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Abstract

In this paper, we present an information-theoretic
approach to learning a Mahalanobis distance
function. We formulate the problem as that
of minimizing the differential relative entropy

between two multivariate Gaussians under con-
straints on the distance function. We express
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ther similar (i.e., the distance between them should be rel-
atively small) or dissimilar (the distance should be layger

In information retrieval settings, constraints betweeinga

of distances can be gathered from click-through feedback.
In fully supervised settings, constraints can be infered s
that points in the same class have smaller distances to each
other than to points in different classes.

this problem as a particular Bregman optimiza-
tion problem—that of minimizing the LogDet di-
vergence subject to linear constraints. Our result-
ing algorithm has several advantages over exist-
ing methods. First, our method can handle a wide
variety of constraints and can optionally incorpo-

While existing algorithms for metric learning have been
shown to perform well across various learning tasks, each
fails to satisfy some basic requirement. First, a metric
learning algorithm should be sufficiently flexible to suppor
the variety of constraints realized across different legyn
paradigms. Second, the algorithm must be able to learn a

rate a prior on the distance function. Second, it
is fast and scalable. Unlike most existing meth-
ods, no eigenvalue computations or semi-definite
programming are required. We also present an
online version and derive regret bounds for the
resulting algorithm. Finally, we evaluate our
method on a recent error reporting system for
software called Clarify, in the context of met-
ric learning for nearest neighbor classification, as
well as on standard data sets.

distance function that generalizes well to unseen test data
Finally, the algorithm should be fast and scalable.

In this paper, we propose a novel approach to learn-
ing a class of distance functions—namely, Mahalanobis
distances—that have been shown to possess good gener-
alization performance. The Mahalanobis distance general-
izes the standard Euclidean distance by admitting arkitrar
linear scalings and rotations of the feature space. We model
the problem in an information-theoretic setting by leverag
ing the relationship between the multivariate Gaussian dis
tribution and the set of Mahalanobis distances. We trans-
late the problem of learning an optimal distance metric to
Selecting an appropriate distance measure (or metric) ighat of learning the optimal Gaussian with respect to an en-
fundamental to many learning algorithms sucttaseans,  tropic objective. In fact, a special case of our formulation
nearest neighbor searches, and others. However, choosiggin be viewed as a maximum entropy objective: maximize
such a measure is highly problem-specific and ultimatelythe differential entropy of a multivariate Gaussian subjec

dictates the success—or failure—of the learning algorithmto constraints on the associated Mahalanobis distance.
To this end, there have been several recent approaches o )
that attempt to learn distance functions, e.g., (WeinbergeQUr formulation is quite general: we can accommodate a
et al., 2005; Xing et al., 2002; Globerson & Roweis, 2005;'2N9€ o_f constraints, _mcludlng S|m|Iar_|ty or d_|SS|m|t§r|
Shalev-Shwartz et al., 2004). These methods work by eX(_:onstralnt_s, and relat|0|js petween pairs of d|§tances. .We
ploiting distance information that is intrinsically awafile ~ C&n @lso incorporate prior information regarding the dis-
in many learning settings. For example, in the problem OIiapce fupctlon itself. For some problems, standard El_J'
semi-supervised clustering, points are constrained ta-be eclidean distance may work well. In others, the Mahalanobis
distance using the inverse of the sample covariance may

Appearing inProceedings of _th@fh International Conference yield reasonable results. In such cases, our formulation
on Machine LearningCorvallis, OR, 2007. Copyright 2007 by finds a distance function that is ‘closest to an initial dis-

the author(s)/owner(s). tance function while also satisfying the given constraints

1. Introduction
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We show an interesting connection of our metric learningfor learning Mahalanobis metrics includes (Shalev-Shavart
problem to a recently proposed low-rank kernel learninget al., 2004) (online metric learning), Relevant Compo-
problem (Kulis et al., 2006). In the latter problem a low- nents Analysis (RCA) (Shental et al., 2002) (similar to dis-
rank kernelK is learned that satisfies a set of given dis-criminant analysis), locally-adaptive discriminative thhe
tance constraints by minimizing the LogDet divergence to aods (Hastie & Tibshirani, 1996), and learning from relative
given initial kernelK. This allows our metric learning al- comparisons (Schutz & Joachims, 2003).

gorithm to be kernellzgd, resu_ltlng n an opjumlzauon oYerNon-MahaIanobis based metric learning methods have also
a larger class of non-linear distance functions. Algorith-

