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Abstract
In this paper, we present an information-theoretic
approach to learning a Mahalanobis distance
function. We formulate the problem as that
of minimizing the differential relative entropy
between two multivariate Gaussians under con-
straints on the distance function. We express
this problem as a particular Bregman optimiza-
tion problem—that of minimizing the LogDet di-
vergence subject to linear constraints. Our result-
ing algorithm has several advantages over exist-
ing methods. First, our method can handle a wide
variety of constraints and can optionally incorpo-
rate a prior on the distance function. Second, it
is fast and scalable. Unlike most existing meth-
ods, no eigenvalue computations or semi-definite
programming are required. We also present an
online version and derive regret bounds for the
resulting algorithm. Finally, we evaluate our
method on a recent error reporting system for
software called Clarify, in the context of met-
ric learning for nearest neighbor classification, as
well as on standard data sets.

1. Introduction

Selecting an appropriate distance measure (or metric) is
fundamental to many learning algorithms such ask-means,
nearest neighbor searches, and others. However, choosing
such a measure is highly problem-specific and ultimately
dictates the success—or failure—of the learning algorithm.
To this end, there have been several recent approaches
that attempt to learn distance functions, e.g., (Weinberger
et al., 2005; Xing et al., 2002; Globerson & Roweis, 2005;
Shalev-Shwartz et al., 2004). These methods work by ex-
ploiting distance information that is intrinsically available
in many learning settings. For example, in the problem of
semi-supervised clustering, points are constrained to be ei-
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ther similar (i.e., the distance between them should be rel-
atively small) or dissimilar (the distance should be larger).
In information retrieval settings, constraints between pairs
of distances can be gathered from click-through feedback.
In fully supervised settings, constraints can be inferred so
that points in the same class have smaller distances to each
other than to points in different classes.

While existing algorithms for metric learning have been
shown to perform well across various learning tasks, each
fails to satisfy some basic requirement. First, a metric
learning algorithm should be sufficiently flexible to support
the variety of constraints realized across different learning
paradigms. Second, the algorithm must be able to learn a
distance function that generalizes well to unseen test data.
Finally, the algorithm should be fast and scalable.

In this paper, we propose a novel approach to learn-
ing a class of distance functions—namely, Mahalanobis
distances—that have been shown to possess good gener-
alization performance. The Mahalanobis distance general-
izes the standard Euclidean distance by admitting arbitrary
linear scalings and rotations of the feature space. We model
the problem in an information-theoretic setting by leverag-
ing the relationship between the multivariate Gaussian dis-
tribution and the set of Mahalanobis distances. We trans-
late the problem of learning an optimal distance metric to
that of learning the optimal Gaussian with respect to an en-
tropic objective. In fact, a special case of our formulation
can be viewed as a maximum entropy objective: maximize
the differential entropy of a multivariate Gaussian subject
to constraints on the associated Mahalanobis distance.

Our formulation is quite general: we can accommodate a
range of constraints, including similarity or dissimilarity
constraints, and relations between pairs of distances. We
can also incorporate prior information regarding the dis-
tance function itself. For some problems, standard Eu-
clidean distance may work well. In others, the Mahalanobis
distance using the inverse of the sample covariance may
yield reasonable results. In such cases, our formulation
finds a distance function that is ‘closest’ to an initial dis-
tance function while also satisfying the given constraints.
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We show an interesting connection of our metric learning
problem to a recently proposed low-rank kernel learning
problem (Kulis et al., 2006). In the latter problem a low-
rank kernelK is learned that satisfies a set of given dis-
tance constraints by minimizing the LogDet divergence to a
given initial kernelK0. This allows our metric learning al-
gorithm to be kernelized, resulting in an optimization over
a larger class of non-linear distance functions. Algorith-
mically, the connection also implies that the problem can
be solved efficiently: it was shown that the kernel learning
problem can be optimized using an iterative optimization
procedure with costO(cd2) per iteration, wherec is the
number of distance constraints, andd is the dimensional-
ity of the data. In particular, this method does not require
costly eigenvalue computations or semi-definite program-
ming. We also present an online version of the algorithm
and derive associated regret bounds.

