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Abstract

In real-world applications, “what you saw” during
training is often not “what you get” during deployment:
the distribution and even the type and dimensionality of fea-
tures can change from one dataset to the next. In this pa-
per, we address the problem of visual domain adaptation
for transferring object models from one dataset or visual
domain to another. We introduce ARC-t, a flexible model
for supervised learning of non-linear transformations be-
tween domains. Our method is based on a novel theoreti-
cal result demonstrating that such transformations can be
learned in kernel space. Unlike existing work, our model is
not restricted to symmetric transformations, nor to features
of the same type and dimensionality, making it applicable to
a significantly wider set of adaptation scenarios than pre-
vious methods. Furthermore, the method can be applied
to categories that were not available during training. We
demonstrate the ability of our method to adapt object recog-
nition models under a variety of situations, such as differing
imaging conditions, feature types and codebooks.

1. Introduction

The vast majority of object recognition methods are eval-
uated on the same dataset as the one they were trained on.
However, each image dataset corresponds to a particular
“visual domain” with its own peculiarities: compare ama-
zon.com product images to consumer snapshots of the same
product in Figure 1. There is substantial evidence that stan-
dard classification models degrade significantly when pre-
sented with test points from a different domain (for exam-
ple, see [9] for a discussion focused on natural language
processing). Recently, there has been increasing interest in
understanding and overcoming the visual domain adapta-
tion problem: given a target image domain whose feature
distribution is different from that of a given source domain,
how can we effectively utilize models learned on the source
domain at test time?

amazon.com consumer images

digital SLR camera low-cost camera, flash

Figure 1. We address the problem of adapting object models
trained on a particular source dataset, or domain (left), to a tar-
get domain (right).

Recently, the work of [19, 21, 12] examined the domain
adaptation problem for computer vision tasks, such as video
concept detection and visual object modeling. In particu-
lar, [19] learned a domain-invariant distance metric using a
small number of labeled images in the target domain. How-
ever, these proposed methods, as well as nearly all other
methods presented outside the vision community for do-
main adaptation, assume that the underlying representations
of the domains share the same feature space, with the same
dimensionality. For example, one baseline for adaptation
methods is to take a classification model from the source
domain (say, an SVM) and apply it directly to the target do-
main, which is impossible if the domains have different rep-
resentations. As a result, thus far there are very few methods
for performing adaptation for scenarios including different
image representations.

In this paper, we introduce a novel domain adaptation
technique based on learning cross-domain transformations.
The key idea is to learn an asymmetric non-linear transfor-
mation that maps points from one domain to another do-
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(a)   A symmetric transformation – the same rotation and 
scaling applied to both domains (green and blue) – cannot 

separate classes (circles and squares)

(b)   An asymmetric transformation – a rotation applied   
only to blue domain – successfully compensates for 

domain shift

Figure 2. A conceptual illustration of how an asymmetric do-
main transform (this paper) can be more flexible than a symmetric
one [19].

main using supervised data from both domains. The ability
to learn asymmetric and non-linear transformations is key to
our approach, as it allows us to handle more general types
of domain shift and changes in feature type and dimension.
The input to the algorithm consists of pairs of inter-domain
examples that are known to be semantically similar (or dis-
similar). We present a general model for learning linear
cross-domain transformations, and then prove a novel result
showing how to learn non-linear transformations by kernel-
izing the formulation for a particular class of regularizers.
We show that the method of [19] is a special case of our
general formulation, producing symmetric positive definite
transformations, and argue that asymmetric indefinite trans-
formations are more flexible for a variety of adaptation tasks
(see Figure 2 for a motivating example). Encoding the do-
main invariance into the feature representation allows our
method to benefit from a broad range of classification meth-
ods, from k-NN to SVM, as well as clustering methods.