. . S been proposed, though these methods usually suffer from
mically, the connection also implies that the problem can : . .
e o . suboptimal performance, non-convexity, or computational
be solved efficiently: it was shown that the kernel learning . ; .
- . : : ..~ . Jcomplexity. Some example methods include neighborhood
problem can be optimized using an iterative opt|m|zat|onCom onent analysis (NCA) (Goldberger et al., 2004) that
procedure with cosO(cd?) per iteration, where: is the P y 9 ,

. . ; . : learns a distance metric specifically for nearest-neighbor
number of distance constraints, aids the dimensional- P )
: : . . based classification; convolutional neural net based meth-
ity of the data. In particular, this method does not require

. i S ods of (Chopra et al., 2005); and a general Riemannian met-
costly eigenvalue computations or semi-definite program-

. . . ... _ric learning method (Lebanon, 2006).
ming. We also present an online version of the algorithm
and derive associated regret bounds. 3. Problem Formulation

To demonstrate our algorithm’s ability to learn a distancegiven a set of. points{x,, ..., z,} in R%, we seek a pos-
function that generalizes well to unseen points, we compargive definite matrixA which parameterizes the (squared)
it to existing state-of-the-art metric learning algorithm Mahalanobis distance.

We apply the algorithms to Clarify, a recently developed

system that classifies software errors using machine learn- da(mi, x;) = (@ — mj)TA(wi — ;). (3.1)

ing (Ha etal., 2007). In this domain, we show that our algo-

rithm effectively learns a metric for the problem of nearestWe assume that prior knowledge is known regarding in-
neighbor software support. Furthermore, on standard ucterpoint distances. Consider relationships constraining
datasets, we show that our algorithm consistently equals dhe similarity or dissimilarity between pairs of points.
outperforms the best existing methods when used to leariwo points are similar if the Mahalanobis distance be-

a distance function fok-NN classification. tween them is smaller than a given upper bound, i.e.,
da(z;,z;) < u for a relatively small value ofi.. Simi-
2. Related Work larly, two points are dissimilar ifl 4 (z;, z;) > ¢ for suf-

Most of the existing work in metric learning relies on learn- ficiently large/. Such constraints are typically inputs for

ing a Mahalanobis distance, which has been found to be §1any semi-supervised learning problems, and can also be
sufficiently powerful class of metrics that work on many readily inferred in a cla§S|f|cat|on setting where class Ig-
real-world problems. Earlier work by (Xing et al., 2002) bels are known for each instance: distances between points
uses a semidefinite programming formulation under simi" the same class can be constrained as similar, and points
larity and dissimilarity constraints. More recently, (Wei N different classes can be constrained as dissimilar.

berger et al., 2005) formulate the metric learning problemgijven a set of interpoint distance constraints as described
in a large margin setting, with a focus @NN classifi-  above, our problem is to learn a positive-definite mattix
cation. They also formulate the problem as a semidefinitghat parameterizes the corresponding Mahalanobis distanc
programming problem and consequently solve it using g3.1). Typically, this learned distance function is used to
combination of sub-gradient descent and alternating projmprove the accuracy of &-nearest neighbor classifier, or
jections. (Globerson & Roweis, 2005) proceed to learn &g incorporate semi-supervision into a distance-basest clu
metric in the fully supervised setting. Their formulation tering algorithm. In many settings, prior information abou
seeks to ‘collapse classes’ by constraining within class di the Mahalanobis distance function itself is known. In set-
tances to be zero while maximizing the between class distings where data is Gaussian, parameterizing the distance
tances. While each of these algorithms was shown to yielénction by the inverse of the sample covariance may be
excellent classification performance, their constrairds d appropriate. In other domains, squared Euclidean distance
not generalize outside of their particular problem domains j.e. the Mahalanobis distance corresponding to the ijenti

in contrast, our approach allows arbitrary linear constgai - matrix) may work well empirically. Thus, we regularize the
on the Mahalanobis matrix. Furthermore, these algorithm$/ahalanobis matrixd to be as close as possible to a given

all require eigenvalue decompositions, an operation that ipMahalanobis distance function, parameterizedigy

cubic in the dimensionality of the data. )
We now quantify the measure of “closeness” between

Other notable work wherein the authors present methodgnd 4, via a natural information-theoretic approach. There
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exists a simple bijection (up to a scaling function) be-equals (fom x n matricesA, Ay)
tween the set of Mahalanobis distances and the set of equal-
mean multivariate Gaussian distributions (without loss of
generality, we can assume the Gaussians have mgan

Given a Mahalanobis distance parameterize(ﬂbwe ex- It has been shown that the differential relative entropy be-
press its corresponding multivariate Gaussiap(as A) =  tween two multivariate Gaussians can be expressed as the

