Metric Learning for Reinforcement Learning Agents

Matthew E. Taylor, Brian Kulis, and Fei Sha
Lafayette College, taylorm@lafayette.edu
University of California, Berkeley, kulis@eecs.berkeésiu
University of Southern California, feisha@usc.edu

ABSTRACT

A key component of any reinforcement learning algorithmhis t
underlying representation used by the agent. While reteiment
learning (RL) agents have typically relied on hand-codetkestep-
resentations, there has been a growing interds@imingthis rep-
resentation. While inputs to an agent are typically fixegl. (istate
variables represent sensors on a robot), it is desirablattoreti-
cally determine the optimal relative scaling of such inpaswell
as to diminish the impact of irrelevant features. This warka-
duces HOLLER, a novel distance metric learning algorithm, and
combines it with an existing instance-based RL algorithexttieve
precisely these goals. The algorithms’ success is higldayiia
empirical measurements on a set of six tasks within the nadunt
car domain.

Categories and Subject Descriptors
1.2.6 [Learning]: Miscellaneous

General Terms
Algorithms, Performance

Keywords

Reinforcement Learning, Distance Metric Learning, Autmioois
Feature Selection, Learning State Representations

1. INTRODUCTION

In Reinforcement Learnin(RL) problems, an agent must learn
to select sequences of actions to maximize a reward sigria¢. T
agent’s decision process is state-dependent — the effeats ac-
tion will depend on the agent’s location in an environmenhe T
agent’s state representation is a critical component incaess-
ful agent, but state representations are typically desidnyea hu-
man domain expert. The goal of this paper is to introduce asbb
method to allow more autonomy in designing state repretenta
allowing the agent to scale dimensions of the state reptatsen,
as well as to potentially ignore irrelevant dimensions.

There has been some exciting recent work on learning to con-
struct or scale state variables (c.f., proto-value fumstifiL0]) but
such methods typically assume a model of the task is knowmerOt

Cite as: Title, Author(s), Proc. of 10th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 20Tder, Yolum, So-
nenberg and Stone (eds.), May, 2-6, 2011, Taipei, Taiwan{Ex-XXX.
Copyright(© 2011, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

work focuses on the placement and tuning of individual biasis-
tions (c.f., learning where to place kernels [2]). In costrahis
work assumes that 1) the agent must efficiently sample the sta
space and construct its representation on-line and 2) #r& agould
learn a metric that should generalize across the entire spaice,
not just the region explored.

Rather than constructing new state variables, we assurnththa
state variables provided to the agent are sufficient to ldecur-
rent task, but that we do not know their relative weightingor F
example, consider a robot that has a laser range finder thds re
distances in meters and a sonar that reads distances inlfégt.
likely that the two state variables will need to be scaletedéntly
to accurately integrate their information. Likewise, if agent is
provided both its speed in meters/second and its accelerati
meters/secorfd the relative importance of these two variables on
its estimate of location will need to be treated very diffahg

Traditionally, state variables are scaled by normalizithgtate
variables to have the same range (¢:g1, 1]). For instance, con-
sider the CMAC [1] function approximator, a type of tile cogi
used successfully in the mountain car domain [14]. CMACs can
take an arbitrary groups of continuous state variables apdn-
finite, axis-parallel tilings over them; a continuous stspace is
discretized while maintaining the capability to genemaNza mul-
tiple overlapping tilings. However, the number of tiles amidith
of the tilings are hardcoded by a domain expert, which nétegss
knowing both the ranges (to normalize) and relative impur¢aof
the different state variables (to determine the spacingramaber
of tiles per dimension).

This work shows that it is possible to udistance metric learn-
ing, a popular supervised learning technique, to scale andtsele
state variables automatically from data gathered via agepéri-
ence. Experiments show that our theoretically groundedinen-
metric learning can result in significantly improved leagiin a
set of RL tasks situated in the mountain car domain. Our hepe i
that this work will encourage additional research into thtegra-
tion of metric learning and RL, as well as to provide a powerfu
tool to help automatically determine effective state repreations.

2. BACKGROUND

This section first introduces Reinforcement Learning, #térgy
for the paper. Next, Fitted RrAX is discussed, an instance-based
RL algorithm that will be used in this paper’'s experimentast,
an introduction to distance metric learning provides baokgd to
understand IBLLER, our novel learning algorithm.

2.1 Reinforcement Learning

Reinforcement learning problems are typically frameMaskov
decision processe@VIDPs) defined by the 4-tupl¢S, A, T, R}.