Importantly, our approach can be applied to the scenario
where some of the categories do not have any labels in the
target domain, essentially transferring the learned “domain
shift” to new categories encountered in the target domain.
Thus, it can be thought of as a form of knowledge trans-
fer from the source to the target domain. However, in con-
trast to many existing transfer learning paradigms (e.g. [20],
[14]), we transfer the structure of the domain shift, includ-
ing changes in representation, rather than structures com-
mon to related categories.

In the next section, we relate our approach to existing
work on domain adaptation. Section 3 describes the the-
oretical framework behind our approach, including novel
results on the possibility of kernelization of the asymmet-
ric transform, and presents the main algorithm. We evalu-
ate our method on a dataset designed to study the problem

of visual domain shift, and show results of object classifier
adaptation on several challenging shifts in Section 4.

2. Related Work
Learning transformations has been an important prob-

lem in both the vision and machine learning communities
(see [19, 7, 15, 16, 6] for some vision examples). To our
knowledge, the only existing method applied to visual cate-
gory adaptation is the method of [19]. This method learns a
metric to compare two cross-domain data points that satis-
fies a set of given cross-domain (dis)similarity constraints.
Because the Mahalanobis distance is used for learning, the
algorithm essentially treats both the source and target do-
mains as part of a single data set, and applies existing met-
ric learning methods to learn a transformation over this data.
We will argue that this approach is insufficient when the di-
mensionalities of the domains are different, and restricts the
type of transformations that can be learned.

Other vision approaches for cross-domain transfer in-
clude SVM-based methods: The method of [21] proposed
an adaptive SVM, where the target classifier fT (x) is
adapted from the existing, auxiliary classifier fA(x) via
the equation fT (x) = fA(x) + δf(x), where δf(x) is
the perturbation function. Domain transfer SVM [11] at-
tempts to reduce the mismatch in the domain distributions,
measured by the maximum mean discrepancy, while also
learning a target decision function. A related method [12]
utilizes adaptive multiple kernel learning to learn a kernel
function based on multiple base kernels. The disadvan-
tage of [21, 11, 12] is the inability to transfer the adapted
function to novel categories, which is limiting in object
recognition scenarios, where the set of available category
labels varies among datasets. Other authors have proposed
“translating” features between domains; [13] translated fea-
tures between camera views to transfer activity models,
while [8] translated user preferences between text and im-
age domains.

Most of the work on adaptation has been focused outside
of the vision community (also see [18] for a discussion of
the more general dataset shift problem). One of the promi-
nent approaches was proposed by Daume [9], who intro-
duced a feature replication method for domain adaptation.
The basic idea is that, given a feature vector x, we define
the augmented feature vector x̃ = (x;x;0) for data points
in the source and x̃ = (x;0;x) for data points in the tar-
get. Daume also gives an overview of the relevant baselines,
which we employ in this work. Structural correspondence
learning is another method proposed for NLP tasks such
as sentiment classification [4]. This method relies on so-
called pivot features—words that frequently occur in both
domains and are correlated with domain-specific words—
so it is not clear how such an approach could easily be used
for visual category adaptation tasks.
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We stress that nearly all existing methods, including ones
in vision [11, 12, 21] as well as ones outside vision [9],
cannot be applied when the underlying dimensionality of
the source and target domain are different.

3. Domain Adaptation Using Regularized
Cross-Domain Transforms

In this section, we present our adaptation approach, con-
trasting with the work of [19]. We present a novel kernel-
ization result which will allow us to learn non-linear trans-
formations, and use this to design an algorithm for learning
general cross-domain transformations.

Denote the source domain as A, with data points
x1, ...,xnA

, and the target domain as B, with data points
y1, ...,ynB

. In general, the dimensionality of the source
domain points dA will be different from the dimensionality
of the target domain points dB .