To demonstrate our algorithm’s ability to learn a distance
function that generalizes well to unseen points, we compare
it to existing state-of-the-art metric learning algorithms.
We apply the algorithms to Clarify, a recently developed
system that classifies software errors using machine learn-
ing (Ha et al., 2007). In this domain, we show that our algo-
rithm effectively learns a metric for the problem of nearest
neighbor software support. Furthermore, on standard UCI
datasets, we show that our algorithm consistently equals or
outperforms the best existing methods when used to learn
a distance function fork-NN classification.

2. Related Work

Most of the existing work in metric learning relies on learn-
ing a Mahalanobis distance, which has been found to be a
sufficiently powerful class of metrics that work on many
real-world problems. Earlier work by (Xing et al., 2002)
uses a semidefinite programming formulation under simi-
larity and dissimilarity constraints. More recently, (Wein-
berger et al., 2005) formulate the metric learning problem
in a large margin setting, with a focus onk-NN classifi-
cation. They also formulate the problem as a semidefinite
programming problem and consequently solve it using a
combination of sub-gradient descent and alternating pro-
jections. (Globerson & Roweis, 2005) proceed to learn a
metric in the fully supervised setting. Their formulation
seeks to ‘collapse classes’ by constraining within class dis-
tances to be zero while maximizing the between class dis-
tances. While each of these algorithms was shown to yield
excellent classification performance, their constraints do
not generalize outside of their particular problem domains;
in contrast, our approach allows arbitrary linear constraints
on the Mahalanobis matrix. Furthermore, these algorithms
all require eigenvalue decompositions, an operation that is
cubic in the dimensionality of the data.

Other notable work wherein the authors present methods

for learning Mahalanobis metrics includes (Shalev-Shwartz
et al., 2004) (online metric learning), Relevant Compo-
nents Analysis (RCA) (Shental et al., 2002) (similar to dis-
criminant analysis), locally-adaptive discriminative meth-
ods (Hastie & Tibshirani, 1996), and learning from relative
comparisons (Schutz & Joachims, 2003).

Non-Mahalanobis based metric learning methods have also
been proposed, though these methods usually suffer from
suboptimal performance, non-convexity, or computational
complexity. Some example methods include neighborhood
component analysis (NCA) (Goldberger et al., 2004) that
learns a distance metric specifically for nearest-neighbor
based classification; convolutional neural net based meth-
ods of (Chopra et al., 2005); and a general Riemannian met-
ric learning method (Lebanon, 2006).

3. Problem Formulation

Given a set ofn points{x1, ...,xn} in R
d, we seek a pos-

itive definite matrixA which parameterizes the (squared)
Mahalanobis distance.

dA(xi,xj) = (xi − xj)
T A(xi − xj). (3.1)

We assume that prior knowledge is known regarding in-
terpoint distances. Consider relationships constraining
the similarity or dissimilarity between pairs of points.
Two points are similar if the Mahalanobis distance be-
tween them is smaller than a given upper bound, i.e.,
dA(xi,xj) ≤ u for a relatively small value ofu. Simi-
larly, two points are dissimilar ifdA(xi,xj) ≥ ℓ for suf-
ficiently largeℓ. Such constraints are typically inputs for
many semi-supervised learning problems, and can also be
readily inferred in a classification setting where class la-
bels are known for each instance: distances between points
in the same class can be constrained as similar, and points
in different classes can be constrained as dissimilar.

Given a set of interpoint distance constraints as described
above, our problem is to learn a positive-definite matrixA

that parameterizes the corresponding Mahalanobis distance
(3.1). Typically, this learned distance function is used to
improve the accuracy of ak-nearest neighbor classifier, or
to incorporate semi-supervision into a distance-based clus-
tering algorithm. In many settings, prior information about
the Mahalanobis distance function itself is known. In set-
tings where data is Gaussian, parameterizing the distance
function by the inverse of the sample covariance may be
appropriate. In other domains, squared Euclidean distance
(i.e. the Mahalanobis distance corresponding to the identity
matrix) may work well empirically. Thus, we regularize the
Mahalanobis matrixA to be as close as possible to a given
Mahalanobis distance function, parameterized byA0.