An agent perceives the currestateof the worlds € S (possibly
with noise). Tasks are often episodic: the agent executemadn
the environment until it reaches a terminal or goal stateyrath
point the agent is returned to a starting state. Thedsdéescribes
theactionsavailable to the agent, although not every action may be
possible in every state. ThHeansition functionT : S x A — S,
takes a state and an action as input and returns the state efivh
ronment after the action is performed. The agent’s goal imdgi-
mize its reward, a scalar value defined by tbward function

A learner chooses which action to take in a state via a policy,
m : S — A. wis modified by the learner over time to improve
performance, defined as the expected (discounted) totaldewn-
stead of learningr directly, many RL algorithms instead approx-
imate the action-value functior) : S x A — R, which maps
state-action pairs to the expected real-valued return [lk6tasks
with small, discrete state spacé3and= can be fully represented
in a table. As the state space grows, using a table becomeadmp
tical, or impossible if the state space is continuous. Agiénsuch
tasks typically factor the state usistate variableqor feature$,
so thats = (z1, z2,...,2zx). In such cases, RL methods Usec-
tion approximatorssuch as atrtificial neural networks or tile coding,
where parameterized functions representingr Q are tuned via
supervised learning methods. The parameterization ascobihe
function approximator define the state space abstractltmyiag
observed data to update a region of state-action valuesrrtthn
a single state/action value.

2.2 Fitted R-Max

The experiments in this paper focus on integrating a learned
distance metric with Fitted Rtax, an instance-based RL algo-
rithm [7]. Fitted RMAX approximates the action-value function,
Q, for large or infinite state spaces by constructing an MDR ove
a small (finite) sample of state§ C S. For each sample state
X € X and actioru € A, Fitted RMAX estimates the dynamics of
the transition function]'(x, a), using all available data for action
a. The data from multiple nearby states will need to be integia
and generalized as it is unlikely that points in a continustade
space will be sampled enough to approximate all actionitians.

A probability over predicted successor state$jil’(x, a), is first
approximated. The distribution of successor states is ap@noxi-
mated with a distribution of states ¥, resulting in a MDP defined
over a finite size X) that is formed based on data from the envi-
ronment §). Q is then approximated via dynamic programming.

For the purposes of the current work, the most importantfeat
of Fitted RMAX is that whenl" and R are estimated for a poin,
data from nearby points are averaged together, weightetiddy t
relative distances. That is, recorded instances that pegigtly)

a small/large distance” or “points andw should have a smaller
distance than points andz.”

Metric learning algorithms typically attempt to constradrans-
formation of the data (either linear or non-linear) sucht ttnee
constraints are satisfied after applying a standard distanetion
such as the Euclidean distance to the transformed data. dhe m
popular approach is to learn a linear transformation of thi;d
these methods are often callethhalanobis metric learningneth-
ods, and is the approach we employ in this work (c.f., [4, 3,9,
22]). These methods are desirable in that they show goodaene
ization performance on a variety of problems, including ision,
text, and music domains (c.f., [3, 15]).

Recently, there has been interest in applying metric legraver
large-scale data, or in cases when the standard methogsdlats
a large set of constraints in a batch mode are inadequateh Suc
online algorithms instead process a single constraint at a tinte, an
are designed to give comparable performance as comparkdito t
offline counterparts. There has been recent theoreticgrgss in
proving regret bounds for online learning methods, whiabvte
worst-case guarantees on the performance of an onlineithigor
as compared to any corresponding offline algorithm [13, 28§
pursue an online approach in this paper to avoid the conipotdt
cost of repeatedly applying offline learning methods to atad

3. LEARNING THE DISTANCE METRIC

Algorithm 1 summarizes the process of learning and using-a di
tance metric in an RL agent. There are three main steps whith w
be detailed in the following sections:

1. Collect data while the agent explores the environment.

2. Decide which states are “more similar,” based on theeadlat
ness of agent transitions.

3. Use state relatedness to calculate a distance metritessta
which have similar transitions should be closer than states
which have dissimilar transitions.