3.1. Background: Symmetric Transforms

The method of Saenko et al. [19] proposes to model
the adaptation problem using Information-theoretic Metric
Learning (ITML), which can be viewed as learning a lin-
ear transformation W between A and B, optimised to sat-
isfy constraints between transformed points, which are ex-
pressed as functions of xTWy, where x ∈ A and y ∈ B.
The authors apply their method in kernel space in order to
learn non-linear transformations, using known kernelization
results. While this model is intuitively appealing for do-
main adaptation, the authors of [19] make a key simplifying
assumption that weakens the model but simplifies the al-
gorithm: they choose the LogDet regularizer over W [16],
which restricts the data only to the case when dA = dB
since the matrix trace and determinant are only defined over
square matrices W . Another important restriction of the
LogDet regularizer is that it is only defined over symmet-
ric positive definite matrices W . Positive definiteness im-
plies that the method learns a global transformation that is
applied to both domains (as in Figure 2a), and so LogDet
forces yet another restriction on the transformation model.

3.2. Asymmetric Transforms

Our goal is to extend the model of [19] to the more gen-
eral case where the domains are not restricted to be the
same dimensionality, and arbitrary asymmetric transforma-
tions can be learned. In order to avoid the restrictions of the
ITML model for adaptation, we seek an alternative regular-
izer that can generalize the model to use domains of differ-
ing dimensionalities but still retains the benefits of kernel-
ization.

The objective function proposed by [19] for finding the
linear transformation matrix W (in the unconstrained case)

may be expressed in generality as:

min
W

r(W ) + λ
∑

i

ci(X
TWY ), (1)

where X is the matrix of all the points inA, Y is the matrix
of all points in B, r is a matrix regularizer, and the ci are the
loss functions over the constraints, assumed to be expressed
as a function of the matrix XTWY . Thus, the optimiza-
tion aims to minimize a matrix regularizer r plus a set of
constraints that are a function of the learned inner products
xTWy. As an example, a possible constraint could be that
xTWy be close to some target value ti as encoded by the
constraint (xTWy − ti)2.

We focus on the particular regularizer r(W ) = 1
2‖W‖

2
F

and constraints that are a function of simW (x,y) = xTWy
for similar or dissimilar x,y pairs. We call this prob-
lem the Asymmetric Regularized Cross-domain transforma-
tion problem with similarity and dissimilarity constraints,
or ARC-t for short, in the rest of the paper. However,
in showing kernelization for this regularizer, we will actu-
ally prove a much stronger result, namely that kerneliza-
tion holds for a large class of regularizers that includes the
squared Frobenius norm and other regularizers, as discussed
in Section 3.2.1. Equipped with this result, we then describe
our overall algorithm in detail in Section 3.2.2.

3.2.1 Kernelization Analysis

There are two main limitations to the transformation learn-
ing problem (1) presented above. First, it is limited to linear
transformations W , which may not be sufficient for some
adaptation tasks. Second, the size of W grows as dA · dB ,
which may be prohibitively large for some problems. In this
section, we prove that (1) may be solved in kernel space for
a wide class of regularizers, resulting in non-linear trans-
formations whose complexity is independent of the dimen-
sionalities of the points in either domain. This kernelization
result is the first general kernelization result for asymmet-
ric transformation learning, and is critical to obtaining good
performance for several domain adaptation tasks. Note that
kernelization has been proven for some metric learning for-
mulations, such as [16]; in all these cases, the kerneliza-
tion results assume that W is symmetric positive definite,
whereas our results hold for arbitrary W . We also note con-
nections to the work of [1], which derives representer theo-
rems for various matrix learning problems. However, they
do not consider domain adaptation, and are mainly con-
cerned with theoretical results for matrix learning problems
such as collaborative filtering and multi-task learning.

