X)≤ r,

X � 0. (4)

Any of the linear inequality constraints tr(XAi) ≤ bi may be replaced with equalities. The above
problem is clearly non-convex in general, due to the rank constraint. However, when the rank of
X0 does not exceed r, then this problem turns out to be convex when we use the von Neumann and
LogDet matrix divergences. This is because these divergences restrict the search for the optimal X
to the linear subspace of matrices that have the same range space as X0. The details will emerge
in Section 4. Another advantage of using the von Neumann and LogDet divergences is that the al-
gorithms used to solve the minimization problem implicitly maintain the positive semidefiniteness
constraint, so no extra work needs to be done to enforce positive semidefiniteness. This is in con-
trast to the squared Frobenius divergence, where the positive semidefiniteness constraint has to be
explicitly enforced.

Though it is possible to handle general linear constraints of the form tr(XAi) ≤ bi, we will
focus on two specific types of constraints, which will be useful for our kernel learning applications.
The first is a distance constraint. The squared Euclidean distance in feature space between the jth
and the kth data points is given by X j j + Xkk− 2X jk. The constraint X j j + Xkk− 2X jk ≤ bi can be
represented as tr(XA) ≤ bi, where Ai = ziz

T
i , and zi( j) = 1, zi(k) = −1, and all other entries 0

(equivalently, zi = e j − ek). The second type of constraint has the form X jk ≤ bi, which can be
written as tr(XAi)≤ bi using Ai = 1

2(e je
T
k +eke

T
j ) (we maintain symmetry of Ai).

For the algorithms developed in Section 5, we will assume that the matrices Ai in (4) are rank
one (so Ai = ziz

T
i ) and that r = rank(X0) (we briefly discuss extensions to higher-rank constraints

in Section 6.2.2). In this case, we can write the optimization problem as:

minimize Dφ(X ,X0)

subject to zT
i Xzi ≤ bi, 1≤ i≤ c,

rank(X)≤ r,

X � 0. (5)
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Furthermore, we assume that there exists a feasible solution to the above problem; we discuss an
extension to the infeasible case involving slack variables in Section 6.2.1. Note that in this case, we
assume bi ≥ 0, as otherwise there cannot be a feasible solution.

The key application of the above optimization problem is in learning a kernel matrix in the
setting where we have side information about some of the data points (e.g., labels or constraints),
and we want to learn a kernel matrix over all the data points in order to perform classification,
regression, or semi-supervised clustering. We will also discuss other applications throughout the
paper.

3.4 Bregman Projections

Consider the convex optimization problem (4) presented above, but without the rank constraint (we
will see how to handle the rank constraint later). To solve this problem, we use the method of
Bregman projections (Bregman, 1967; Censor and Zenios, 1997). Suppose we wish to minimize
Dφ(X ,X0) subject to linear equality and inequality constraints. The idea behind Bregman projec-
tions is to choose one constraint per iteration, and perform a projection so that the current solution
satisfies the chosen constraint. Note that the projection is not an orthogonal projection, but rather
a Bregman projection, which is tailored to the particular function that is being minimized. In the
case of inequality constraints, an appropriate correction is also enforced. This process is then re-
peated by cycling through the constraints (or employing a more sophisticated control mechanism).
This method may also be viewed as a dual coordinate ascent procedure that optimizes the dual with
respect to a single dual variable per iteration (with all other dual variables remaining fixed). Un-
der mild conditions, it can be shown that the method of cyclic Bregman projections (or a control
mechanism that visits each constraint infinitely often) converges to the globally optimal solution;
see Censor and Zenios (1997) and Dhillon and Tropp (2007) for more details.

Now for the details of each iteration. For an equality constraint of the form tr(XAi) = bi, the
Bregman projection of the current iterate Xt may be computed by solving:

minimizeX Dφ(X ,Xt)

subject to tr(XAi) = bi. (6)

Introduce the dual variable αi, and form the Lagrangian L(X ,αi) = Dφ(X ,Xt)+ αi(bi− tr(XAi)).
By setting the gradient of the Lagrangian (with respect to X and αi) to zero, we can obtain the
Bregman projection by solving the resulting system of equations simultaneously for αi and Xt+1:

∇φ(Xt+1) = ∇φ(Xt)+αiAi (7)

tr(Xt+1Ai) = bi.

For an inequality constraint of the form tr(XAi) ≤ bi, let νi ≥ 0 be the corresponding dual vari-
able. To maintain non-negativity of the dual variable (which is necessary for satisfying the KKT
conditions), we can solve (7) for αi and perform the following update:

α′i = min(νi,αi), νi← νi−α′i. (8)

See Appendix B for a discussion on why the dual variable corrections are needed. Clearly the update
guarantees that νi ≥ 0. Finally, update Xt+1 via

∇φ(Xt+1) = ∇φ(Xt)+α′iAi. (9)
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Note that (8) may be viewed as a correction step that follows the projection given by (7). Both of
our algorithms in Section 5 are based on this method, which iteratively chooses a constraint and
performs a Bregman projection until convergence. The main difficulty lies in efficiently solving the
nonlinear system of equations given in (7).

In the case where Ai = ziz
T
i , by calculating the gradient for the LogDet and von Neumann

matrix divergences, respectively, (7) simplifies to:

Xt+1 =
(

X−1
t −αiziz

T
i

)−1

Xt+1 = exp(log(Xt)+αiziz
T
i ), (10)

subject to zT
i Xt+1zi = bi. In (10), exp and log denote the matrix exponential and matrix logarithm,

respectively. As we will see, for the von Neumann and LogDet divergences, these projections can
be computed very efficiently (and are thus more desirable than other methods that involve multiple
constraints at a time).

4. Bregman Divergences for Rank-Deficient Matrices

As given in (1) and (2), the von Neumann and LogDet divergences are undefined for low-rank
matrices. For the LogDet divergence, the convex generating function φ(X) =− logdetX is infinite
when X is singular, that is, its effective domain is the set of positive definite matrices. For the von
Neumann divergence the situation is somewhat better, since one can define φ(X) = tr(X logX −X)
via continuity for rank-deficient matrices.

The key to using these divergences in the low-rank setting comes from restricting the convex
function φ to the range spaces of the matrices. We motivate our approach using Corollary 2, before
formalizing it in Section 4.2. Subsequently, we discuss the computation of Bregman projections for
low-rank matrices in Section 4.3.

4.1 Motivation

If X and Y have eigendecompositions X = V ΛV T and Y = UΘUT , respectively, then whenever X or
Y is of low-rank, some eigenvalues λi of X or θ j of Y are equal to zero. Consequently, if we could
apply Corollary 2, the Dϕ(λi,θ j) terms that involve zero eigenvalues need careful treatment. More
specifically, for the von Neumann divergence we have:

Dϕ(λi,θ j) = λi logλi−λi logθ j−λi +θ j. (11)

Using the convention that 0 log0 = 0, Dϕ(λi,θ j) equals 0 when both λi and θ j are 0, but is infinite
when θ j is 0 but λi is non-zero. Similarly, with the LogDet divergence, we have

Dϕ(λi,θ j) =
λi

θ j
− log

λi

θ j
−1. (12)

In cases where λi = 0 and θ j 6= 0, or λi 6= 0 and θ j = 0, Dϕ(λi,θ j) is infinite.
For finiteness of the corresponding matrix divergence we require that vT

i u j = 0 whenever
Dϕ(λi,θ j) is infinite so a cancellation will occur (via appropriate continuity arguments) and the
divergence will be finite. This leads to properties of rank-deficient X and Y that are required for
the matrix divergence to be finite. The following observations are discussed more formally in Sec-
tion 4.2.
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Observation 1 The von Neumann divergence DvN(X ,Y ) is finite iff range(X)⊆ range(Y ).

The term λi logθ j from (11) is −∞ if θ j = 0 but λi 6= 0. By using Corollary 2 and distributing
the (vT

i u j)
2 term into the scalar divergence, we obtain: λi(v

T
i u j)

2 logθ j. Thus, if vT
i u j = 0 when

θ j = 0, then λi(v
T
i u j)

2 logθ j = 0 (using 0log0 = 0), and the divergence is finite. When θ j = 0, the
corresponding eigenvector u j is in the null space of Y ; therefore, for finiteness of the divergence,
every vector u j in the null space of Y is orthogonal to any vector vi in the range space of X . This
implies that the null space of Y contains the null space of X or, equivalently, range(X)⊆ range(Y ).