3.1 Collecting Data

Algorithm 1 is the top-level algorithm. It first initializesn agent
(lines 1-4) and then has it interact with its environmentafgingle
episode (lines 5-11), collecting data to be used for distamnetric
learning. Lines 12—-31 consider triples of vectors, whereaor is
defined by a pair of states which the agent has moved between (i
the difference betweesi ands). Lines 18 and 19 consider sets vec-
tors recorded at similar times (e.g., NumPtsactions).We restrict
the vectors to be temporally similar under the assumptiantthn-
sitions which occur in rapid succession are likely to be nsimelar
than transitions that happen at very different times. Th&ump-

closer tox are assumed to be more predictive than instances further tjon is domain dependent, but will often be true, partidylarhen

away. Rather than assuming that the similarity betweentpam
the state space is Euclidean, this work learns a distanagcrfat
Fitted RMAX to use. A full description of Fitted RtaXx and its
implementation can be found elsewhere [7].

2.3 Distance Metric Learning

Distance metric learning is a core machine learning prolilean
attempts to learn an appropriate distance function for ergtask.
Because distances or similarities are used in a varietyskta—
including clustering, similarity searches, and many dfasdion
algorithms — there has been significant interest in the desfigl-
gorithms for tuning distance functions. Typically thesgosithms
are at least partially supervised; in addition to the ddte,dlgo-
rithm receives constraints for the desired distance metiam-
ples include constraints of the form “pointsandy should have

NumPtsis set so that these vectors are also close spatially. How-
ever, even in “well behaved” domains there will be regionshef
state space where this assumption will be violated (e.gagemt
may often move without obstruction, but be constrained wdmn
jacent to a wall).

We only consider sets of three vectdis w,) which have the
same action (line 22), as transitions for different actiorey be
dissimilar. The similarities between vectar&ndw, and between
vectorsv andx are calculated on lines 23 and 24, as discussed in
the following section. Lines 27 and 30 add the triple to thieofe
current constraints, which are in the form is more similar tax
thanv is tow.” Finally, after all the data from an episode has been
processed, the distance metric is updated with the set staots.

On lines 33 and 34, the algorithm can decide if more data needs
to be collected. For instance, if afy/, has changed significantly

Algorithm 1 Main Algorithm ()

Algorithm 2 CALCRELATEDNESS(W, z,)

Executen = 7(s)
Observer ands’

: Savetuple/; — (s,a,s’)
10: s« ¢

11 i«—i+1

12: until s is a terminal state
13: for j € {0,...,i— 1} do
14: # get vector for transition between statgand s
15 v« V;.s' —Vj.s #the vector frons to s’

16: a< Vja # the action in question

17 C, 0 # Set of constraints used to updaié,
18: for k € {j — NumPts...,j + NumPtg do

19: for I € {j — NumPts...,j + NumPt3 do

1: 7 « random policy

2: #initialize the dist. metric for each action

3: Va € A, W, « ldentity matrix (i.e., Euclidean distance)
4:7—0

5. s « initial state # Begin an episode

6: repeat

7

8:

9

the episode ends

20: w — Vi.s' — Vi.s # transitionk vector
21: x— V.s —V.s # transition! vector
22: if (a = Vi.a = Vi.a) and(v, w, z are distinc} then
23: rew < CALCRELATEDNESY W, v, w)
24 re; <+ CALCRELATEDNESY W, v,)

25: if rew > res then

26: # Relatedness(v,\w) Relatedness(v,x)
27: Co — Co U (v, w,x)

28: else

29: # Relatedness(v,x} Relatedness(v,w)
30: Co — Co U (v, z,w)

31: # update the distance metric

32: W, +— HOLLER(W,, Ca,n)

33: if more data needed for distance learniingn
34: gotoline 4

35: Learn a policy using an RL algorithm ahid

during the last updated from the constraints, it is possh#émore
data is needed foW, to converge. In this paper we instead run
the algorithm with different numbers of data collectionseles to
show how gathering additional data improves the estimafd of
and, therefore, the speed of learning (line 35).

In general, collecting data from the environment can berinte
leaved with distance metric learning and with learning atioae
value function. Algorithm 1 simplifies this approach. Rattien
updating the distance metric on every time step, it is ugbatéhe
end of every episode. This is primarily an implementatiotai¢o
reduce the number of times the distance metric learning (iotde
plemented in MATLAB) was called by the simulator (implemasht
in C).