We now quantify the measure of “closeness” betweenA

andA0 via a natural information-theoretic approach. There
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exists a simple bijection (up to a scaling function) be-
tween the set of Mahalanobis distances and the set of equal-
mean multivariate Gaussian distributions (without loss of
generality, we can assume the Gaussians have meanµ).
Given a Mahalanobis distance parameterized byA, we ex-
press its corresponding multivariate Gaussian asp(x;A) =
1
Z

exp (− 1
2dA(x,µ)), whereZ is a normalizing constant

andA−1 is the covariance of the distribution. Using this
bijection, we measure the distance between two Maha-
lanobis distance functions parameterized byA0 andA by
the (differential) relative entropy between their correspond-
ing multivariate Gaussians:

KL(p(x;Ao)‖p(x;A)) =

∫

p(x;A0) log
p(x;A0)

p(x;A)
dx.

(3.2)
The distance (3.2) provides a well-founded measure of
“closeness” between two Mahalanobis distance functions
and forms the basis of our problem given below.

Given pairs of similar pointsS and pairs of dissimilar
pointsD, our distance metric learning problem is

min
A

KL(p(x;A0)‖p(x;A))

subject to dA(xi,xj) ≤ u (i, j) ∈ S,

dA(xi,xj) ≥ ℓ (i, j) ∈ D.

(3.3)

In the above formulation, we consider simple distance con-
straints for similar and dissimilar points; however, it is
straightforward to incorporate other constraints. For ex-
ample, (Schutz & Joachims, 2003) consider a formulation
where the distance metric is learned subject to relative near-
ness constraints (as in, the distance betweeni and j is
closer than the distance betweeni andk). Our approach
can be easily adapted to handle this setting. In fact, it is
possible to incorporate arbitrary linear constraints intoour
framework in a straightforward manner. For simplicity, we
present the algorithm under the simple distance constraints
given above.

4. Algorithm

In this section, we first show that our information-theoretic
objective (3.3) can be expressed as a particular type of
Bregman divergence, which allows us to adapt Bregman’s
method (Censor & Zenios, 1997) to solve the metric learn-
ing problem. We then show a surprising equivalence to a
recently-proposed low-rank kernel learning problem (Kulis
et al., 2006), allowing kernelization of the algorithm.

4.1. Metric Learning as LogDet Optimization

The LogDet divergence is a Bregman matrix divergence
generated by the convex functionφ(X) = − log detX

defined over the cone of positive-definite matrices, and it

equals (forn × n matricesA, A0)

Dℓd(A,A0) = tr(AA−1
0 ) − log det(AA−1

0 ) − n. (4.1)

It has been shown that the differential relative entropy be-
tween two multivariate Gaussians can be expressed as the
convex combination of a Mahalanobis distance between
mean vectors and the LogDet divergence between the co-
variance matrices (Davis & Dhillon, 2006). Assuming the
means of the Gaussians to be the same, we have,

KL(p(x;A0)‖p(x;A)) =
1

2
Dℓd(A

−1
0 , A−1)

=
1

2
Dℓd(A,A0), (4.2)

where the second line follows from definition (4.1).

The LogDet divergence is also known as Stein’s loss, hav-
ing originated in the work of (James & Stein, 1961). It
can be shown that Stein’s loss is the uniquescale invari-
ant loss-function for which the uniform minimum variance
unbiased estimator is also a minimum risk equivariant esti-
mator (Lehmann & Casella, 2003). In the context of metric
learning, the scale invariance implies that the divergence
(4.1) remains invariant under any scaling of the feature
space. The result can be further generalized to invariance
under any invertible linear transformationS, since

Dℓd(S
T AS, ST BS) = Dℓd(A,B). (4.3)

We can exploit the equivalence in (4.2) to express the
distance metric learning problem (3.3) as the following
LogDet optimization problem:

min
Aº0

Dℓd(A,A0)

s.t. tr(A(xi − xj)(xi − xj)
T ) ≤ u (i, j) ∈ S,

tr(A(xi − xj)(xi − xj)
T ) ≥ ℓ (i, j) ∈ D,

(4.4)

Note that the distance constraints ondA(xi,xj) translate
into the above linear constraints onA.