% exp(f%dA(m,M)), whereZ is a normalizing constant Cconvex combination of a Mahalanobis distance between
and A~! is the covariance of the distribution. Using this mean vectors and the LogDet divergence between the co-
bijection, we measure the distance between two Mahavariance matrices (Davis & Dhillon, 2006). Assuming the
lanobis distance functions parameterizedAyand A by ~ means of the Gaussians to be the same, we have,

Dya(A, Ag) = tr(AA; ") —logdet(AA;Y) —n. (4.1)

the (differential) relative entropy between their corresp- 1 I
ing multivariate Gaussians: KL (p(z; Ao)llp(z; 4)) = 5Dea(Ag", A7)
1
x; A = —Dy(A, Ao), 4.2
KL (p(a; Ao)[Ip(x; A)) = /p(w; Ag) log ];((TAO)) dz. g Drald Ao, (4:2)

(3.2)  where the second line follows from definition (4.1).
The distance (3.2) provides a well-founded measure o
“closeness” between two Mahalanobis distance function
and forms the basis of our problem given below.

trhe LogDet divergence is also known as Stein’s loss, hav-
?ng originated in the work of (James & Stein, 1961). It
can be shown that Stein’s loss is the uniquaale invari-
Given pairs of similar pointsS and pairs of dissimilar antloss-function for which the uniform minimum variance

points D, our distance metric learning problem is unbiased estimator is also a minimum risk equivariant esti-
mator (Lehmann & Casella, 2003). In the context of metric
ngn KL (p(x; Ao)l||p(x; A)) learning, the scale invariance implies that the divergence
: 4.1) remains invariant under any scaling of the feature
. ¥y 33 ( ! ¢ Tea
subjectto da(zi, ;) <u (i) €5, (3.3) space. The result can be further generalized to invariance
da(zi,xj) > L (4,7) € D. under any invertible linear transformatich since

T T _
In the above formulation, we consider simple distance con- Dua(S7AS, 57 BS) = Dia(4, B). (4-3)

straints for similar and dissimilar points; however, it is We can exploit the equivalence in (4.2) to express the

straightforward to incorporate other constraints. For exdistance metric learning problem (3.3) as the following
ample, (Schutz & Joachims, 2003) consider a formulation_ogDet optimization problem:

where the distance metric is learned subject to relative nea
ness constraints (as in, the distance betweeamnd j is yen Da(A, Ao)
closer than the distance betweeand k). Our approach R

T .o
can be easily adapted to handle this setting. In fact, itis St (A@i —@;)(xi —z;)") <w (i) €5,

possible to incorporate arbitrary linear constraints miio tr(A(e; — ;) (x; — wj)T) >/ (i,4) € D,
framework in a straightforward manner. For simplicity, we (4.4)
present the algorithm under the simple distance consgraint ) )

given above. Note that the distance constraints @n(xz;, «;) translate

into the above linear constraints dgn

4. Algorithm In some cases, there may not exist a feasible solution to
In this section, we first show that our information-theareti (4.4). To prevent such a scenario from occurring, we incor-
objective (3.3) can be expressed as a particular type dporateslack variablesnto the formulation to guarantee the
Bregman divergence, which allows us to adapt Bregman'&Xxistence of a feasiblé. Letc(s, j) denote the index of the
method (Censor & Zenios, 1997) to solve the metric learn{, j)-th constraint, and le§ be a vector of slack variables,
ing problem. We then show a surprising equivalence to anitialized to§, (whose components equalfor similarity
recently-proposed low-rank kernel learning problem (Kuli constraints and for dissimilarity constraints). Then we

et al., 2006), allowing kernelization of the algorithm. can pose the following optimization problem:
i Dy(A, A - Dyg(dia dial
4.1. Metric Learning as L ogDet Optimization Arog (4, Ao) 7 - Dea(dliage), diag(éo))

T P
The LogDet divergence is a Bregman matrix divergence St tr(A(@i —j)(@i —z;)") < &gy (1,7) €5,
generated by the convex functiof(X) = —logdet X tr(A(z; — ;) (x;i — x;)") > &y (i,5) € D,
defined over the cone of positive-definite matrices, and it (4.5)
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Algorithm 1 Information-theoretic metric learning linear constraints while minimizing the LogDet divergence