3.2 Transition Similarity

Algorithm 1 reasons about pairs of vectors, where theserect
describe transitions in the state spase: s’. Algorithm 2 calcu-
lates the similarity of two vectors, given the current disametric,
where the relatedness of two vectors is at most 1.0 (if theyden-
tical in direction and magnitude). This similarity will beed in the
next section to calculate the distance metric under thengstson
that states that have similar transitions (for the sameshould
be closer in the state space than states that have disstraitesi-
tions.

|| — VaTWe

gl — yTWy

m Mindiz|l,[ly])
max(iz. v

. _ ozt Wy

© = Talll

return ¢-m

aA wWwNPE

Algorithm 3 HOLLER(W, C, n)

1: for each constraintv, w,z) € C do
2: Whext < minimum over allWyex: Of:

Doa(Whexy W)+ max(dwpe(v, W) — dWpeq(v,) +1, 0)
3: W «— Wnexl

3.3 The HOLLER Algorithm

HoLLER (Hinge loss Online Logdet LEarner for Relative dis-
tances), as presented in Algorithm 3, is used to learn amndista
metric dw from a list of constraint€”’ and a learning rate. Re-
call that each constraifv, w, z) indicates thav should be closer
to w thanv is to . The metric learning algorithm follows a stan-
dard online updating scheme: each constraint is visite& amcl
the metric is updated after seeing each constraint. As irt ores
line algorithms, we trade off conservativeness with cdiveoess
when updating the metric. Thatis, we balance 1) keeping tteien
from changing too much from update to update, with 2) updatin
the metric to satisfy the constraint. This tradeoff is cold by
the learning rate), and each update to the metric solves an opti-
mization problem that encodes this balance appropriately.

More specifically, we aim to learn a Mahalanobis distancefun
tion, which is parameterized by a positive semi-definiterirdt’,
and is given bydw (v, w) = (v — w)TW (v — w). Learning the
distance function corresponds to learning the mdfrix Note that
since W is positive semi-definite|y/ = GT G for some matrix
G, and it is straightforward to show that the Mahalanobisadtise
functiondyw is simply the squared Euclidean distance after apply-
ing the transformatioids to the data points. When updating to
Whext, W& mMeasure our conservativeness using the LogDet diver-
gence,

Dya(Whext, W) = tr(Wnextwil) — log det(Wnextwil) -n,
where tr refers to the matrix trace amdis the number of rows
or columns of¥/. This divergence measure is natural since posi-
tive semi-definiteness d¥ is automatically maintained, and it has
several properties such as scale-invariance which areathssifor
metric learning problems. Further, the LogDet divergeratieen
used extensively in the context of metric learning (e.g.6]% For
correctiveness, we attempt to enforce the constrintv, w) <
dw (v, z) — 1, or equivalently,dw (v, w) — dw(v,z) + 1 < 0,
as is standard for relative-distance metric learning élgms [19].
This constraint ensures that the distance betwesardw should be
much smaller than the distance betweeandx. Given these two
components, we attempt to find the updated distance pardreete
by Whextthat minimizes the sum of the LogDet divergence between
Whext and W (conservativeness) plus the errorldfex not satis-
fying the current constraint using the hinge loss (corvecigss),
where the sum is balanced by the learning ratén particular, we
look for a matrixWhex that minimizes

Dfd(W”eXb W) +n- é(deexn v, w, 'T)v (1)
wherel(dw, v, w,z) = max((dw (v, w) — dw(v,z) + 1,0) is

the hinge lossfor the constraintw (v, w) < dw(v,z) — 1. The
solution of the minimization problem to compufé.ex:can be com-
puted in closed-form in a manner similar to the online md&én-

ing algorithm of [6]. In particular, a pleasant and surprisaspect

of the update for our algorithm is that the solutioniig,,: can

be computed as a rank-two update to the mal¥ix this can be
shown by taking the gradient of (1), setting it to zero, anltiag

for Wi..¢. Details of the update can be found in our publicly avail-
able MATLAB code, which show how to handle the gradient at the
“hinge” location?

One key advantage of the above online algorithm is that one
can prove online regret bounds for this algorithm with appiro
ate learning rate selection that guarantee that the metuped
by the online algorithm performs similarly to the output bt
best possible offline metric learning algorithm (i.e., agoaithm
that performs updates of the metric in a batch mode usingoaH ¢
straints). Briefly, one defines the total loss of an onlineatgm
as the sum of the losses over @lltimesteps/constraints. Denote
the sequence df/ matrices constructed by the online algorithm as
Wh, ..., Wr, and similarly denote the sequencevpfv, andzx vec-
tors from each constraint as, .., vr, w1, .., wr, andzy, ..., xr.
Then we can define the total loss as

T
Z K(Wt, Vt, Wt, xt).
t=1
Analyses of online learning algorithms focus on thgret which
is the difference between the total loss of the online |legymilgo-
rithm with the total loss of the best possible offline algmit