Observation 2 The LogDet divergence D`d(X ,Y ) is finite iff range(X) = range(Y ).

To show the observation, we adopt the conventions that log 0
0 = 0 and 0

0 = 1 in (12), which
follow by continuity assuming that the rate at which the numerator and denominator approach zero
is the same. Then, distributing the (vT

i u j)
2 term into Dϕ, we have that vi and u j must be orthogonal

whenever λi = 0,θ j 6= 0 or λi 6= 0,θ j = 0. This in turn says that: a) every vector u j in the null space
of Y must be orthogonal to every vector vi in the range space of X and, b) every vector vi in the null
space of X must be orthogonal to every vector u j in the range space of Y . It follows that the range
spaces of X and Y are equal.

Assuming the eigenvalues of X and Y are listed in non-increasing order, we can write the low-
rank equivalent of (3) simply as:

Dφ(X ,Y ) = ∑
i, j≤r

(vT
i u j)

2Dϕ(λi,θ j),

where r = rank(X).
If we now revisit our optimization problem formulated in (4), where we aim to minimize

Dφ(X ,X0), we see that the LogDet and von Neumann divergences naturally maintain rank con-
straints if the problem is feasible. For the LogDet divergence, the equality of the range spaces of
X and X0 implies that when minimizing Dφ(X ,X0), we maintain rank(X) = rank(X0), assuming
that there is a feasible X with a finite Dφ(X ,X0). Similarly, for the von Neumann divergence, the
property that range(X)⊆ range(X0) implies rank(X)≤ rank(X0).

4.2 Formalization Via Restrictions on the Range Space

The above section demonstrated informally that for Dφ(X ,Y ) to be finite the range spaces of X and
Y must be equal for the LogDet divergence, and the range space of X must be contained in the range
space of Y for the von Neumann divergence.

We now formalize the generalization to low-rank matrices. Let W be an orthogonal n×r matrix,
such that its columns span the range space of Y . We will use the following simple and well known
lemma later on:

Lemma 3 Let Y be a symmetric n× n matrix with rank(Y ) ≤ r, and let W be an n× r column
orthogonal matrix (W TW = I) with range(Y )⊆ range(W ). Then Y = WW TYWW T .

Proof Extend W to a full n×n orthogonal matrix and denote it by W f . Notice that the last (n− r)
rows of W T

f Y and the last (n− r) columns of YW f consist of only zeros. It follows that the matrix
Y1 = W T

f YWf contains only zeros except for the r× r sub-matrix in the top left corner, which coin-

cides with Ŷ = W TYW . Observe that Y = W fY1W T
f = WŶW T = WW TYWW T to finish the proof.
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We are now ready to extend the domain of the von Neumann and LogDet divergences to low-
rank matrices.

Definition 4 Consider the positive semidefinite n× n matrices X and Y that satisfy range(X) ⊆
range(Y ) when considering the von Neumann divergence, and range(X) = range(Y ) when consid-
ering the LogDet divergence. Let W be an n× r column orthogonal matrix such that range(Y ) ⊆
range(W ) and define:

Dφ(X ,Y ) = Dφ,W (X ,Y ) = Dφ(W
T XW,W TYW ), (13)

where Dφ is either the von Neumann or the LogDet divergence.

The first equality in (13) implicitly assumes that the right hand side is not dependent on the choice
of W .

Lemma 5 In Definition 4, Dφ,W (X ,Y ) is independent of the choice of W.

Proof All the n× r orthogonal matrices with the same range space as W can be expressed as a
product WQ, where Q is an r× r orthogonal matrix. Introduce X̂ = W T XW and Ŷ = W TYW and
substitute WQ in place of W in (13):

Dφ,WQ(X ,Y ) = Dφ((WQ)T X(WQ),(WQ)TY (WQ))

= Dφ(Q
T X̂Q,QT Ŷ Q)

= Dφ(X̂ ,Ŷ ) = Dφ,W (X ,Y ).

The first equality is by Definition 4, and the third follows from the fact that the von Neumann and
the LogDet divergences are invariant under any orthogonal similarity transformation2 (see Proposi-
tion 11 in Appendix A).

We now show that Definition 4 is consistent with Corollary 2, demonstrating that our low-rank
formulation agrees with the informal discussion given earlier.

Theorem 6 Let the positive semidefinite matrices X and Y have eigendecompositions X = V ΛV T ,
Y = UΘUT and let range(X)⊆ range(Y ). Let the rank of Y equal r. Assuming that the eigenvalues
of X and Y are sorted in non-increasing order, that is, λ1 ≥ λ2 ≥ ... ≥ λr and θ1 ≥ θ2 ≥ ... ≥ θr,
then

DvN(X ,Y ) = ∑
i, j≤r

(vT
i u j)

2(λi logλi−λi logθ j−λi +θ j).

Proof Denote the upper left r× r submatrices of Λ and Θ by Λr and Θr respectively, and the
corresponding reduced eigenvector matrices for X and Y by Vr and Ur. Picking W in (13) to equal
Ur, we get:

DvN(X ,Y ) = DvN(UT
r XUr,U

T
r YUr) = DvN((UT

r Vr)Λr(V
T
r Ur),Θr).

The arguments on the right hand side are r× r matrices and Θr is not rank-deficient. We can now
apply Corollary 2 to get the result.

2. In fact, in the case of the LogDet divergence we have invariance under any invertible congruence transformation, see
Proposition 12 in Appendix A.
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Theorem 7 Let the positive semidefinite matrices X and Y have eigendecompositions X = V ΛV T ,
Y = UΘUT , and let range(X) = range(Y ) and assume that the eigenvalues of X and Y are sorted in
decreasing order. Then:

D`d(X ,Y ) = ∑
i, j≤r

(vT
i u j)

2
(

λi

θ j
− log

λi

θ j
−1

)

.

Proof Similar to the proof of Theorem 6. Note that the range spaces must coincide in this case,
because the determinant of XY−1 should not vanish for the restricted transformations, which agrees
with the range(X) = range(Y ) restriction.

We next show that the optimization problem and Bregman’s projection algorithm for low-rank ma-
trices can be cast as a full rank problem in a lower dimensional space, namely the range space. This
equivalence implies that we do not have to rederive the convergence proofs and other properties of
Bregman’s algorithm in the low-rank setting.

Consider the optimization problem (4) for low-rank X0, and denote a suitable orthogonal matrix
as required in Definition 4 by W . The matrix of the eigenvectors of the reduced eigendecomposition
of X0 is a suitable choice. Consider the following matrix mapping:

M −→ M̂ = W T MW.

By Lemma 3, the mapping is one-to-one on the set of symmetric matrices with range space con-
tained in range(W ). We now apply the mapping to all matrices in the optimization problem (4) to
obtain:

minimize Dφ(X̂ , X̂0)

subject to tr(X̂ Âi)≤ bi, 1≤ i≤ c

rank(X̂)≤ r

X̂ � 0. (14)

The rank constraint is automatically satisfied when rank(X0) = r and the problem is feasible. Clearly,
X̂ � 0 if and only if X � 0. By Definition 4, Dφ(X̂ , X̂0) = Dφ(X ,X0). Finally, the next lemma verifies
that the constraints are equivalent as well.

Lemma 8 Given a column orthogonal n× r matrix W satisfying range(X) ⊆ range(W ), it follows
that tr(X̂ Âi) = tr(XAi), where X̂ = W T XW, Âi = W T AiW.

Proof Choose a reduced rank-r eigendecomposition of X to be V ΛV T such that the columns of V
form an orthogonal basis of range(W ). Note that Λ will be singular when rank(X) is less than r.
There exists an r× r orthogonal Q that satisfies W = V Q, and so:

tr(X̂ Âi) = tr((W T XW )(W T AiW )) = tr(QTV TV ΛV TV QQTV T AiV Q)

= tr(V QQT ΛQQTV T Ai) = tr(V ΛV T Ai) = tr(XAi).