Input: X: inputd x n matrix, S: set of similar pairs to a specified kerndky. GivenX = [xz; x5 ... ], and the
D: set of dissimilar pairsy, ¢: distance thresholds inputn x n kernel matrixkKy = X7 AyX, the optimization
Ap: input Mahalanobis matrixy: slack problem is:

parameterg: constraint index function
Output: A: output Mahalanobis matrix

min  Dyy(K, Ky)
1A« Ag, \ij — 0V i j K

2.&.3i,5) — ufor (i,5) € S; otherwiset,; ;) < ¢ subjectto K;; + K;; —2K,; <u (i,5) € S,
3.repeat .
K+ Ky —2K;; > ¢ j) €D
3.1. Pick a constrair(ti, j) € S or (i,j) € D ii A4 Y= (4,5) € D,
3.2.p— (xi —x;)T Az — x) K= 0. 4.7)
3.3.0 < 1if (i,5) € S, —1 otherwise
, s{1 In addition to being convex in the first argument, the
3.4.a%mm(/\ij,7(77 W)) . - P
2\P " i) LogDet divergence between two matrices is finite if and
3.5. B« da/(1 — Sap) only if their range spaces are the same (Kulis et al., 2006).
3.6. &eing) — Vet /(v + 0ce(iz) Thus, the learned matri¥’ can be written as a kernel
3.7. \ij — hij — XTAX, for some(d x d) positive definite matrixd. The
38. A— A+ BA(x; — xj)(x; —x;)TA results below can be easily generalized to incorporaté slac
4. until convergence variables in (4.7).

return A

First we establish that the feasible solutions to (3.3) -coin
cide with the feasible solutions to (4.7).

The parametety controls the tradeoff between satisfying Lemmal. Giventhatk = X7 AX, Ais feasible for (3.3)
the constraints and minimizinG (A, Ag). if and only if K is feasible for (4.7).

To solve the Op'[lml.ZatIOH problem (4.5), we e'xte'nd.theproof_ The expressiot,; + K ;; — 2K,; can be written as
methods from (Kulis et al., 2006). The optimization T ) : T
. : ; e, —e;) K(e;—e;),orequivalentlyx; —x;)" A(z; —
method which forms the basis for the algorithm repeated| ; .
L : C x;) = da(z;,x;). Thus, if we have a kernel matrik
computes Bregman projections—that is, projections of the

current solution onto a single constraint. This project®n satisfying constraints of the fo”ﬁ” + K 20, < u
. or K;; + K;; —2K,; > ¢, we equivalently have a matrig
performed via the update

satisfyingda(x;, ;) < uorda(z;, z;) > £. O

A1 = Ay + BA(m; — ) (xi —25)" A, (46)  We can now show an explicit relationship between the op-

) ) . timal solution to (3.3) and (4.7).
wherex; andx; are the constrained data points, ahs

the projection parameter (Lagrange multiplier corresponqueorem 1. Let A* be the optimal 30'““3” to ;3-:2) and
ing to the constraint) computed by the algorithm. Each cond * b€ the optimal solution to (4.7). Thefi* = X~ A*X.

straint projection cost®)(d*), and so a single iteration of proof. We give a constructive proof for the theorem. The

looping through all constraints cosi§cd?). We stressthat - Bregman projection update for (4.4) is expressed as
no eigen-decomposition is required in the algorithm. The

resulting algorithm is given as Algorithm 1. The inputs to Appr = Ay + BA(zi — xj) (2 — ;)T Ay (4.8)
the algorithm are the starting Mahalanobis mattix the

constraint data, and the slack parametelf necessary, the  Similary, the Bregman update for (4.7) is expressed as
projections can be computed efficiently over a factorizatio

W of the Mahalanobis matrix, such that= W72V . Ko = Ki + 0Ki(ei —ej)(e; —€))T K. (4.9)

4.2. Connection to Low-Rank Kernel Learning It is straightforward to prove that the value®fs the same
for (4.9) and (4.8). We can inductively prove that at each
iterationt, updatesk; and A, satisfy K, = X7 A, X. At
ghe first step, Ky = XTApX, so the base case trivially
holds. Now, assume thd&f, = X7 A4, X; by the Bregman
|Projection updatek;

The kernel learning problem posed in (Kulis et al., 2006)
seeks to optimize a kerné& subject to constraints on the
pairwise distances between points within the kernel. Thi
is quite similar to our proposed metric learning problem
where points between distances are constrained direwtly.
this section, we present an equivalence between the two T T T T
models, thus allowing for kernelization of the metric learn XTAtX * ﬁXTAtX(ei —ej)lei - ej; X7 AKX
ing problem. The kernel learning problem posed by (Kulis = X A X + X" Ay(x; — ) (@i — ;)" A X
etal., 2006) seeks to optimize a kerdékubjecttoasetof = X7 (A, + BA(z; — x;)(z; — x;)T A])X.
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Comparing with (4.8), we see th#;,; = X7 A4, X. minimizing D4(K, Ky) without affecting the asymptotic
Since the method of Bregman projections converges to theunning time of the algorithm; in other words, by optimiz-
optimal A* and K* of (3.3) and (4.7), respectively (Censor ing the low-rank kernel learning problem (4.7) féf, we