In some cases, there may not exist a feasible solution to
(4.4). To prevent such a scenario from occurring, we incor-
porateslack variablesinto the formulation to guarantee the
existence of a feasibleA. Let c(i, j) denote the index of the
(i, j)-th constraint, and letξ be a vector of slack variables,
initialized toξ0 (whose components equalu for similarity
constraints andℓ for dissimilarity constraints). Then we
can pose the following optimization problem:

min
Aº0,ξ

Dℓd(A,A0) + γ · Dℓd(diag(ξ), diag(ξ0))

s. t. tr(A(xi − xj)(xi − xj)
T ) ≤ ξc(i,j) (i, j) ∈ S,

tr(A(xi − xj)(xi − xj)
T ) ≥ ξc(i,j) (i, j) ∈ D,

(4.5)
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Algorithm 1 Information-theoretic metric learning
Input: X: inputd × n matrix,S: set of similar pairs

D: set of dissimilar pairs,u, ℓ: distance thresholds
A0: input Mahalanobis matrix,γ: slack
parameter,c: constraint index function

Output: A: output Mahalanobis matrix

1. A ← A0, λij ← 0 ∀ i, j
2. ξc(i,j) ← u for (i, j) ∈ S; otherwiseξc(i,j) ← ℓ
3. repeat

3.1. Pick a constraint(i, j) ∈ S or (i, j) ∈ D

3.2. p ← (xi − xj)
T A(xi − xj)

3.3. δ ← 1 if (i, j) ∈ S, −1 otherwise

3.4. α ← min
(

λij ,
δ
2

(
1
p
−

γ

ξc(i,j)

))

3.5. β ← δα/(1 − δαp)

3.6. ξc(i,j) ← γξc(i,j)/(γ + δαξc(i,j))

3.7. λij ← λij − α

3.8. A ← A + βA(xi − xj)(xi − xj)
T A

4. until convergence
return A

The parameterγ controls the tradeoff between satisfying
the constraints and minimizingDℓd(A,A0).

To solve the optimization problem (4.5), we extend the
methods from (Kulis et al., 2006). The optimization
method which forms the basis for the algorithm repeatedly
computes Bregman projections—that is, projections of the
current solution onto a single constraint. This projectionis
performed via the update

At+1 = At + βAt(xi − xj)(xi − xj)
T At, (4.6)

wherexi andxj are the constrained data points, andβ is
the projection parameter (Lagrange multiplier correspond-
ing to the constraint) computed by the algorithm. Each con-
straint projection costsO(d2), and so a single iteration of
looping through all constraints costsO(cd2). We stress that
no eigen-decomposition is required in the algorithm. The
resulting algorithm is given as Algorithm 1. The inputs to
the algorithm are the starting Mahalanobis matrixA0, the
constraint data, and the slack parameterγ. If necessary, the
projections can be computed efficiently over a factorization
W of the Mahalanobis matrix, such thatA = WT W .

4.2. Connection to Low-Rank Kernel Learning

The kernel learning problem posed in (Kulis et al., 2006)
seeks to optimize a kernelK subject to constraints on the
pairwise distances between points within the kernel. This
is quite similar to our proposed metric learning problem,
where points between distances are constrained directly. In
this section, we present an equivalence between the two
models, thus allowing for kernelization of the metric learn-
ing problem. The kernel learning problem posed by (Kulis
et al., 2006) seeks to optimize a kernelK subject to a set of

linear constraints while minimizing the LogDet divergence
to a specified kernelK0. GivenX = [x1 x2 ... xn], and the
inputn×n kernel matrixK0 = XT A0X, the optimization
problem is:

min
K

Dℓd(K,K0)

subject to Kii + Kjj − 2Kij ≤ u (i, j) ∈ S,

Kii + Kjj − 2Kij ≥ ℓ (i, j) ∈ D,

K º 0. (4.7)

In addition to being convex in the first argument, the
LogDet divergence between two matrices is finite if and
only if their range spaces are the same (Kulis et al., 2006).
Thus, the learned matrixK can be written as a kernel
XT AX, for some(d × d) positive definite matrixA. The
results below can be easily generalized to incorporate slack
variables in (4.7).

First we establish that the feasible solutions to (3.3) coin-
cide with the feasible solutions to (4.7).

Lemma 1. Given thatK = XT AX, A is feasible for (3.3)
if and only ifK is feasible for (4.7).

Proof. The expressionKii +Kjj −2Kij can be written as
(ei − ej)

T K(ei − ej), or equivalently(xi −xj)
T A(xi −

xj) = dA(xi,xj). Thus, if we have a kernel matrixK
satisfying constraints of the formKii + Kjj − 2Kij ≤ u

or Kii +Kjj − 2Kij ≥ ℓ, we equivalently have a matrixA
satisfyingdA(xi,xj) ≤ u or dA(xi,xj) ≥ ℓ.