If we assume that the optimization problem (4) has a (rank-deficient) solution with finite divergence
measure, then the corresponding full-rank optimization problem (14) also has a solution. Con-
versely, by Lemma 3, for a solution X̂ of (14), there is a unique solution of (4), namely X = W X̂W T

(with finite Dφ(X ,X0)) that satisfies the range space restriction.
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4.3 Bregman Projections for Rank-deficient Matrices

Lastly, we derive the explicit updates for Bregman’s algorithm in the low-rank setting. From now
on we omit the constraint index for simplicity. Recall (7), which we used to calculate the projection
update for Bregman’s algorithm and apply it to the mapped problem (14):

∇φ(X̂t+1) = ∇φ(X̂t)+αÂ

tr(X̂t+1Â) = b.

In case of the von Neumann divergence this leads to the update X̂t+1 = exp(log(X̂t)+αÂ). The dis-
cussion in Section 4.2 and induction on t implies that Xt+1 = WX̂t+1W T (with W as in Definition 4),
or explicitly:

Xt+1 = W exp(log(W T XtW )+α(W T AW ))W T .

If we choose W = Vt from the reduced eigendecomposition Xt = VtΛtV T
t , then the update is written

as:
Xt+1 = Vt exp(log(Λt)+αV T

t AVt)V
T

t , (15)

which we will use in the von Neumann kernel learning algorithm. Note that the limit of exp(log(Xt +
εI)+ αA) as ε approaches zero yields the same formula, which becomes clear if we apply a basis
transformation that puts Xt in diagonal form.

The same argument applies to the Bregman projection for the LogDet divergence. In this case
we arrive at the update:

Xt+1 = Vt((V
T

t XtVt)
−1−α(V T

t AVt))
−1V T

t , (16)

using Lemma 3 and the fact that range(Xt+1) = range(Xt). The right hand side of (16) can be
calculated without any eigendecomposition as we will show in Section 5.1.1.

5. Algorithms

In this section, we derive efficient algorithms for solving the optimization problem (5) for low-rank
matrices using the LogDet and von Neumann divergences.

5.1 LogDet Divergence

We first develop a cyclic projection algorithm to solve (5) when the matrix divergence is the LogDet
divergence.

5.1.1 MATRIX UPDATES

Consider minimizing D`d(X ,X0), the LogDet divergence between X and X0. As given in (16), the
projection update rule for low-rank X0 and a rank-one constraint matrix A = zzT is:

Xt+1 = Vt((V
T

t XtVt)
−1−α(V T

t zzTVt))
−1V T

t ,

where the eigendecomposition of Xt is VtΛtV T
t . Recall the Sherman-Morrison inverse formula (Sher-

man and Morrison, 1949; Golub and Van Loan, 1996):

(A+uvT )−1 = A−1− A−1uvT A−1

1+vT A−1u
.
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Applying this formula to the middle term of the projection update, we arrive at a simplified expres-
sion for Xt+1:

Xt+1 = Vt

(

V T
t XtVt +

αV T
t XtVtV T

t zzTVtV T
t XtVt

1−αzTVtV T
t XtVtV T

t z

)

V T
t

= Vt

(

Λt +
αΛtV T

t zzTVtΛt

1−αzTVtΛtV T
t z

)

V T
t

= VtΛtV
T

t +
αVtΛtV T

t zzTVtΛtV T
t

1−αzT Xtz

= Xt +
αXtzzT Xt

1−αzT Xtz
. (17)

Since Xt+1 must satisfy the constraint, i. e., tr(Xt+1zzT ) = zT Xt+1z = b, we can solve the following
equation for α:

zT
(

Xt +
αXtzzT Xt

1−αzT Xtz

)

z = b. (18)

Let p = zT Xtz. Note that in the case of distance constraints, p is the distance between the two data
points. When p 6= 0, elementary arguments reveal that there is exactly one solution for α provided
that b 6= 0. The unique solution, in this case, can be expressed as:

α =
1
p
− 1

b
. (19)

If we let
β = α/(1−αp), (20)

then our matrix update is given by

Xt+1 = Xt +βXtzzT Xt . (21)

This update is pleasant and surprising; usually the projection parameter for Bregman’s algo-
rithm does not admit a closed form solution (see Section 5.2.2 for the case of the von Neumann
divergence). In the case where p = 0, (18) rewrites to b = p/(1−αp), which has a solution if and
only if b = 0 (while α is arbitrary). It follows that z is in the null space of Xt , and by (17), Xt+1 = Xt .

The following lemma confirms the expectation that we remain in the positive semidefinite cone
and that the range space is unchanged.

Lemma 9 Given a positive semidefinite matrix Xt , the matrix Xt+1 from the update in (21) is positive
semidefinite with range(Xt+1) = range(Xt), assuming that (6) is feasible.

Proof Factor the positive semidefinite matrix Xt as GGT , where G is an n× r matrix and r =
rank(Xt). The LogDet update produces:

Xt+1 = GGT +βGGT zzT GGT = G(I +βGT zzT G)GT .

We deduce immediately that range(Xt+1)⊆ range(G) = range(Xt).
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In order to prove that Xt+1 is positive semidefinite and that the range space does not shrink,
it suffices to show that all eigenvalues of βGT zzT G are strictly larger than −1, implying that I +
βGT zzT G remains positive definite. The only non-zero eigenvalue of the rank-one βGT zzT G
equals tr(βGT zzT G) = βzT GGT z = βp. According to (19) and (20) we calculate βp = b

p −1, and
noting that b, p > 0 completes the proof.

The update for Xt+1 can alternatively be written using the pseudoinverse (Golub and Van Loan,
1996):

Xt+1 = (X†
t −αÃi)

†,

where Ãi = WW T AiWW T for an orthogonal matrix W satisfying range(W ) = range(Xt).3

Lemma 10 Let Ãi = WW T AiWW T and W be an orthogonal n× r matrix such that range(W ) =
range(Xt). Then the following updates are equivalent:

a) Xt+1 = W ((W T XtW )−1−α(W T AiW ))−1W T

b) Xt+1 = (X†
t −αÃi)

†

Proof Since range(W ) = range(Xt), by Lemma 3 we have X̂t = W T XtW and Xt = WX̂tW T , where
X̂t is an invertible r× r matrix. Note that W X̂−1

t W T satisfies the properties required for the Moore-
Penrose pseudoinverse, for example:

Xt(WX̂−1
t W T )Xt = WX̂tW

TWX̂−1
t W TWX̂tW

T = WX̂tW
T = Xt .

Thus X†
t = WX̂−1

t W T and we finish the proof by rewriting:

(X†
t −αÃi)

† = (WX̂−1
t W T −αWW T AiWW T )† =

(

W (X̂−1
t −αW T AiW )W T )†

= W ((W T XtW )−1−α(W T AiW ))−1W T .

5.1.2 UPDATE FOR THE FACTORED MATRIX

A naive implementation of the update given in (21) costs O(n2) operations per iteration. However,
we can achieve a more efficient update for low-rank matrices by working on a suitable factored
form of the matrix Xt resulting in an O(r2) algorithm. Both the reduced eigendecomposition and
the Cholesky factorization are possible candidates for the factorization; we prefer the latter because
the resulting algorithm does not have to rely on iterative methods.

The positive semidefinite rank-r matrix Xt can be factored as GGT , where G is an n× r matrix,
and thus the update can be written as:

Xt+1 = G(I +βGT zzT G)GT .

The matrix I + βz̃iz̃
T
i , where z̃i = GT z, is an r× r matrix. To update G for the next iteration,

we factor this matrix as LLT ; then our new G is updated to GL. Since I + βz̃iz̃
T
i is a rank-one

3. In Kulis et al. (2006), we had inadvertently used Ai instead of Ãi.
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Algorithm 1 CHOLUPDATEMULT(α,x,B). Right multiplication of a lower triangular r× r matrix
B with the Cholesky factor of I +αxxT in O(r2) time.

Input: α,x,B, with I +αxxT � 0, B is lower triangular
Output: B← BL, with LLT = I +αxxT

1: α1 = α
2: for i = 1 to r do
3: t = 1+αix2

i
4: hi =

√
t

5: αi+1 = αi/t
6: t = Bii

7: s = 0
8: Bii = Biihi

9: for j = i−1 downto 1 do
10: s = s+ tx j+1

11: t = Bi j

12: Bi j = (Bi j +α j+1x js)h j

13: end for
14: end for

perturbation of the identity, this update can be done in O(r2) time using a standard Cholesky rank-
one update routine.