& Zenios, 1997), we havéd(* = XTA*X. Hence, the can obtain the necessary coefficieats for evaluation of
metric learning (3.3) and the kernel learning (4.7) proldem %(x,y). This leads to a method for finding the nearest
are equivalent. O neighbor of a new data point in the kernel space under the

We have proven that the information-theoretic metric learn l€arned metric which can be performediin?) total time.
ing problem is related to a low-rank kernel learning prob-Details are omitted due to lack of space.

lem. We can easily mod|fy Algorithm 1 to optlmlze.for 5. Online Metric Learning

K—this is necessary in order to kernelize the algorithm.
As input, the algorithm provides, instead ofA,, the In this section, we describe amline algorithm for met-
value ofp is computed a(;; + K;; — 2K;;, the projection  ric learning and prove bounds on the total loss when using
is performed using (4.9), and the outputis LogDet divergence as the regularizer.

4.3. Kernelizing the Algorithm 5.1. Problem Formulation

We now consider kernelizing our metric learning algo- As in batch metric learning, the algorithm receives pairs of
rithm. In this section, we assume thdy = I; thatis, points; however, unlike in the batch scenario, the onlire al
the maximum entropy formulation that regularizes to thegorithm receives the “target” distance for these points (as
baseline Euclidean distance. Kernelizing for other chmice opposed to just upper and lower bounds on the target dis-
of A4 is possible, but not presented. Af, = I, the corre-  tance). Before receiving the target distance, the algorith
spondingK, from the low-rank kernel learning problem is uses its current Mahalanobis matrix to predict the distance
Ky = X" X, the Gram matrix of the inputs. If instead of an between the given pair of points at each step. This formula-
explicit representatioX’ of our data points, we have as in- tion is standard in many online regression settings (Kivine
put a kernel functiom(x,y) = ¢(x)" ¢(y), alongwith the & Warmuth, 1997).

associated kernel matrix, over the training points, a nat- ; I the algorith . inst
ural question to ask is whether we can evaluate the learne ore formally, assume the algorithm receives an instance
T, Y, dy) at time step, and predictsl; = da, (z+, yt)

metric on new points in the kernel space. This requires the™! . ’ .
. P P q using the current moded;. The loss associated with this
computation of SN PO :
prediction is measured by(A;) = (d; — d;)#, whered, is

T the “true” (or target) distance between andy,. After in-
da(o(z),0(y)) = (6(z) — (y))" A(é(z) — (y)) curring the loss, the algorithm updatésto the new model

= ¢p(x)T Ap(x) — 26(x)T Ap(y) + d(y)T Ad(y). Ay41 and its total loss is given by, 1;(A,).
We now define a new kemel functiom(z,y) If there is no correlation between input points and their tar

o(z)T Ad(y). The ability to generalize to unseenjjata get distances, then a learning algorithm co_uld incur un-
points reduces to the ability to compuitér, y). Note that boundefd loss. H?nce, al_realsona_ble gloal _'i to (?ohmEare
A represents an operator in a Hilbert space, and its size i%]e per or.rglanc?ﬂ.o anl on'lr;]e earning ag.orllt m with the
equal to the dimensionality af(z), which can potentially ~P€St Possible offline algorithm. GivenZatrial sequence

be infinite (if the original kernel function is the Gaussian ° = {(@1,91,d1), (X2,y2,d2), ..., (7, yr, dr)}, letthe
kernel, for example). optimal offline solution be given by

T
Even though we cannot explicitly compute it is still pos- A* = argmin Z L(A).

sible to computei(x, y). As Ag = I, we can recursively A0
“unroll” the learned4 matrix so that it is of the form

t=1
Typically, the goal of an online algorithm is to bound its
A=1T+ Z O'Z-j(b(wi)(b(mj)T_ total loss in comparison to the loss obtainedAly
b A common approach for online learning is to solve the

This follows by expanding Equation (4.6) down fo The foIIowin_g_ regularized optimization problem at each time
new kernel function is therefore computed as step (Kivinen & Warmuth, 1997):