We can now show an explicit relationship between the op-
timal solution to (3.3) and (4.7).

Theorem 1. Let A∗ be the optimal solution to (3.3) and
K∗ be the optimal solution to (4.7). ThenK∗ = XT A∗X.

Proof. We give a constructive proof for the theorem. The
Bregman projection update for (4.4) is expressed as

At+1 = At + βAt(xi − xj)(xi − xj)
T At. (4.8)

Similary, the Bregman update for (4.7) is expressed as

Kt+1 = Kt + βKt(ei − ej)(ei − ej)
T Kt. (4.9)

It is straightforward to prove that the value ofβ is the same
for (4.9) and (4.8). We can inductively prove that at each
iterationt, updatesKt andAt satisfyKt = XT AtX. At
the first step,K0 = XT A0X, so the base case trivially
holds. Now, assume thatKt = XT AtX; by the Bregman
projection update,Kt+1

= XT AtX + βXT AtX(ei − ej)(ei − ej)
T XT AtX

= XT AtX + βXT At(xi − xj)(xi − xj)
T AtX

= XT (At + βAt(xi − xj)(xi − xj)
T AT

t )X.
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Comparing with (4.8), we see thatKt+1 = XT At+1X.
Since the method of Bregman projections converges to the
optimalA∗ andK∗ of (3.3) and (4.7), respectively (Censor
& Zenios, 1997), we haveK∗ = XT A∗X. Hence, the
metric learning (3.3) and the kernel learning (4.7) problems
are equivalent.

We have proven that the information-theoretic metric learn-
ing problem is related to a low-rank kernel learning prob-
lem. We can easily modify Algorithm 1 to optimize for
K—this is necessary in order to kernelize the algorithm.
As input, the algorithm providesK0 instead ofA0, the
value ofp is computed asKii +Kjj −2Kij , the projection
is performed using (4.9), and the output isK.

4.3. Kernelizing the Algorithm

We now consider kernelizing our metric learning algo-
rithm. In this section, we assume thatA0 = I; that is,
the maximum entropy formulation that regularizes to the
baseline Euclidean distance. Kernelizing for other choices
of A0 is possible, but not presented. IfA0 = I, the corre-
spondingK0 from the low-rank kernel learning problem is
K0 = XT X, the Gram matrix of the inputs. If instead of an
explicit representationX of our data points, we have as in-
put a kernel functionκ(x,y) = φ(x)T φ(y), along with the
associated kernel matrixK0 over the training points, a nat-
ural question to ask is whether we can evaluate the learned
metric on new points in the kernel space. This requires the
computation of

dA

(
φ(x

)
, φ(y)) =

(
φ(x) − φ(y)

)T
A

(
φ(x) − φ(y)

)

= φ(x)T Aφ(x) − 2φ(x)T Aφ(y) + φ(y)T Aφ(y).

We now define a new kernel functioñκ(x,y) =
φ(x)T Aφ(y). The ability to generalize to unseen data
points reduces to the ability to computeκ̃(x,y). Note that
A represents an operator in a Hilbert space, and its size is
equal to the dimensionality ofφ(x), which can potentially
be infinite (if the original kernel function is the Gaussian
kernel, for example).

Even though we cannot explicitly computeA, it is still pos-
sible to computẽκ(x,y). As A0 = I, we can recursively
“unroll” the learnedA matrix so that it is of the form

A = I +
∑

i,j

σijφ(xi)φ(xj)
T .

This follows by expanding Equation (4.6) down toI. The
new kernel function is therefore computed as

κ̃(x,y) = κ(x,y) +
∑

i,j

σijκ(x,xi)κ(xj ,y),

and is a function of the original kernel functionκ and the
σij coefficients. Theσij coefficients may be updated while

minimizing Dℓd(K,K0) without affecting the asymptotic
running time of the algorithm; in other words, by optimiz-
ing the low-rank kernel learning problem (4.7) forK, we
can obtain the necessary coefficientsσij for evaluation of
κ̃(x,y). This leads to a method for finding the nearest
neighbor of a new data point in the kernel space under the
learned metric which can be performed inO(n2) total time.
Details are omitted due to lack of space.