To increase computational efficiency, we note that G = G0B, where B is the product of all the
L matrices from every iteration and X0 = G0GT

0 . Instead of updating G explicitly at each iteration,
we simply update B to BL. The matrix I + βGT zzT G is then I + βBT GT

0 zzT G0B. In the case
of distance constraints, we can compute GT

0 z in O(r) time as the difference of two rows of G0.
The multiplication update BL appears to have O(r3) complexity, dominating the run time. In the
next section we derive an algorithm that combines the Cholesky rank-one update with the matrix
multiplication into a single O(r2) routine.

5.1.3 FAST MULTIPLICATION WITH A CHOLESKY UPDATE FACTOR

We efficiently combine the Cholesky rank-one update with the matrix multiplication in
CHOLUPDATEMULT given by Algorithm 1. A simple analysis of this algorithm reveals that it
requires 3r2 + 2r floating point operations (flops). This is opposed to the usual O(r3) time needed
by matrix multiplication. We devote this section to the development of this fast multiplication algo-
rithm.

Recall the algorithm used for the Cholesky factorization of an r× r matrix A (see Demmel,
1997, page 78):

for j = 1 to r do
l j j = (a j j−∑ j−1

k=1 l2
jk)

1/2

for i = j +1 to r do
li j = (ai j−∑ j−1

k=1 likl jk)/l j j

end for
end for
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We will derive a corresponding algorithm in a manner similar to Demmel (1997), while exploit-
ing the special structure present in our problem. Let us denote Ir +α1xxT by A (α1 = α) and write
it as a product of three block matrices:

A =





√

1+α1x2
1 0

α1x1√
1+α1x2

1

x2:r Ir−1





[

1 0
0 Ã22

]





√

1+α1x2
1

α1x1√
1+α1x2

1

xT
2:r

0 Ir−1



 .

It follows that Ã22 +
α2

1x2
1

1+α1x2
1
x2:rx

T
2:r = A22 = Ir−1 +α1x2:rx

T
2:r, leading to:

Ã22 = Ir−1 +
α1

1+α1x2
1

x2:rx
T
2:r.

Introduce α2 = α1
1+α1x2

1
and proceed by induction. We extract the following algorithm which calcu-

lates L satisfying LLT = A:

for j = 1 to r do
t = 1+α jx2

j

l j j =
√

t
α j+1 = α j/t
t = α jx j/l j j

for i = j +1 to r do
li j = txi

end for
end for

The above algorithm uses 1
2 r2 + 13

2 r flops to calculate L, while 1
2 r3 + O(r2) are needed for the

general algorithm. However, we do not necessarily have to calculate L explicitly, since the param-
eters αi together with x implicitly determine L. Notice that the cost of calculating α1,α2, . . . ,αr is
linear in r.

Next we show how to calculate uT L for a given vector u without explicitly calculating L and
arrive at an O(r) algorithm for this vector-matrix multiplication. The elements of vT = uT L are
equal to:

v1 = u1

√

1+α1x2
1 +

α2
√

1+α1x2
1

x1(u2x2 +u3x3 + . . .urxr)

v2 = u2

√

1+α2x2
2 +

α3
√

1+α2x2
2

x2(u3x3 + . . .urxr)

...

vr−1 = ur−1

√

1+αr−1x2
r−1 +

αr
√

1+αr−1x2
r−1

xr−1urxr

vr = ur

√

1+αrx2
r .

We can avoid the recalculation of some intermediate results if we evaluate vr first, followed by
vr−1 up to v1. This strategy leads to the following algorithm:
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Algorithm 2 Learning a low-rank kernel matrix in LogDet divergence under distance constraints.

Input: G0: input kernel factor matrix, that is, X0 = G0GT
0 , r: desired rank, {Ai}c

i=1: distance
constraints, where Ai = (ei1− ei2)(ei1− ei2)

T

Output: G: output low-rank kernel factor matrix, that is, X = GGT

1: Set B = Ir, i = 1, and ν j = 0 ∀ constraints j.
2: repeat
3: vT = G0(i1, :)−G0(i2, :)
4: w = BT v

5: α = min
(

νi,
1
‖w‖2

2
− 1

bi

)

6: νi← νi−α
7: β = α/(1−α‖w‖2

2)
8: Call CHOLUPDATEMULT(β,w,B) to factor I +βwwT = LLT and update B← BL.
9: Set i←mod(i+1,c).

10: until convergence of ν
11: return G = G0B

vr = ur

√

1+αrx2
r

s = 0;
for j = r−1 downto 1 do

s = s+u j+1x j+1

t =
√

1+α jx2
j

v j = u jt +α j+1x js/t
end for

Exactly 11r−6 flops are required by the above algorithm, and therefore we can readily multiply
an r× r matrix by L using 11r2−6r flops. Even fewer flops are sufficient to implement the matrix
multiplication if we observe that the square root expression above is repeatedly calculated for each
row, since it depends only on x j and α j. Additionally, when multiplying with a lower triangular ma-
trix, the presence of zeros allows further simplifications. Taking these considerations into account
we arrive at the previously presented Algorithm 1, which uses exactly 3r2 +2r flops.

5.1.4 KERNEL LEARNING ALGORITHM

We are now ready to present the overall algorithm for distance inequality constraints using the
LogDet divergence, see Algorithm 2. As discussed in the previous section, every projection can
be done in O(r2) time. Thus, cycling through all c constraints requires O(cr2) time, but the total
number of Bregman iterations may be large. The only dependence on the number of data points n
occurs in steps 3 and 11. The last step, multiplying G = G0B, takes O(nr2) time.

As discussed earlier, convergence is guaranteed since we have mapped the original low-rank
problem into a full-rank problem in a lower-dimensional space. Convergence can be checked by
using the dual variables ν. The cyclic projection algorithm can be viewed as a dual coordinate ascent
algorithm, thus convergence can be measured as follows: after cycling through all constraints, we
check to see how much ν has changed after a full cycle. At convergence, this change (as measured
with a vector norm) should be small.
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5.2 Von Neumann Divergence

In this section we develop a cyclic projection algorithm to solve (5) when the matrix divergence is
the von Neumann divergence.

5.2.1 MATRIX UPDATES

Consider minimizing DvN(X ,X0), the von Neumann divergence between X and X0. Recall the pro-
jection update (15) for constraint i:

Xt+1 = Vt exp(log(Λt)+αV T
t zzTVt)V

T
t .

If the eigendecomposition of the exponent log(Λt)+αV T
t zzTVt is UtΘt+1UT

t , then the eigendecom-
position of Xt+1 is given by Vt+1 = VtUt and Λt+1 = exp(Θt+1). This special eigenvalue problem
(diagonal plus rank one update) can be solved in O(r2) time; see Golub (1973), Gu and Eisenstat
(1994) and Demmel (1997). This means that the matrix multiplication Vt+1 = VtUt becomes the
most expensive step in the computation, yielding O(nr2) complexity.

We reduce this cost by modifying the decomposition slightly. Let Xt = VtWtΛtW T
t V T

t be the
factorization of Xt , where Wt is an r× r orthogonal matrix, initially W0 = Ir, while Vt and Λt are
defined as before. The matrix update becomes

Xt+1 = VtWt exp(logΛt +αW T
t V T

t zzTVtWt)W
T

t V T
t ,

yielding the following formulae:

Vt+1 = Vt , Wt+1 = WtUt , Λt+1 = exp(Θt+1),

where logΛt +αW T
t V T

t zzTVtWt =UtΘt+1UT
t . For a general rank-one constraint the product V T

t z is
calculated in O(nr) time, but for distance constraints O(r) operations are sufficient. The calculation
of W T

t V T
t z and computing the eigendecomposition UtΘt+1UT

t will both take O(r2) time. The matrix
product WtUt appears to cost O(r3) time, but in fact a right multiplication by U T

t can be approxi-
mated very accurately in O(r2 logr) and even in O(r2) time using the fast multipole method—see
Barnes and Hut (1986) and Greengard and Rokhlin (1987).

Since we repeat the above update calculations until convergence, we can avoid calculating the
logarithm of Λt at every step by maintaining Θt = logΛt throughout the algorithm.

5.2.2 COMPUTING THE PROJECTION PARAMETER

In the previous section, we assumed that the projection parameter α has already been calculated. In
contrast to the LogDet divergence, this parameter does not have a closed form solution. Instead, we
must compute α by solving the nonlinear system of equations given by (7).