The main idea behind the following result is to show that
i) the learned similarity function resulting from solving (1)
can be computed only using inner products between data
points inA and inner products between data points inB, and
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ii) (1) can be reformulated as an optimization problem in-
volving such inner products and whose size is independent
of the dimensionalities dA and dB . Then we can replace
standard inner products with arbitrary kernel functions such
as the Gaussian RBF kernel function, resulting in non-
linear learned transformations between the input space of
the source domain and the input space of the target domain.
Our analysis will hold for the class of regularizers r(W )
that can be written in terms of the singular values ofW ; that
is, if σ1, ..., σp are the singular values of W , then r(W ) is
of the form

∑p
j=1 rj(σj) for some scalar functions rj . For

example, the squared Frobenius norm r(W ) = 1
2‖W‖

2
F is

a special case where rj(σj) = 1
2σ

2
j . In the following analy-

sis, the input kernel matrices over within-domain points are
given as KA = XTX and KB = Y TY . We begin with the
first result (proof in Appendix A).

Lemma 3.1. Assume that KA and KB are strictly posi-
tive definite. Further assume that the regularizer r is con-
vex, r(W ) is of the form

∑
j rj(σj), where σ1, ..., σp are

the singular values of W , and that the global minimizer
of each rj is 0. Then there exists an nA × nB matrix
L such that the optimal solution W ∗ to (1) is of the form
W ∗ = XK

−1/2
A LK

−1/2
B Y T .

Note that the assumption that the global minimizer of
each rj is 0 can be eliminated in some cases, but we
leave out the discussion of this more general case due to
space constraints. One important consequence of the above
lemma is that, given arbitrary points x and y, the function
simW (x,y) can be computed in kernel space—by replac-
ing W with XK−1/2A LK

−1/2
B Y T , the expression xTWy

can be written purely in terms of inner products.
The above result demonstrates the existence of such a

matrix L, but does not show how to compute it. Using the
above lemma, we now show how to equivalently rewrite the
optimization (1) in terms of the kernel matricesKA andKB

to solve for L (proof in Appendix A):

Theorem 3.2. Assume the conditions of Lemma 3.1 hold.
If W ∗ is the optimal solution to (1) and L∗ is the optimal
solution to the following problem:

min
L
r(L) + λ

∑

i

ci(K
1/2
A LK

1/2
B ), (2)

then W ∗ = XK
−1/2
A L∗K

−1/2
B Y T .

To summarize, the main theorem demonstrates that, in-
stead of solving (1) for W directly, we can equivalently
solve (2) for L, and then implicitly construct W via W =

XK
−1/2
A LK

−1/2
B Y T . In particular, this form of W allows

us to compute xTWy using only kernel functions. Though
our focus on this paper is on one particular regularizer—
the squared Frobenius norm—one can imagine applying our

analysis to other regularizers. For example, the trace norm
r(W ) = tr(W ) also falls under our framework; because the
trace-norm as a regularizer is known to produce low-rank
matrices W , it would be desirable in kernel dimensionality-
reduction settings. We leave the study of the trace-norm
regularizer for domain adaptation as potential future work.

3.2.2 Setup, Constraint Generation, and Optimization

We now detail the training and test setup, the generation of
constraints, and our optimization method.

We consider two scenarios in our experiments. In the
first scenario, all categories are present at training. In this
case, we assume that we have many labeled examples for
each category in the source domain, and a few labeled ex-
amples for each category in the target domain. We form the
following class-based constraints for each pair of training
points (x,y), where x ∈ A and y ∈ B: if x and y are from
the same category, we construct the constraint

ci(X
TWY ) = (max(0, `− xTWy))2,

and if x and y are in different categories, we construct the
constraint

ci(X
TWY ) = (max(0,xTWy − u))2.

Note that, in both cases, the constraints are a function of
XTWY since xTWy is simply a single entry of the matrix
XTWY . Here ` and u are lower and upper bound parame-
ters chosen so that for same-category pairs, the learned sim-
ilarity xTWy should be large, and for different-category
pairs, the learned similarity xTWy should be small. Note
the difference here between our approach and [19]: we con-
strain based on the similarity function, as opposed to the
Mahalanobis distance used in [19].