5. Online Metric Learning

In this section, we describe anonline algorithm for met-
ric learning and prove bounds on the total loss when using
LogDet divergence as the regularizer.

5.1. Problem Formulation

As in batch metric learning, the algorithm receives pairs of
points; however, unlike in the batch scenario, the online al-
gorithm receives the “target” distance for these points (as
opposed to just upper and lower bounds on the target dis-
tance). Before receiving the target distance, the algorithm
uses its current Mahalanobis matrix to predict the distance
between the given pair of points at each step. This formula-
tion is standard in many online regression settings (Kivinen
& Warmuth, 1997).

More formally, assume the algorithm receives an instance
(xt,yt, dt) at time stept, and predictsd̂t = dAt

(xt,yt)
using the current modelAt. The loss associated with this
prediction is measured bylt(At) = (dt − d̂t)

2, wheredt is
the “true” (or target) distance betweenxt andyt. After in-
curring the loss, the algorithm updatesAt to the new model
At+1 and its total loss is given by

∑

t lt(At).

If there is no correlation between input points and their tar-
get distances, then a learning algorithm could incur un-
bounded loss. Hence, a reasonable goal is to compare
the performance of an online learning algorithm with the
best possible offline algorithm. Given aT -trial sequence
S = {(x1,y1, d1), (x2,y2, d2), . . . , (xT ,yT , dT )}, let the
optimal offline solution be given by

A∗ = argmin
Aº0

T∑

t=1

lt(A).

Typically, the goal of an online algorithm is to bound its
total loss in comparison to the loss obtained byA∗.

A common approach for online learning is to solve the
following regularized optimization problem at each time
step (Kivinen & Warmuth, 1997):

min
Aº0

f(A) =

Regularization Term
︷ ︸︸ ︷

D(A,At) +ηt

Loss Term
︷ ︸︸ ︷

lt(A) , (5.1)

whereηt is the learning rate at thet-th step, andD(A,At)
is measures the divergence between the new Mahalanobis
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Algorithm 2 Online Metric Learning (OML) Algorithm

Initialize: η0 ← 1
8
, A0 ← 1

n
I

Prediction: Given(xt, yt), predictd̂t = dAt(xt, yt) .
Update: Upon receiving “true”dt, update model as

At+1 ← At −
2ηt(d̂t − dt)At(xt − yt)(xt − yt)

T At

1 + 2ηt(d̂t − dt)(xt − yt)T At(xt − yt)
,

whereηt = η0 if d̂t − dt ≥ 0; otherwise,ηt =

min

{

η0,
1

2(dt−d̂t)

(
1

(xt−yt)T (I+(A−1
t

−I)−1)(xt−yt)

)}

.

matrix A and the current matrixAt. In (5.1), the regular-
ization term favors Mahalanobis matrices that are “close”
to the current modelAt, representing a tendency towards
conservativeness. On the other hand, the loss term is min-
imized whenA is updated to exactly satisfy the target dis-
tance specified at the current time step. Hence, the loss
term has a tendency to satisfy target distances for recent
examples. The tradeoff between regularization and loss is
handled by the learning rateηt, which is a critical parame-
ter for many online learning problems.

As in batch metric learning, we selectD(A,At) =
Dℓd(A,At) as the regularizer for (5.1):

At+1 = argmin
A

Dℓd(A,At) + ηt(dt − d̂t)
2.

To our knowledge, no relative loss bounds have been
proven for the above problem. In fact, we know of no
existing loss bounds for any LogDet-based online algo-
rithms (Tsuda et al., 2005). We present below a novel algo-
rithm with guaranteed bound on the regret. Our algorithm
uses gradient descent, but it adapts the learning rate accord-
ing to the input data to maintain positive-definiteness ofA.

5.2. Algorithm and Analysis

The online metric learning (OML) algorithm is shown as
Algorithm 2. Note that(A−1

t − I)−1 can be obtained from
(A−1

t−1 − I)−1 by using the Sherman-Morrison-Woodbury
formula. Thus, the overall complexity of each iteration of
the OML algorithm isO(n2), which is optimal.

We now show that the total loss incurred by OML is
bounded with respect to the minimum loss incurred by
any batch learning algorithm. LetLOML =

∑

t lt(At) be
the loss obtained by the online algorithm, and letLA∗ =
∑

t lt(A
∗) be the loss obtained by the offline algorithm.