In the von Neumann case and in the presence of distance constraints, the problem amounts to
finding the unique root of the function

f (α) = zTVtWt exp(Θt +αW T
t V T

t zzTVtWt)W
T

t V T
t z−b.

It can be shown that f (α) is monotone in α, see Sustik and Dhillon (2008).
Using the approach from the previous section, f (α) can be computed in O(r2) time. One nat-

ural choice to find the root of f (α) is to apply Brent’s general root finding method (Brent, 1973),
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Algorithm 3 Learning a low-rank kernel matrix in von Neumann matrix divergence under distance
constraints.
Input: V0,Λ0: input kernel factors, i. e., X0 = V0Λ0V T

0 , r: rank of desired kernel matrix, {Ai}c
i=1:

distance constraints, where Ai = (ei1− ei2)(ei1− ei2)
T

Output: V,Λ: output low-rank kernel factors, i. e., X = V ΛV T

1: Set W = Ir, Θ = logΛ0, i = 1, and ν j = 0 ∀ constraints j.
2: repeat
3: vT = V0(i1, :)−V0(i2, :)
4: w = W T v

5: Call ZEROFINDER(Θ,w,bi) to determine α.
6: β = min(νi,α)
7: νi← νi−β.
8: Compute eigendecomposition of Θ+βwwT = UΘ̃UT , Θ← Θ̃.
9: Update W ←WU .

10: i = mod (i+1,c)
11: until convergence of ν
12: return V = V0W , Λ = exp(Θ)

which does not need the calculation of the derivative of f (α). We have built an even more efficient
custom root finder that is optimized for this problem. We rarely need more than six evaluations per
projection to accurately compute α. A more detailed description of our root finder is beyond the
scope of this paper, see Sustik and Dhillon (2008) for details.

5.2.3 KERNEL LEARNING ALGORITHM

The algorithm for distance inequality constraints using the von Neumann divergence is given as
Algorithm 3. By using the fast multipole method every projection can be done in O(r2) time. Note
that the asymptotic running time of this algorithm is the same as the LogDet divergence algorithm,
although the root finding step makes Algorithm 3 slightly slower than Algorithm 2.

5.3 Limitations of our Approach

We conclude this section by briefly mentioning some limitations of our approach. First, though we
are able to learn low-rank kernel matrices in our framework, the initial kernel matrix must be low-
rank. As a result, we cannot use our methods to reduce the dimensionality of our data. Secondly, the
method of Bregman projections may require iterating many cycles through all constraints to reach
convergence. Although we have heavily optimized each iteration in this paper, it may be beneficial
to search for an algorithm with faster convergence.

6. Discussion

We now further develop several aspects of the algorithms presented in the previous section. In
particular, we discuss ways to move beyond the transductive setting in our framework for learning
kernels, we briefly overview some generalizations of the problem formulation, we highlight how
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special cases of our method are related to existing techniques, and we briefly analyze connections
between our approach and semidefinite programming.

6.1 Handling New Data Points

The kernel learning algorithms of Section 5 are restricted to learning in the transductive setting; that
is, we assume that we have all the data points up front, but labels or other forms of supervision are
only available for some of the data points. This approach suffers when new, unseen data points are
added, since this would require re-learning the entire kernel matrix.

Though we do not consider this situation in depth in the current paper, we can circumvent it.
When learning a kernel matrix minimizing either the LogDet divergence or the von Neumann di-
vergence, the range space restriction implies that the learned kernel K has the form K = G0BBT GT

0 ,
where B is r× r and the input kernel is K0 = G0GT

0 . We can view the matrix B as a linear transfor-
mation applied to our input data vectors G0 and therefore we can apply this linear transformation
to new points. In particular, recent work (Davis et al., 2007) has shown that the learning algorithms
considered in this paper can equivalently be viewed as learning a Mahalanobis distance function
given constraints on the data, which is simply the Euclidean distance after applying a linear trans-
formation over the input data.

Since our algorithms can be viewed as Mahalanobis distance learning techniques, it is natural to
compare against other existing metric learning algorithms. Such methods include metric learning by
collapsing classes (MCML) (Globerson and Roweis, 2005), large-margin nearest neighbor metric
learning (LMNN) (Weinberger et al., 2005), and many others. In the experimental results section,
we provide some results comparing our algorithms with these existing methods.

6.2 Generalizations

There are several simple ways to extend the algorithms developed in Section 5. In this section,
we introduce slack variables and discuss more general constraints than the distance constraints
discussed earlier.

6.2.1 SLACK VARIABLES

In many cases, especially if the number of constraints is large, no feasible solution will exist to
the Bregman divergence optimization problem given in (4). When no feasible solution exists, a
common approach is to incorporate slack variables, which allows constraints to be violated but
penalizes such violations.

There are many ways to introduce slack variables into the optimization problem (4). We add
a new vector variable b with coordinates representing perturbed right hand sides of the linear con-
straints, and use the corresponding vector divergence to measure the deviation from the original
constraints described by the input vector b0. The resulting optimization problem is as follows:

minimizeX ,b Dφ(X ,X0)+ γDϕ(b,b0)

subject to tr(XAi)≤ eT
i b, 1≤ i≤ c

X � 0. (22)

Note that we use Dϕ(b,b0) as the penalty for constraints as it is computationally simple; other
choices of constraint penalty are possible, as long as the resulting objective function is convex.
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The γ > 0 parameter governs the tradeoff between satisfying the constraints and minimizing the
divergence between X and X0. Note that we have also removed the implicit rank constraint for
simplicity.

We form the Lagrangian to solve the above problem; recall the similar system of equations (7)
in Section 3.4. Define L(Xt+1,bt+1,αi) = Dφ(Xt+1,Xt)+ γDϕ(bt+1,bt)+ αi(e

T
i bt+1− tr(Xt+1Ai)),

and set the gradients to zero with respect to Xt+1, bt+1 and αi to get the following update equations:

∇φ(Xt+1) = ∇φ(Xt)+αiAi,

∇ϕ(bt+1) = ∇ϕ(bt)−
αi

γ
ei,

tr(Xt+1Ai) = eT
i bt+1. (23)

In particular, for the LogDet divergence we arrive at the following updates:

X−1
t+1 = X−1

t −αiAi, eT
i bt+1 =

γeT
i bt

γ+αie
T
i bt

, tr(Xt+1Ai)−eT
i bt+1 = 0.

Assuming Ai = ziz
T
i , we can still compute αi in closed form as

αi =
γ

γ+1

(

1
p
− 1

bi

)

, where p = zT
i Xtzi,bi = eT

i bt .

The ith element of bt is updated to γbi/(γ + αibi) and the matrix update is calculated as in the
non-slack case.

In case of the von Neumann divergence the update rules turn out to be:

logXt+1 = logXt +αiAi, eT
i bt+1 = eT

i bte
− αi

γ , tr(Xt+1Ai)−eT
i bt+1 = 0.

The projection parameter αi is not available in closed form, instead we calculate it as the root of the
non-linear equation:

log tr(exp(logXt +αiAi)Ai)+
αi

γ
− logeT

i bt = 0.

The scale invariance of the LogDet divergence implies that D`d(b,b0) = D`d(b/b0,1) where the
division is elementwise and therefore we implicitly measure “relative” error, that is the magnitude
of the coordinates of vector b0 are naturally taken into account. For the von Neumann divergence
scale invariance does not hold, but one may alternatively use DvN(b/b0,1) as the penalty function.

6.2.2 OTHER CONSTRAINTS

In earlier sections, we focused on the case of distance constraints. We now briefly discuss general-
izing to other constraints.

When the constraints are similarity constraints (i.e., K jl ≤ bi), the updates can be easily modi-
fied. As discussed earlier, we must retain symmetry of the Ai constraint matrices, so for similarity
constraints, we require Ai = 1

2(e je
T
l +ele

T
j ). Notice that the constraint matrix now has rank two.