In the second scenario, only a subset of categories are
present at training time. As in the first scenario, we train
our model on the available training data from the source and
target by constructing class-based constraints. However, at
test time, we aim to adapt the classifier learned over the
training categories to a set of new categories, for which we
only have labels in the source domain. We can achieve this
by applying the learned transformation to map target data to
the source domain, and apply a classifier such as k-nearest
neighbors from the mapped test data to the labeled source
data.

Following [19], we can also generate constraints based
not on class labels, but on other similarity or dissimilar-
ity information that may be available. For example, if the
source and target data include images of the same object
instances, and we have such information available, we can
still learn about the structure of the domain shift without
needing class label information. Such constraints are called
correspondence constraints.
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Figure 3. Domain adaptation dataset for investigating domain
shifts in visual category recognition tasks (figure is from [19]).

We conclude with a few remarks regarding learning in
kernel space and our optimization method. First, we note
that when mapping to kernel space, (2) indicates that the
constraint ci(XTWY ) is mapped to ci(K

1/2
A LK

1/2
B ); for a

similarity constraint over a pair xi and yj , this mapping is
given by (max(0, (`− eTi K

1/2
A LK

1/2
B ej))

2 for same-class
pairs (and analogously for different-class pairs). Second,
we form the input kernel matrices KA and KB using a
Gaussian RBF kernel, unless otherwise stated. Third, the
regularizer considered in our paper (r(W ) = 1

2‖W‖
2
F ) is

strictly convex, and one can therefore use a variety of pos-
sible optimization techniques for minimizing (2). We opted
for an alternating projection method based on Bregman’s
algorithm. This method updates the transformation with re-
spect to a single constraint ci at a time. It can be easily
implemented to scale to large problems and has fast con-
vergence in practice. See Censor and Zenios for details on
Bregman’s algorithm [5]. Alternately, one could use a sim-
ple gradient descent or stochastic gradient descent proce-
dure over (2).

4. Experiments
In this section, we evaluate our domain adaptation ap-

proach, ARC-t, by applying it to classification of object
categories using nearest neighbor classifiers.

The data set used in our experiments is the domain adap-
tation benchmark introduced in [19]. This data set contains
images from 31 object categories and three image domains.
The first domain, amazon, contains product images, typi-
cally in a canonical pose with a white (or uniform) back-
ground. The second domain, dslr, contains images of the
same object categories taken with a digital SLR camera
in an office. These images are high-resolution with vary-
ing poses and backgrounds. Finally, the webcam domain
contains images of the same objects as the dslr domain,
but taken with a webcam using a flash, which are of low-
resolution with varying poses and backgrounds. Note that in
our experiments, images of the same test object are held out
of training. See Figure 3, or [19] for details about the data
set. We create several additional domain shifts by chang-

ing the codebooks and the type of features used to compute
visual words, as detailed below.

Baselines and Competing Methods: Following [9]
and [19], we ran several baseline classifiers in our experi-
ments. One of the key difficulties in running these experi-
ments is that it is not obvious how to even build a baseline
when the domains have different image features; in such
cases, even a simple k-nearest neighbor classifier cannot be
applied directly. As a solution, only for the baselines be-
low that cannot be applied when the dimensionalities are
different, we apply kernel canonical correlation analysis
(KCCA) to project the data from both domains into a com-
mon space. Briefly, letXCCA

A be a matrix of training points
from the source and XCCA

B be a matrix of training points
from the target such that the training points align, i.e., the
i-th source domain point is the same object as the i-th tar-
get domain point. KCCA finds projections UA and UB to
maximize the cross-correlation of UAX

CCA
A and UBX

CCA
B

(we choose the number of rows/components of UA and UB

to be equal to the number of aligned training points). We
can then define a baseline similarity (or kernel) between ar-
bitary points x from the source and y from the target as
xTUT

AUBy. As shown previously, this entire process can
be kernelized [2], and is a natural method for comparing
correlated sets of variables, such as different-dimensional
feature vectors extracted from similar images.