Regularization Term Loss Term
~ _ » . . —— ~ =
iz, y) = k(z,y) + ;mw(w,mz)n(w]ay), wmin F(A) = DA A) +n L(A), (5.1)

and is a function of the original kernel functienand the  wherer, is the learning rate at theth step, andD (A4, A;)
o;; coefficients. Ther;; coefficients may be updated while is measures the divergence between the new Mahalanobis
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Algorithm 2 Online Metric Learning (OML) Algorithm Lemma 2 (Loss at one step)
Initialize: 7o < l, Ag — %I

N 7 2 2
Prediction: Given (x¢,y:), predictd: = da, (x+, yz) - ap(de — di)” — by(dy — dy)” <
Update: Upon receiving “true’d;, update model as Dyg(A*, Ay) — Dgg(A*, Agiq),
A A 2 (dy — di) Ae (e — yo) (e — yo)T Ay whereA* is the optimal offline solution]; = d4- (¢, y:),
t+1 t — = )
* 1+ 2ne(d — di)(xe — yo)T Ae(xe — i) a, b, are constants s.0 < a; < n, andb; = PQ”W.
wheren, = no if d; — d; > 0; otherwisez); = A repeated use of Lemma 2 allows us to obtain a loss bound
) L ( L ) } for the overall OML algorithm.
min | 7o, = = — . . . .
Adi—de) \(we—y)TU+A7 =D~ (@e—y1) Theorem 2 (Online Metric Learning Loss Bound)
. . L S ———— Ly~ + D d A*7I )
matrix A and the current matri¥d,. In (5.1), the regular- oMt min R? 4 Nmin o )

Itf)att:engs:rrre]nff\rfécsjeﬁah?elzrgsb;tﬂztzcsnélhe?\tc?/rfovaflﬁtsjz whereLow. and L 4+ are the losses incurred by OML and
; & = the optimal batch algorithm, respectively;,;, = mi .
conservativeness. On the other hand, the loss term is min- - " 9 P Winin = ming 1y
imized whe_nA Is updated to exa_ctly satisfy the target dis- Proof. Adding the loss bound given by Lemma 2 over all
tance specified at the current time step. Hence, the Ios% ; .

. . the trials froml < ¢ < T', we obtain
term has a tendency to satisfy target distances for recernit
examples. The tradeoff between regularization and loss is 1 T

. . . wge _ ~ 77 «

handled by the I_earnlng _ratg, which is a critical parame Z ne(dy — dy)? < Z ﬁ(dt —d;)?
ter for many online learning problems. =1 — - 4T

As in batch metric learning, we seledd(4,A4;) = + Dw(A", 1) — Deg(A", Ar).

Dyy(A, A;) as the regularizer for (5.1): Thus we can conclude that,
At+1 = argmin ng(A, At) + nt(dt — dt)2. 1 1
A Lom < ———5La- +

477minR Nmin

Dyy(A*, I). O
To our knowledge, no relative loss bounds have been
proven for the above problem. In fact, we kno_vv of no Note that this bound depends @p,;,,, which in turn de-
e_xrllstlngTIosg, bour;dszggg ar\% LogDet-bbas]ed online lallgo'pends on the input data. If the data is scaled properly then
r!t ms (. sudaetal, ). We present below a nove ‘T"gogenerallynt will not change much at any time step, an ob-
rithm with guaranteed bound on the regret. Our algor'thmservation that has been verified empirically

uses gradient descent, but it adapts the learning ratedxccor ) '

ing to the input data to maintain positive-definitenessiof 6. EXperiments

5.2. Algorithm and Analysis We compare our Information Theoretic Metric Learning al-
gorithm (ITML) to existing methods across two applica-
tions: semi-supervised clustering ahehearest neighbor
(k-NN) classification.

The online metric learning (OML) algorithm is shown as
Algorithm 2. Note tha{ 4, ' — I)~! can be obtained from

(A7}, — I)~! by using the Sherman-Morrison-Woodbury
formula. Thus, the overall complexity of each iteration of We evaluate metric learning fde-NN classification via
the OML algorithm isO(n?), which is optimal. two-fold cross validation wittk = 4. All results presented

We now show that the total loss incurred by OML is represent thg average over 5 runs. Binomial confidence in-
tervals are given at th&5% level.