This complicates the algorithms slightly; for example, with the LogDet divergence, the Sherman-
Morrison formula must be applied twice, leading to a more complicated update rule (albeit one that
still has a closed-form solution and can be computed in O(r2) time).
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Other constraints are possible as well; for example, one could incorporate distance constraints
such as ‖a j−ak‖2

2 ≤ ‖al −am‖2
2, or further similarity constraints such as K jk ≤ Klm. These are

sometimes referred to as relative comparison constraints, and are useful in ranking algorithms
(Schultz and Joachims, 2003); for these also, the cost per projection remains O(r2). Finally, ar-
bitrary linear constraints can also be applied, the cost per projection update will then be O(nr).

6.3 Special Cases

If we use the von Neumann divergence, let r = n, and set bi = 0 for all constraints, we exactly
obtain the DefiniteBoost optimization problem from Tsuda et al. (2005). In this case, our algorithm
computes the projection update in O(n2) time. In contrast, the algorithm from Tsuda et al. (2005)
computes the projection in a more expensive manner in O(n3) time. Another difference with our
approach is that we compute the exact projection, whereas Tsuda et al. (2005) compute an approx-
imate projection. Though computing an approximate projection may lead to a faster per-iteration
cost, it takes many more iterations to converge to the optimal solution. We illustrate this further in
the experimental results section.

The online-PCA problem discussed in Warmuth and Kuzmin (2006) employs a similar update
based on the von Neumann divergence. As with the DefiniteBoost algorithm, the projection is not
an exact Bregman projection; however, the projection can be computed in the same way as in our
von Neumann kernel learning projection. As a result, the cost of an iteration of online-PCA can be
improved from O(n3) to O(n2) with our approach.

Another special case is the nearest correlation matrix problem (Higham, 2002) that arises in
financial applications. A correlation matrix is a positive semidefinite matrix with unit diagonal. For
this case, we set the constraints to be Kii = 1 for all i. Our algorithms from this paper give new
divergence measures and methods for finding low-rank correlation matrices. Previous algorithms
scale cubically in n, whereas our method scales linearly with n and quadratically with r for low-rank
correlation matrices.

Our formulation can also be employed to solve a problem similar to that of Weinberger et al.
(2004). The enforced constraints on the kernel matrix (centering and isometry) are linear, and thus
can be encoded into our framework. The only difference is that Weinberger et al. maximize the
trace of K, whereas we minimize a matrix divergence. Comparisons between these approaches is a
potential area of future research.

6.4 Connections to Semidefinite Programming

In this section, we present a connection between minimizing the LogDet divergence and the solution
to a semidefinite programming problem (SDP). As an example, we consider the min-balanced-cut
problem.

Suppose we are given an n-vertex graph, whose adjacency matrix is A. Let L = diag(Ae)−A be
the Laplacian of A, where e is the vector of all ones. The semidefinite relaxation to the minimum
balanced cut problem (Lang, 2005) results in the following SDP:
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min
X

tr(LX)

subject to diag(X) = e

tr(XeeT ) = 0

X � 0.

Let L† denote the pseudoinverse of the Laplacian, and let V be an orthonormal basis for the
range space of L. Let r denote the rank of L; it is well known that n− r equals the number of
connected components of the graph. Consider the LogDet divergence between X and εL†:

D`d(X ,εL†) = D`d(V
T XV,V T (εL†)V )

= tr(V T XV (V T (εL†)V )−1)− logdet(V T XV (V T (εL†)V )−1)− r

= tr

(

V T XV

(

1
ε

V T LV

))

− logdet

(

V T XV

(

1
ε

V T LV

))

− r

=
1
ε

tr(LX)− logdet

(

1
ε

V T XVV T LV

)

− r

=
1
ε

tr(LX)− logdet(V T XVV T LV )− r− log(ε−r).

The fourth line uses Lemma 8 to replace tr(V T XV ( 1
εV T LV )) with 1

ε tr(LX). If we aim to minimize
this divergence, we can drop the last two terms, as they are constants. In this case, we have:

argminX D`d(X ,εL†) = argminX
1
ε

tr(LX)− logdet(V T XVV T LV )

= argminX tr(LX)− ε logdet(V T XVV T LV ).

As ε becomes small, the tr(LX) term dominates the objective function.
Now consider the constraints from the min balanced cut SDP. The diag(X) = e constraint

is exactly the constraint from the nearest correlation matrix problem (that is, Xii = 1 for all i).
The X � 0 constraint is implicitly satisfied when LogDet is used, leaving the balancing constraint
eT Xe = 0. Recall that null(X) = null(L†), and from standard spectral graph theory, that Le = 0.
Therefore L†e = 0, which further implies

eT L†e = 0⇒ eT Xe = 0

by the fact that the LogDet divergence preserves the range space of L†. Thus, the null space restric-
tion in LogDet divergence naturally yields the constraint eT Xe = 0 and so the min balanced cut
SDP problem on A is equivalent (for sufficiently small ε) to finding the nearest correlation matrix to
εL† under the LogDet divergence.

Many other semidefinite programming problems can be solved in a similar manner to the one
given above for the min balanced cut problem. It is beyond the scope of this paper to determine
the practicality of such an optimization method; our aim here is simply to demonstrate an intriguing
relationship between semidefinite programming and minimizing the LogDet divergence. For further
information on this relationship, see Kulis et al. (2007a).
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6.5 Changing the Range Space

The key property of the LogDet and von Neumann divergences which allow the algorithms to learn
low-rank kernel matrices is their range space preservation property, discussed in Section 4. While
this property leads to efficient algorithms for learning low-rank kernel matrices, it also forces the
learned matrices to maintain the range space of the input matrix, which is a limitation of our method.

Allowing the range space to change is potentially a very useful tool, but is still an open research
question. One possibility worth exploring is to augment the input matrix X0 with a matrix capturing
the complementary space, that is, the input would be X0 + εN, where N captures the null space of
X0. Even if there does not exist a solution to the optimization problem of minimizing Dφ(X ,X0),
there is always a solution to minimizing Dφ(X ,X0 + εN). Details of this approach are to be pursued
as future work.

A related approach to circumvent this problem is to apply an appropriate kernel function over
the input data, the result of which is that the algorithm learns a non-linear transformation of the data
over the input space. Recently, Davis et al. (2007) discussed how one can generalize to new data
points with the LogDet divergence even after applying such a kernel function, making this approach
practical in many situations.

7. Experiments

In this section, we present a number of results using our algorithms, and provide references to recent
work which has applied our algorithms to large-scale learning tasks. We first begin with the basic
algorithm, and present results on transductive learning—the scenario where all data is provided
upfront but labels are available for only a subset of the data—and clustering. We then discuss some
results comparing our methods to existing metric learning algorithms.

We run the kernel learning algorithms in MATLAB, with some routines written in C and com-
piled with the MEX compiler. An efficient implementation of the special matrix multiplication
appearing in step 9 of Algorithm 3 could achieve further run-time improvements. Unfortunately, an
efficient and accurate implementation—based on the fast multipole method—is not readily avail-
able.

7.1 Transductive Learning and Clustering Results

To show the effectiveness of our algorithms, we present results from clustering as well as classifi-
cation. We consider several data sets from real-life applications:

1. Digits: a subset of the Pendigits data from the UCI repository that contains handwritten
samples of the digits 3, 8, and 9. The raw data for each digit is 16-dimensional; this subset
contains 317 digits and is a standard data set for semi-supervised clustering (e.g., see, Bilenko
et al., 2004).

2. GyrB: a protein data set: a 52 × 52 kernel matrix among bacteria proteins, containing three
bacteria species. This matrix is identical to the one used to test the DefiniteBoost algorithm
in Tsuda et al. (2005).

3. Spambase: a data set from the UCI repository containing 4601 email messages, classified as
spam or not spam—1813 of the emails are spam (39.4 percent). This data has 57 attributes.
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4. Nursery: data set developed to rank applications for nursery schools. This set contains
12960 instances with 8 attributes, and 5 class labels.

For classification, we compute accuracy using a k-nearest neighbor classifier (k = 5) that com-
putes distance in the feature space, with a 50/50 training/test split and two-fold cross validation.
Our results are averaged over 20 runs. For clustering, we use the kernel k-means algorithm and
compute accuracy using the Normalized Mutual Information (NMI) measure, a standard technique
for determining quality of clusters, which measures the amount of statistical information shared by
the random variables representing the cluster and class distributions (Strehl et al., 2000). If C is
the random variable denoting the cluster assignments of the points, and K is the random variable
denoting the underlying class labels on the points then the NMI measure is defined as:

NMI =
I(C;K)

(H(C)+H(K))/2

where I(X ;Y ) = H(X)−H(X |Y ) is the mutual information between the random variables X and Y ,
H(X) is the Shannon entropy of X , and H(X |Y ) is the conditional entropy of X given Y (Cover and
Thomas, 1991). The normalization by the average entropy of C and K makes the value of NMI stay
between 0 and 1.