We compare our approach against the following meth-
ods. Note that these are representative of the state-of-the-
art in domain adaptation. In all of the below methods, when
either the image features or codebooks being compared are
different, we first apply KCCA (see above).

• knn-ab applies k-nearest neighbors by comparing test
images from the target to training images from the
source.
• knn-bb applies k-nearest neighbors by comparing test

points in the target only against the training points in
the target domain.
• ml-bb applies metric learning [10] before the k-nn

classification. In this case, the metric is trained only
over the training points from the target domain, and
then knn-bb is applied using the learned metric.
• symm is the method of [19], which applies a cross-

domain metric, learned on all training points, before
the k-nn classification.
• ml-ab applies the ITML algorithm trained on all train-

ing points, followed by k-nn classification, and is
equivalent to the ITML(A+B) baseline of [19].
• svm-ab applies an SVM classifier using the union of

the training images in the source and target to train the
SVM.
• svm-rf applies the domain adaptation method of [9],

which replicates features to build augmented features
for source and target points.
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Training and Testing Details: As discussed in Sec-
tion 3.2.2, we break up our experiments into two sets, fol-
lowing [19]. We call the first the same-category experi-
ments: here, there is training data available for all cate-
gories at training time (albeit a much smaller amount in the
target domain). We select 20 training images per category
from the source and 3 images per category from the target.
For ARC-t, we generate constraints across all cross-domain
pairs, as described earlier, and directly follow the approach
of [19] for symm. The second set of experiments is de-
noted the new-category experiments. Here, we break up the
data such that half of the categories are used for training and
half for testing. Note that, in this case, the SVM baselines
svm-ab and svm-rf are not applicable, since the SVM clas-
sifier can only be applied when all categories are present at
training. Thus, all baselines are based on k-nn classifica-
tion. For these experiments, we select 20 training images
per category from the source and 10 images per category
from the target. For the new-category experiments, we ad-
ditionally employ correspondence constraints based on the
object instance labels for both ARC-t and symm; such la-
bels are also used for building the KCCA embeddings in
both same-category and new-category experiments.

We use an RBF kernel for symm, ARC-t, and the SVM
methods, with width σ = 1. In our results, we vali-
date the parameter λ (and the analogous learning rate pa-
rameter from SVM) over the training data, choosing from
{10−2, 10−1, 1, 10, 102, 103, 104}. The results presented
are averaged over 10 runs, and we measure classification ac-
curacy for each method. In the new-category experiments,
we further test ARC-t linear—our method applied with a
linear kernel instead of an RBF—to compare the difference
between a linear and non-linear transformation.

Image Processing: All images were resized to the
same width and converted to grayscale. Two types of lo-
cal scale-invariant interest points were detected: SURF [3]
and SIFT [17] features. Both type of features have been
shown to be highly repeatable and robust to noise, dis-
placement, geometric and photometric transformations. For
SURF, the blob response threshold was set to 1000, and the
other parameters to default values. A 64-dimensional non-
rotationally invariant SURF descriptor was used to describe
the patch surrounding each detected interest point. For
SIFT, we used a Harris-affine detector and extracted a 128-
dimensional descriptor. After extracting a set of descriptors
for each image, vector quantization into visual words was
performed to generate the final feature vector. To investi-
gate domain shift due to a change in the vector quantization
step, two different codebooks were used for SURF features:
1) a codebook of size 800, constructed by k-means cluster-
ing part of the amazon database, and 2) a codebook of size
600, constructed on the dSLR database. For SIFT features,
the codebook was 900-dimentional. All images were con-

Figure 4. Examples of the 5 nearest neighbors retrieved for a dslr
query image (left image) from the amazon dataset, using the non-
adapted knn-ab baseline in Table 1 (top row of smaller images)
and the learned cross-domain ARC-t kernel (bottom row).