Without loss of generality we can assume that the input
data is scaled, so that‖x − y‖2 ≤ R2 for fixed R and for
all x andy. One of the key steps in guaranteeing an upper
bound on the regret incurred by an online algorithm is to
bound the loss incurred at each step in terms of the loss in-
curred by the optimal offline solution. Below, we state the
result—the full proof can be found in (Jain et al., 2007).

Lemma 2 (Loss at one step).

at(d̂t − dt)
2 − bt(d

∗
t − dt)

2 ≤

Dℓd(A
∗, At) − Dℓd(A

∗, At+1),

whereA∗ is the optimal offline solution,d∗t = dA∗(xt,yt),
at, bt are constants s.t.0 ≤ at ≤ ηt andbt = ηt

1−2ηtR2 .

A repeated use of Lemma 2 allows us to obtain a loss bound
for the overall OML algorithm.

Theorem 2 (Online Metric Learning Loss Bound).

LOML ≤
1

4ηminR2
LA∗ +

1

ηmin

Dℓd(A
∗, I),

whereLOML andLA∗ are the losses incurred by OML and
the optimal batch algorithm, respectively;ηmin = mint ηt.

Proof. Adding the loss bound given by Lemma 2 over all
the trials from1 ≤ t ≤ T , we obtain

T∑

t=1

ηt(d̂t − dt)
2 ≤

T∑

t=1

ηt

1 − 2ηtR2
(d∗t − dt)

2

+ Dℓd(A
∗, I) − Dℓd(A

∗, AT ).

Thus we can conclude that,

LOML ≤
1

4ηminR2
LA∗ +

1

ηmin

Dℓd(A
∗, I).

Note that this bound depends onηmin, which in turn de-
pends on the input data. If the data is scaled properly then
generallyηt will not change much at any time step, an ob-
servation that has been verified empirically.

6. Experiments

We compare our Information Theoretic Metric Learning al-
gorithm (ITML) to existing methods across two applica-
tions: semi-supervised clustering andk-nearest neighbor
(k-NN) classification.

We evaluate metric learning fork-NN classification via
two-fold cross validation withk = 4. All results presented
represent the average over 5 runs. Binomial confidence in-
tervals are given at the95% level.

To establish the lower and upper bounds of the right hand
side of our constraints (ℓ andu in problem (3.3)), we use
(respectively) the5th and95th percentiles of the observed
distribution of distances between pairs of points within the
dataset. To determine the constrained point pairs, we ran-
domly choose20c2 pairs, wherec is the number of classes
in the dataset. Pairs of points in the same class are con-
strained to be similar, and pairs with differing class labels
are constrained to be dissimilar. Overall, we found the al-
gorithm to be robust to these parameters. However, we did
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Figure 1.Classification error rates fork-nearest neighbor classification via different learned metrics. We seein figures (a) and (b) that
ITML-MaxEnt is the only algorithm to be optimal (within the95% confidence intervals) across all datasets. ITML is also robust at
learning metrics over higher dimensions. In (c), we see that the error rate for the Latex dataset stays relatively constant for ITML.

find that the variance between runs increased if the number
of constraints used was too small (i.e., fewer than10c2).
The slack variable parameter,γ, is tuned using cross val-
idation over the values{.01, .1, 1, 10}. Finally, the online
algorithm is run for approximately105 iterations.

In Figure 1(a), we compare ITML-MaxEnt (regularized to
the identity matrix) and the online ITML algorithm against
existing metric learning methods fork-NN classification.
We use the squared Euclidean distance,d(x,y) = (x −
y)T(x − y) as a baseline method. We also use a Maha-
lanobis distance parameterized by the inverse of the sample
covariance matrix. This method is equivalent to first per-
forming a standard PCA whitening transform over the fea-
ture space and then computing distances using the squared
Euclidean distance. We compare our method to two re-
cently proposed algorithms: Maximally Collapsing Met-
ric Learning (Globerson & Roweis, 2005) (MCML), and
metric learning via Large Margin Nearest Neighbor (Wein-
berger et al., 2005) (LMNN). Consistent with existing
work (Globerson & Roweis, 2005), we found the method
of (Xing et al., 2002) to be very slow and inaccurate. Over-
all, ITML is the only algorithm to obtain the optimal error
rate (within the specified95% confidence intervals) across
all datasets. For several datasets, the online version is com-
petitive with the best metric learning algorithms. We also
observed that the learning rateη remained fairly constant,
yielding relatively small regret bounds (Theorem 2).