We consider two different experiments, each with their own constraint selection procedure. One
experiment is to learn a kernel matrix only using constraints. In this case, we generate constraints
from some target kernel matrix, and judge performance on the learned kernel matrix as we provide
an increasing number of constraints. This setup was employed for the GyrB data set allowing us to
compare to the methods and results of Tsuda et al. (2005). Constraints were generated randomly as
follows: two data points are chosen at random and a distance constraint is constructed as follows.
If the data points are in the same class, the constraint is of the form d(i, j) ≤ b, where b is the
corresponding distance between points i and j from the original kernel matrix, and if the data points
are from different classes, then the constraint is of the form d(i, j)≥ b.

For the remaining data sets, we were interested in adding supervised class information to im-
prove an existing low-rank kernel matrix. In this case, we took our initial low-rank kernel to be a
linear kernel over the original data matrix and we added constraints of the form d(i, j) ≤ (1− ε)b
for same class pairs and d(i, j) ≥ (1 + ε)b for different class pairs (b is the original distance and
ε = .25). This is very similar to “idealizing” the kernel, as in Kwok and Tsang (2003). Our con-
vergence tolerance was set to 10−3, and we incorporated slack variables for the larger data sets
Spambase and Nursery (the smaller data sets did not require slack variables to converge). Note
that there are other methods for choosing constraints; for example, instead of using (1− ε)b for the
right-hand side for same class pairs, one could instead choose a global value u for all same class
constraints (and analogously for different class pairs).

We first show that the low-rank kernels learned by our algorithms attain good clustering and
classification accuracies. We ran our algorithms on the Digits data set to learn a rank-16 kernel
matrix using randomly generated constraints. The Gram matrix of the original Digits data was
used as our initial (rank-16) kernel matrix. The left plot of Figure 1 shows clustering NMI values
with increasing constraints. Adding just a few constraints improves the results significantly, and
both of the kernel learning algorithms perform comparably. Classification accuracy using the k-
nearest neighbor method was also computed for this data set: marginal classification accuracy gains
were observed with the addition of constraints (an increase from 94 to 97 percent accuracy for
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Figure 1: (Left) Normalized Mutual Information results of clustering the Digits data set—both
algorithms improve with a small number of constraints (Right) Percentage of constraints
satisfied (to a tolerance of 10−3) in Bregman’s algorithm as a function of the number of
cycles, using the LogDet divergence
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Figure 2: Classification accuracy (left) and convergence (right) on the GyrB data set

both divergences). We also recorded convergence data on Digits in terms of the number of cycles
through all constraints; for the von Neumann divergence, convergence was attained in 11 cycles for
30 constraints and in 105 cycles for 420 constraints, while for the LogDet divergence, between 17
and 354 cycles were needed for convergence. This experiment highlights how our algorithm can
use constraints to learn a low-rank kernel matrix. It is noteworthy that the learned kernel performs
better than the original kernel for clustering as well as classification. Furthermore, in the right
plot of Figure 1, we plot the number of constraints satisfied within a tolerance of 10−3 (300 total
constraints) as a function of the number of cycles through all constraints, when using the LogDet
divergence. Similar results are obtained with the von Neumann divergence. The number of cycles
required for convergence to high accuracy can potentially be large, but for typical machine learning
tasks, high accuracy solutions are not necessary and low to medium accuracy solutions can be
achieved much faster.
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Figure 3: Clustering accuracy on Spambase (left) and Nursery (right)

As a second experiment, we performed experiments on GyrB and comparisons to the Definite-
Boost algorithm of Tsuda et al. (2005) (modified to correctly handle inequality constraints). Using
only constraints, we attempt to learn a kernel matrix that achieves high classification accuracy. In
order to compare to DefiniteBoost, we learned a full-rank kernel matrix starting from the scaled
identity matrix as in Tsuda et al. (2005). In our experiments, we observed that using approximate
projections—as done in DefiniteBoost—considerably increases the number of cycles needed for
convergence. For example, starting with the scaled identity as the initial kernel matrix and 100
constraints, it took our von Neumann algorithm only 11 cycles to converge, whereas it took 3220
cycles for the DefiniteBoost algorithm to converge. Since the optimal solutions are the same for
approximate versus exact projections, we converge to the same kernel matrix as DefiniteBoost but
in far fewer iterations. Furthermore, our algorithm has the ability to learn low-rank kernels (as in the
case of the Digits example). Figure 2 depicts the classification accuracy and convergence of our
LogDet and von Neumann algorithms on this data set. The slow convergence of the DefiniteBoost
algorithm did not allow us to run it with a larger set of constraints. For the LogDet and the von Neu-
mann exact projection algorithms, the number of cycles required for convergence never exceeded
600 on runs of up to 1000 constraints on GyrB. The classification accuracy on the original matrix is
.948, and so our learned kernels achieve even higher accuracy than the target kernel with a sufficient
number of constraints. These results highlight that excellent classification accuracy can be obtained
using a kernel that is learned using only distance constraints. Note that the starting kernel was the
identity matrix, and so did not encode any domain information.

On the larger data sets Spambase and Nursery, we found similar improvements in clustering
accuracy while learning rank-57 and rank-8 kernel matrices, respectively, using the same setup as
in the Digits experiment. Figures 3 and 4 show the clustering accuracy and convergence on these
data sets. Note that both data sets are too large for DefiniteBoost to handle, and furthermore, storing
the full kernel matrix would require significant memory overhead (for example, MATLAB runs out
of memory while attempting to store the full kernel matrix for Nursery); this scenario highlights
the memory overhead advantage of using low-rank kernels. We see that on the Spambase data
set, the LogDet divergence algorithm produces clustering accuracy improvements with very little
supervision, but the number of cycles to converge is much larger than the von Neumann algorithm
(for 500 constraints, the von Neumann algorithm requires only 29 cycles to converge). The slower
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Figure 4: Convergence on Spambase (left) and Nursery (right)
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Figure 5: Classification error rates for k-nearest neighbor classification via different learned metrics
over UCI data sets. The von Neumann and LogDet algorithms are competitive with ex-
isting state of the art metric learning methods, and significantly outperform the baseline.

convergence of the LogDet divergence algorithm is a topic of future work—note, however, that even
though the number of cycles for LogDet to converge is higher than for von Neumann, the overall
running time is often lower due to the efficiency of each LogDet iteration and the lack of a suitable
implementation of the fast multiple method. On the Nursery data set, both algorithms perform
similarly in terms of clustering accuracy, and the discrepancy in terms of cycles to converge between
the algorithms is less drastic. We stress that other methods for learning kernel matrices, such as
using the squared Frobenius norm in place of the LogDet or von Neumann divergences, would
lead to learning full-rank matrices and would require significantly more memory and computational
resources.
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7.2 Metric Learning and Large-Scale Experiments

We now move beyond the transductive setting in order to compare with existing metric learning
algorithms. As briefly discussed in Section 6.1, learning a low-rank kernel with the same range
space as the input kernel is equivalent to learning a linear transformation of the input data, so we
now compare against some existing methods for learning linear transformations. In particular, we
compare against two popular Mahalanobis metric learning algorithms: metric learning by collapsing
classes (MCML) (Globerson and Roweis, 2005) and large-margin nearest neighbor metric learning
(LMNN) (Weinberger et al., 2005). As a baseline, we consider the squared Euclidean distance.

For each data set, we use two-fold cross validation to learn a linear transformation of our training
data. This transformation is used in a k-nearest neighbor classifier on our test data, and the resulting
error is reported. For the LogDet and von Neumann algorithms, we cross-validate the γ parameter
and use the constraint selection procedure described in Davis et al. (2007). In particular, we generate
constraints of the form d(i, j)≤ u for same-class pairs and d(i, j)≥ ` for different-class pairs, where
u and ` are chosen based on the 5th and 95th percentile of all distances in the training data. We
randomly choose 40c2 constraints, where c is the number of classes in the data.