Figure 5. Plot of classification accuracy as a function of the learn-
ing rate lambda over the webcam800-dslr600 new categories ex-
periment. This plot also shows a comparison between learning a
linear transformation (ARC-t linear) and a non-linear transforma-
tion (ARC-t).

Figure 6. Examples of the 5 nearest neighbors retrieved for a dslr
query image (left image) from the webcam dataset, using the knn-
ab baseline with KCCA in Table 2 (top row of smaller images)
and the learned cross-domain ARC-t kernel (bottom row). In this
case, the codebooks of the two domains are different; it is clear
that KCCA is unable to learn an effective mapping for this task.

verted to histograms over the resulting visual words. No
spatial or color information was included in the image rep-
resentation for these experiments.

Results: The same-category results are presented in Ta-
ble 1. In general, most baselines and existing methods per-
form nearly as well as ARC-t (particularly when the fea-
tures and codebooks of the domains align, as in webcam-
dslr and dslr-webcam), though our method overall achieves
the best results on these experiments. In this table, we tested
a variety of domain adaptation settings involving all three
domains from the adaptation data set, as well as varying
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Baselines / Existing Methods This Paper
Domain A Domain B knn-ab knn-bb svm-ab svm-rf [9] symm [19] ml-bb [10] ml-abb [10] ARC-t
dslr webcam 24.6 31.2 34.3 34.6 35.1 32.4 31.8 36.1
webcam dslr 12.2 21.1 25.1 23.8 27.5 24.5 19.6 25.3
amazon dslr 4.9 47.9 46.6 46.6 49.5 47.3 43.8 50.4
amazon-800 dslr-600 5.4 52.1 51.0 51.0 52.3 52.6 48.1 53.2
webcam-surf dslr-sift 5.1 22.1 25.9 25.8 28.5 30.0 22.0 30.9
amazon-surf dslr-sift 4.7 49.6 52.8 52.8 52.5 53.9 46.7 53.3

Table 1. Domain adaptation results for categories seen during training in the target domain.

Baselines / Existing Methods This Paper
Domain A Domain B knn-ab symm [19] ARC-t ARC-t linear
webcam dslr 8.4 30.3 37.4 32.5
webcam-800 dslr-600 9.7 35.8 45.0 34.8
webcam-surf dslr-sift 9.7 17.0 24.8 20.6

Table 2. Domain adaptation results for categories not seen during training in the target domain. These results also show the performance
of our method using a linear kernel, and demonstrates the benefits of learning a non-linear transformation.

the features and the codebook sizes. Interestingly, these
experiments seem to indicate that the feature replication
svm method svm-rf does not perform any better than the
baseline svm-ab, at least on this data. In Figure 4, we
show some examples of nearest neighbors over the amazon-
dslr experiment; given a dslr query, we retrieve the nearest
neighbors from amazon using knn-ab and our approach.
Here we see a clear qualitative advantage of ARC-t.

The benefits of our approach are very apparent in the
new-category experiments, as given in Table 2. Here, we
see a significant improvement over the relevant baselines
on all of the experiments. We compared the webcam and
dslr domains under three settings. The first (webcam-dslr)
compares the algorithms over 800-dimensional SURF code-
books, the second employs a 600-dimensional SURF code-
book for dslr, and the third employs SIFT features for
dslr. Figure 5 shows a more detailed display of the re-
sults on the webcam800-dslr600 experiment, with accuracy
results as a function of the lambda parameter. Figure 6
presents some example nearest neighbors retrieved in the
webcam800-dslr600 experiment; these results show that the
knn-ab method, which utilizes KCCA to build a mapping
between the domains, does not learn an effective transfor-
mation. Overall, our results demonstrate a significant im-
provement in a variety of adaptation settings, especially for
the challenging task of adapting simultaneously over new
categories, features, and codebooks.