In addition to our evaluations on standard UCI datasets,
we also evaluate apply our algorithm to the recently pro-
posed problem of nearest neighbor software support for the
Clarify system (Ha et al., 2007). The basis of the Clarify
system lies in the fact that modern software design pro-
motes modularity and abstraction. When a program ter-
minates abnormally, it is often unclear which component
should be responsible for (or is capable of) providing an

error report. The system works by monitoring a set of pre-
defined program features (the datasets presented use func-
tion counts) during program runtime which are then used
by a classifier in the event of abnormal program termina-
tion. Nearest neighbor searches are particularly relevantto
this problem. Ideally, the neighbors returned should not
only have the correct class label, but should also represent
those with similar program configurations or program in-
puts. Such a matching can be a powerful tool to help users
diagnose the root cause of their problem. The four datasets
shown here are Latex (the document compiler, 9 classes),
Mpg321 (an mp3 player, 4 classes), Foxpro (a database
manager, 4 classes), and Iptables (a Linux kernel applica-
tion, 5 classes).

The dimensionality of the Clarify dataset can be quite large.
However, it was shown (Ha et al., 2007) that high clas-
sification accuracy can be obtained by using a relatively
small subset of available features. Thus, for each dataset,
we use a standard information gain feature selection test
to obtain a reduced feature set of size 20. From this, we
learn metrics fork-NN classification using the above de-
scribed procedure. We also evaluate the method ITML-
Inverse Covariance, which regularizes to the inverse co-
variance matrix. Results are given in Figure 1(b). The
ITML-MaxEnt algorithm yields significant gains for the
Latex benchmark. Note that for datasets where Euclidean
distance performs better than using the inverse covariance
metric, the ITML-MaxEnt algorithm that normalizes to the
standard Euclidean distance yields higher accuracy than
that regularized to the inverse covariance matrix (ITML-
Inverse Covariance). In general, for the Mpg321, Foxpro,
and Iptables datasets, learned metrics yield only marginal
gains over the baseline Euclidean distance measure.

Figure 1(c) shows the error rate for the Latex datasets with
a varying number of features (the feature sets are again cho-
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Table 1.Training time (in seconds) for the results presented in
Figure 1(b).

Dataset ITML-MaxEnt MCML LMNN

Latex 0.0517 19.8 0.538
Mpg321 0.0808 0.460 0.253
Foxpro 0.0793 0.152 0.189
Iptables 0.149 0.0838 4.19

Table 2.Unsupervisedk-means clustering error, along with semi-
supervised clustering error with 50 constraints.

Dataset Unsupervised ITML HMRF-KMeans

Ionosphere 0.314 0.113 0.256
Digits-389 0.226 0.175 0.286

sen using the information gain criteria). We see here that
ITML is surprisingly robust. Euclidean distance, MCML,
and LMNN all achieve their best error rates for five dimen-
sions. ITML, however, attains its lowest error rate of .15 at
d = 20 dimensions.

In Table 1, we see that ITML generally learns metrics sig-
nificantly faster than other metric learning algorithms. The
implementations for MCML and LMNN were obtained
from their respective authors. The timing tests were run
on a dual processor 3.2 GHz Intel Xeon processor running
Ubuntu Linux. Time given is in seconds and represents the
average over 5 runs.

Finally, we present some semi-supervised clustering re-
sults. Note that both MCML and LMNN are not amenable
to optimization subject to pairwise distance constraints.In-
stead, we compare our method to the semi-supervised clus-
tering algorithm HMRF-KMeans (Basu et al., 2004). We
use a standard 2-fold cross validation approach for evaluat-
ing semi-supervised clustering results. Distances are con-
strained to be either similar or dissimilar, based on class
values, and are drawn only from the training set. The en-
tire dataset is then clustered intoc clusters usingk-means
(wherec is the number of classes) and error is computed us-
ing only the test set. Table 2 provides results for the base-
line k-means error, as well as semi-supervised clustering
results with 50 constraints.
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