bounded with respect to the minimum loss incurred by
any batch learning algorithm. Ldiom. = >, 1:(A:) be  To establish the lower and upper bounds of the right hand
the loss obtained by the online algorithm, andllet- =  side of our constraints (@ndw« in problem (3.3)), we use
>, l:(A*) be the loss obtained by the offline algorithm. (respectively) thé&t" and95t" percentiles of the observed
Without loss of generality we can assume that the inpudistribution of distances between pairs of points withia th
data is scaled, so thdtr — y||> < R? for fixed R and for ~ dataset. To determine the constrained point pairs, we ran-
all z andy. One of the key steps in guaranteeing an uppedomly choose0c? pairs, where: is the number of classes
bound on the regret incurred by an online algorithm is toin the dataset. Pairs of points in the same class are con-
bound the loss incurred at each step in terms of the loss irstrained to be similar, and pairs with differing class label
curred by the optimal offline solution. Below, we state theare constrained to be dissimilar. Overall, we found the al-
result—the full proof can be found in (Jain et al., 2007).  gorithm to be robust to these parameters. However, we did
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Figure 1.Classification error rates fdr-nearest neighbor classification via different learned metrics. Wendegures (a) and (b) that
ITML-MaxEnt is the only algorithm to be optimal (within th&% confidence intervals) across all datasets. ITML is also robust at
learning metrics over higher dimensions. In (c), we see that the ext@far the Latex dataset stays relatively constant for ITML.

find that the variance between runs increased if the numbegrror report. The system works by monitoring a set of pre-
of constraints used was too small (i.e., fewer than?). defined program features (the datasets presented use func-
The slack variable parametey, is tuned using cross val- tion counts) during program runtime which are then used
idation over the value$.01,.1,1,10}. Finally, the online by a classifier in the event of abnormal program termina-
algorithm is run for approximately0? iterations. tion. Nearest neighbor searches are particularly releeant
this problem. Ideally, the neighbors returned should not
only have the correct class label, but should also represent
existing metric learning methods fé&NN classification. those with similar program configurations or program in-
We use the squared Euclidean distanés, y) — (x — pgts. Such a matching can be a powerful tool to help users
diagnose the root cause of their problem. The four datasets

y)T(x — y) as a baseline method. We also use a Maha- .
. : . hown here are Latex (the document compiler, 9 classes),
lanobis distance parameterized by the inverse of the samp
pg321 (an mp3 player, 4 classes), Foxpro (a database

covariance matrix. This method is equivalent to first per- . :
X o manager, 4 classes), and Iptables (a Linux kernel applica-
forming a standard PCA whitening transform over the fea-,.
X ; . t|8n, 5 classes).
ture space and then computing distances using the square
Euclidean distance. We compare our method to two reThe dimensionality of the Clarify dataset can be quite large
cently proposed algorithms: Maximally Collapsing Met- However, it was shown (Ha et al., 2007) that high clas-
ric Learning (Globerson & Roweis, 2005) (MCML), and sification accuracy can be obtained by using a relatively
metric learning via Large Margin Nearest Neighbor (Wein-small subset of available features. Thus, for each dataset,
berger et al., 2005) (LMNN). Consistent with existing we use a standard information gain feature selection test
work (Globerson & Roweis, 2005), we found the methodto obtain a reduced feature set of size 20. From this, we
of (Xing et al., 2002) to be very slow and inaccurate. Over-learn metrics fork-NN classification using the above de-
all, ITML is the only algorithm to obtain the optimal error scribed procedure. We also evaluate the method ITML-
rate (within the specifie@l5% confidence intervals) across Inverse Covariance, which regularizes to the inverse co-
all datasets. For several datasets, the online versiomis co variance matrix. Results are given in Figure 1(b). The
petitive with the best metric learning algorithms. We alsolTML-MaxEnt algorithm yields significant gains for the
observed that the learning ragjeremained fairly constant, Latex benchmark. Note that for datasets where Euclidean
yielding relatively small regret bounds (Theorem 2). distance performs better than using the inverse covariance
. . metric, the ITML-MaxEnt algorithm that normalizes to the
In addition to our evaluations on standard UCI datasets . : . .
. Standard Euclidean distance yields higher accuracy than
we also evaluate apply our algorithm to the recently pro- : : . .
i that regularized to the inverse covariance matrix (ITML-
posed problem of nearest neighbor software support for th

Clarify system (Ha et al., 2007). The basis of the CIarifyanerse Covariance). In general, for the Mpg321, Foxpro,
system lies in the fact t.ﬁat moaern software design prO_amd Iptables datasets, learned metrics yield only marginal
motes modularity and abstraction. When a program ter_gains over the baseline Euclidean distance measure.

minates abnormally, it is often unclear which componentFigure 1(c) shows the error rate for the Latex datasets with
should be responsible for (or is capable of) providing ana varying number of features (the feature sets are again cho-

In Figure 1(a), we compare ITML-MaxEnt (regularized to
the identity matrix) and the online ITML algorithm against
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Chopra, S., Hadsell, R., & LeCun, Y. (2005). Learning a Similar-