We ran on a number of standard UCI data sets to compare with existing methods. In Figure 5,
we display k-NN accuracy (k = 4) over five data sets. Overall, we see that both the LogDet and von
Neumann algorithms compare favorably with existing methods.

In terms of large-scale experiments, we also ran on the MNIST data set, a handwritten digits
data set. This data has 60,000 training points and 10,000 test points. After deskewing the images
and performing dimensionality reduction to the first 100 principal components of MNIST, we ran
our methods successfully with 10,000 and 100,000 constraints, chosen as in the metric learning
experiments above. The baseline error for a 1-nearest neighbor search over the top 100 principal
components after deskewing is 2.35%. For 10,000 constraints, the LogDet algorithm ran in 4.8
minutes and achieved a test error of 2.29%, while the von Neumann algorithm ran in 7.7 minutes
and achieved 2.30% error. For 100,000 constraints, LogDet ran in 11.3 minutes and achieved an
error of 2.18% while von Neumann ran in 71.4 minutes and achieved an error of 2.17%.

Finally, we note that our methods have recently been applied to very large problems in the
computer vision domain. We refer the reader to Jain et al. (2008), which adapts the algorithms
discussed in this paper to three large-scale vision experiments: human body pose estimation, feature
indexing for 3-d reconstruction, and object classification. For pose estimation, the size of the data
was 500,000 images and for feature indexing, there were 300,000 image patches. These experiments
validate the use of our methods on large-scale data, and also demonstrate that they can be used to
outperform state of the art methods in computer vision.

8. Conclusions

In this paper, we have developed algorithms for using Bregman matrix divergences for low-rank
matrix nearness problems. In particular, we have developed a framework for using the LogDet
divergence and the von Neumann divergence when the initial matrices are low-rank; this is achieved
via a restriction of the range space of the matrices. Unlike previous kernel learning algorithms,
which have running times that are cubic in the number of data points, our resulting algorithms are
efficient—both algorithms have running times linear in the number of data points and quadratic
in the rank of the kernel. Furthermore, our algorithms can be used in conjunction with a number
of kernel-based learning algorithms that are optimized for low-rank kernel representations. The
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experimental results demonstrate that our algorithms are effective in learning low-rank and full-
rank kernels for classification and clustering problems on large-scale data sets that arise in diverse
applications.

There is still much to be gained from studying these divergences. Algorithmically, we have
considered only projections onto a single constraint, but it is worth pursuing other approaches to
solve the optimization problems such as methods that optimize with respect to multiple constraints
simultaneously. We discussed how the LogDet divergence exhibits connections to Mahalanobis
metric learning and semidefinite programming, and there is significant ongoing work in these areas.
Finally, we hope that our framework will lead to new insights and algorithms for other machine
learning problems where matrix nearness problems need to be solved.
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Appendix A. Properties of Bregman Matrix Divergences

In this section, we highlight some important properties of Bregman matrix divergences.

Proposition 11 Let Q be a square, orthogonal matrix, that is, QT Q = QQT = I. Then for all
spectral Bregman matrix divergences, Dφ(QT XQ,QTY Q) = Dφ(X ,Y ).

Proof This follows from Lemma 1 by observing that if X =V ΛV T and Y =UΘUT , the ith eigenvec-
tor of QT XQ is QT vi and the jth eigenvector of QTY Q is QT u j. The eigenvalues remain unchanged
by the orthogonal similarity transformation. Thus, the term ((QT vi)

T (QT u j))
2 in Lemma 1 simpli-

fies to (vT
i u j)

2 using the fact that QQT = I.

Proposition 12 Let M be a square, non-singular matrix, and let X and Y be n×n positive definite
matrices. Then D`d(MT XM,MTY M) = D`d(X ,Y ).

Proof First observe that if X is positive definite, then MT XM is positive definite. Then:

D`d(M
T XM,MTY M) = tr(MT XM(MTY M)−1)− logdet(MT XM(MTY M)−1)−n

= tr(MT XMM−1Y−1M−T )−logdet(MT XMM−1Y−1M−T )−n

= tr(XY−1)− logdet(XY−1)−n

= D`d(X ,Y )

Note that, as a corollary, we have that the LogDet divergence is scale-invariant, that is, D`d(X ,Y ) =
D`d(cX ,cY ), for any positive scalar c. Furthermore, this proposition may be extended to the case
when X and Y are positive semidefinite, using the definition of the LogDet divergence for rank-
deficient matrices.
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Proposition 13 Let Y be a positive definite matrix, and let X be any positive semidefinite matrix.
Then D`d(X ,Y ) = DvN(I,Y−

1
2 XY−

1
2 ) = D`d(Y−

1
2 XY−

1
2 , I)

Proof The first equality by expanding the definition of the von Neumann divergence:

DvN(I,Y−
1
2 XY−

1
2 ) = tr(I log I− I log(Y−

1
2 XY−

1
2 )− I +Y−

1
2 XY−

1
2 )

= tr(Y−
1
2 XY−

1
2 )− tr(log(Y−

1
2 XY−

1
2 ))− tr(I)

= tr(XY−1)− logdet(Y−
1
2 XY−

1
2 )−n

= tr(XY−1)− logdet(XY−1)−n

= D`d(X ,Y ),

where we have used the fact that tr(logA) = logdet(A). The second equality follows by applying
Proposition 12 to D`d(X ,Y ) with M = Y−

1
2 .

Appendix B. Necessity of Dual Variable Corrections

In Section 3.4, we presented the method of Bregman projections and showed that, in the presence of
inequality constraints, a dual variable correction is needed to guarantee convergence to the globally
optimal solution. In some recent machine learning papers such as Tsuda et al. (2005), this correction
has been omitted from the algorithm. We now briefly demonstrate why such corrections are needed.

A very simple example illustrating the failure of Bregman projections without corrections is in
finding of the nearest 2× 2 (positive definite) matrix X to the identity matrix that satisfies a single
linear constraint:

minimizeX Dφ(X , I)

subject to X11 +X22−2X12 ≥ 1

X � 0.

The starting (identity) matrix satisfies the linear constraint, but a single projection step (to the cor-
responding equality constraint) without corrections will produce a suboptimal matrix, regardless of
the divergence used. On the other hand, employing corrections leads to α′i = 0, and the input matrix
remains unchanged.

It is also not sufficient to repeatedly perform Bregman projections only on violated constraints
(without any corrections) until all constraints are satisfied—this approach is used by Tsuda et al.
(2005). To demonstrate this more involved case, we consider an example over vectors, where the
goal is to minimize the relative entropy to a given vector x0 under linear constraints. Note that the
argument carries over to the matrix case, but is more difficult to visualize.

minimizex KL(x,x0)

subject to xT [

0.0912 0.9385 −0.4377
]

≥ 0.0238

xT [

0.6020 0.6020 −0.4377
]

≥ 0.2554

xT [

1 1 1
]

= 1. (24)

372



LOW-RANK KERNEL LEARNING WITH BREGMAN MATRIX DIVERGENCES

Figure 6: Termination points for the relative entropy example described by (24). The shaded re-
gions illustrate the hyperplanes associated with the two inequality constraints of the op-
timization problem. The optimal solution is the maximum entropy vector xopt =

[

1
3

1
3

1
3

]

,
but without corrections we arrive at x2 =

[

1
5

7
15

1
3

]

after two projection steps starting from
x0 = [0.1 0.1 0.8].

In the above problem, KL(x,x0) refers to the relative entropy, defined earlier. The first two
constraints are linear inequality constraints while the third constraint forces x to remain on the unit
simplex so that it is a probability vector. Let x0 equal [0.1 0.1 0.8]. If we process the constraints in
the above order without corrections, after two projection steps (one projection onto each of the first
two constraints), we arrive at the vector

[

1
5

7
15

1
3

]

,

which satisfies all three constraints. Therefore this vector is returned as the optimal solution if
no corrections are applied. In comparison, a proper execution of Bregman’s algorithm employing
corrections arrives at

[

1
3

1
3

1
3

]

,

which is the maximum entropy vector. It is also worth noting that if we project to the second
constraint first, then we arrive at the optimal solution immediately. By appropriately modifying the
constraints and the starting point in this example, the incorrect algorithm can be made to converge
arbitrarily close to [0 0 1], a minimum entropy vector, thus drastically demonstrating the necessity
of dual variable corrections.
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