Finally, in Table 2 we additionally present results for
ARC-t linear to show how learning a linear transformation
with our method compares to the kernelized version. As
is evident in the results, there is a significant improvement
when using the kernelized version with a Gaussian RBF ker-
nel, and so these results validate the kernelization analysis
presented in this paper.

5. Conclusion

We presented a novel approach to learning an asym-
metric, non-linear transformation for domain adaptation.
Unlike existing methods, our approach can be applied
to learn to adapt when the source and target domains
utilize different image features or codebooks. Our main
technical contribution shows how a general formulation
for the transformation learning problem can be applied in
kernel space, resulting in non-linear transformations. We
utilized this result to design an algorithm based on squared
Frobenius regularization and similarity constraints. Results
show clear benefits compared to existing techniques, and
validate our analysis and use of kernelization.
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A. Appendix: Proofs
Proof of Lemma 3.1: Let W have singular value decom-
position UΣŨT . We can therefore write W as W =∑p

j=1 σjujũ
T
j , where p is the rank of W . Every uj is ei-

ther in the range space of X or the null space of X . If it is
in the range space, then uj = Xzj , for some zj ; if it is in
the null space, then XTuj = 0. An analogous statement
holds for ũj and Y .

Consider ci(XTWY ), and expand W via the SVD:

XTWY = XT

( p∑

j=1

σjujũ
T
j

)
Y =

p∑

j=1

σj(X
Tujũ

T
j Y ).

If either uj is in the null space ofX or ũj is in the null space
of Y , then the corresponding term in the sum will be zero.
As a result, σj has no impact on the value of ci(XTWY ),
and only impacts the rj(σj) term of the objective. Since the
minimizer of rj is at 0, we set σj = 0 in this case.

Therefore, let us assume that the singular values are or-
dered so that the first t are such that the corresponding sin-
gular vectors u are in the range space of X and ũ are in the
range space of Y . The remainder of the singular values are
set to 0 by the above argument. Then we have

W =

t∑

j=1

σjujũ
T
j =

t∑

j=1

σjXzj z̃
T
j Y

T

= X

( t∑

j=1

σjzj z̃
T
j

)
Y T = XL̃Y T ,

where L̃ =
∑t

j=1 σjzj z̃
T
j . With the transforma-

tion L = K
1/2
A L̃K

1/2
B , we can equivalently write as

W = XK
−1/2
A LK

−1/2
B Y T (this transformation will

simplify the theorem proof), proving the lemma.

Proof of Theorem 3.2: Denote VA = XK
−1/2
A and

VB = Y K
−1/2
B . Note that VA and VB are orthogonal

matrices. From the lemma, W = VALV
T
B ; let V ⊥A and

V ⊥B be the orthogonal complements to VA and VB , and let
V̄A = [VA V ⊥A ] and V̄B = [VB V ⊥B ]. Then

r

(
V̄A

[
L 0
0 0

]
V̄B

T
)

= r

([
W 0
0 0

])
= r(W ) + const.

One can easily verify that, given two orthogonal matrices
V1 and V2 and an arbitrary matrix M , that r(V1MV2) =∑

j rj(σj) if σj are the singular values of M . So

r

(
V̄A

[
L 0
0 0

]
V̄B

T
)

=
∑

j

rj(σ̄j)+const = r(L)+const,

where σ̄i are the singular values of L. Thus, r(W ) =
r(L) + const.

Finally, rewrite the constraints ci using W =

XK
−1/2
A LK

−1/2
B Y T :

ci(X
TWY ) = ci(KAK

−1/2
A LK

−1/2
B KB) = ci(K

1/2
A LK

1/2
B ).

The theorem follows by rewriting r and the ci functions us-
ing the above derivations in terms of L. Note that both r and
the ci’s can be computed independently of the dimensional-
ity, so simple arguments show that the optimization may be
solved in polynomial time independent of the dimensional-
ity when the rj functions are convex.
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