Table 1.Training time (in seconds) for the results presented in ity Metric Discriminatively, with Application to Face Verifica-

Figure 1(b). tion. IEEE Conf. on Computer Vision and Pattern Recognition
\ Dataset || ITML-MaxEnt | MCML ] LMNN ] il ( \. Dif | |
Davis, J. V., & Dhillon, I. S. (2006). Differential Entropic Clus-
Latex 0.0517 19.8 0.538 tering of Multivariate Gaussian#dv. in Neural Inf. Proc. Sys.
Mpg321 0.0808 0.460 0.253 (NIPS)
Foxpro 0.0793 0.152 | 0.189 Globerson, A., & Roweis, S. (2005). Metric Learning by Colla
rson, A., weis, S. . ri rning by ps-
Iptables 0.149 0.0838 4.19 ing ClassesAdv. in Neural Inf. Proc. Sys. (NIPS)

Goldberger, J., Roweis, S., Hinton, G., & Salakhutdinov, R.

Table 2.Unsupervised-means clustering error, along with semi-  (2004). Neighbourhood Component Analysidyv. in Neural

supervised clustering error with 50 constraints. Inf. Proc. Sys. (NIPS)

| Dataset H UnsuperVIsed| ITML | HMRF-KMeanS| Ha, J., Rossbach, C., Davis, J., Roy, I., Chen, D., Ramadan, H.
lonosphere 0.314 0.113 0.256 & Witchel, E. (2007). Improved Error Reporting for Software
Digits-389 0.226 0.175 0.286 that Uses Black Box Component®rogramming Language

Design and Implementatiorfo appear.

Hastie, T., & Tibshirani, R. (1996). Discriminant adaptive nearest
sen using the information gain criteria). We see here that neighbor classificationPattern Analysis and Machine Intelli-
ITML is surprisingly robust. Euclidean distance, MCML,  9ence 18, 607-616.
and LMNN all achieve their best error rates for five dimen-Jain’ P., Kulis, B., & Dhillon, I. S. (2007).0nline linear re-
sions. ITML, however, attains its lowest error rate of .15 at gression using burg entrogfechnical Report TR-07-08). The
d = 20 dimensions. Univ. of Texas at Austin, Dept. of Comp. Sci.

In Table 1, we see that ITML generally learns metrics sig-James, W., & Stein, C. (1961). Estimation with quadratic loss.
nificantly faster than other metric learning algorithmseTh  In Proc. fourth berkeley symposium on mathematical statistics
implementations for MCML and LMNN were obtained and probability vol. 1, 361-379. Univ. of California Press.
from their respective authors. The timing tests were rurKivinen, J., & Warmuth, M. K. (1997). Exponentiated gradient
on a dual processor 3.2 GHz Intel Xeon processor running Vversus gradient descent for linear predictémé.Comput, 132,
Ubuntu Linux. Time given is in seconds and represents the 1-63-

average over 5 runs. Kulis, B., Sustik, M., & Dhillon, I. S. (2006). Learning Low-rank

. . . . Kernel Matrices.Int. Conf. on Machine Learning (ICML)
Finally, we present some semi-supervised clustering re-

sults. Note that both MCML and LMNN are not amenable Lebanon, G. (2006). Metric Learning for Text Documeriat-

to optimization subject to pairwise distance constrailmts. tern Analysis and Machine Intelligenc28, 497-508.

stead, we compare our method to the semi-supervised C'“E‘ehmann, E. L., & Casella, G. (2003Fheory of Point Estima-
tering algorithm HMRF-KMeans (Basu et al., 2004). We  tion. Springer. Second edition.

use a standard 2-fold cross validation approach for evaluat . ) )

ing semi-supervised clustering results. Distances are coécngtfzr‘om 'hgiﬂzcglygb;is(gr?;gg{, ilﬁesrendrr]a% iirmeE:gQng'\get-
strained to be either similar or dissimilar, based on class (\ps) o ' T
values, and are drawn only from the training set. The en-

tire dataset is then clustered intelusters using-means ~Shalev-Shwartz, S, Singer, Y., & Ng, A. Y. (2004). Online and
(wherecis the number of classes) and error is computed us- E:;?EinLglecnmg)Of Pseudo-Metricsint. Conf. on Machine
ing only the test set. Table 2 provides results for the base-

line k-means error, as well as semi-supervised clusteringhental, N., Hertz, T., Weinshall, D., & Pavel, M. (2002). Ad-
results with 50 constraints justment learning and relevant component analy$tsoc. of
' European Conf. Computer Visio@openhagen, DK.
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