T T
Reg = Z((Wt, Vg, W, Te) — argminy, Z((W*7vt,wt, T¢).

t=1 t=1
The goal is to bound the regret as a functiorifgfthe total num-
ber of constraints processed. Our approach, which combires
hinge loss with a convex regularizer, can be viewed as aajase
of the online learning framework discussed in Shalev-Steand
Singer [13] (see Section 6, equation 38). In particularhvlie ap-
propriate selection of learning rates as discussed in $i&tevartz
and Singer, we can achieve regret that is bounde@pyT). Fi-
nally, note that, while the proposed algorithm shares sirti¢s to
existing methods (c.f., [6, 9]) and has been studied thealt in
the context of a large class of online learning methods, wenat
aware of metric learning work based on LogDet conservagigen
and the standard hinge loss over relative distance contsrai

4. EMPIRICAL VALIDATION

This section introduces a set of six experiments showcahimg
benefits of combining HLLER with Fitted RMAX.

4.1 2D Mountain Car Domain

This section introduces our experimental domain, a geizedl
version of the well-studied mountain car task [14]. Mountear is
particularly appropriate for this work as it is a simple damaith
continuous state space and can be easily parameterizeghtght
the strengths of HLLER.

In mountain car, the agent must generalize across continuou
state variables in order to drive an underpowered car up axmou
tain to a goal state. To make the problem more challenging tha
the original formulation, the agent begins at rest at theéobotof
the hill2 The reward for each time stepisl. The episode ends,

!Seecs. | af ayette. edu/ ~tayl ormi MetriclLearn

2The mountain car task is typically deterministic: to intnoé ran-
domness among trials, the initial position of the car in eaiei's

and the agent is reset to the start state, after 500 time stepi
reaches the goal state.

In practice, one of the most difficult challenges for the agen
to find the goal state the first time. After the goal state hanbe
seen at least once, RL algorithms are typically able to dyielarn
to consistently find the goal (albeit with different numbefsteps,
which determines reward). Effective exploration and galiation
is thus critical for agents to quickly find high-performingligies.

In the standard two dimensional mountain car task, two oenti
uous variables fully describe the agent’s state. The hotatqo-
sition (z) and velocity) are restricted to the rangé¢s1.2,0.6]
and[—0.07, 0.07] respectively. The state variables are automati-
cally scaled (linearly) td—1, 1], as consistent with past work in
this domain [7, 14, 18]. If the agent reaches= —1.2, (z) is
set to zero, simulating an inelastic collision. On everydistep
the agent selects from three actionse{ t, Neutral , Ri ght },
which change the velocity by -0.001, 0, and 0.001, respelgtiv
Additionally, gravity is simulated by adding0.025(cos(3x)) to
4, which depends on the local slope of the mountain. The goal
states are those whege> 0.5. Our implementation mimics the
publicly available version of this task.

4.2 Experimental Procedure

In order to learn in the 2D Mountain Car Domain, we first tune
the Fitted RMAX learning parameters on the standard 2D task with-
out metric learning, and then tune th@H_ER learning parameters
on the standard 2D task. The primary consequence of thisapipr
is that the Fitted RMAX parameters have not been tuned to take
advantage of the state variables after metric learningultsesve
present are therefore biased againsttHER. Additionally, neither
the Fitted RMAX nor HOLLER parameters are tuned for the vari-
ants of the 2D mountain car problem, enabling a fair comparis
on the more complex task variants (discussed in Section 4.3)

1: The Standard 2D Mountain Car task is run where agents use
Fitted RMAX with a variety of parameters. The parameters tuned
wereminFraction which determines if the agent is allowed to end
its nearest neighbor approximation eangdelBreadthwhich sets
how fine a uniform grid is used to generalize the state spaak, a
resolutionFactor which determines the size of the regularly spaced
grid used to approximate saved instances. We found tha¢salfi
minFraction= 0.01,modelBreadth= 0.03, andesolutionFactor=
5 produced high-valued policies with few samples and altbfee
very fast experiments (in terms of wall clock time). Theseapa
eter settings are similar to those used in past experimartsis
domain and are explained in detail elsewhere [7, 17].

In order for HOLLER to learn a distance metric, it must have
data recorded from the task. To record this data, we alloled t
agent to explore the task (with a fully random policy) forfelif
ent numbers of episodes. The more episodes used for ledh@ng
metric, the more likely it will be accurate. However, thesales
spent collecting data will count against the agent’s pentorce (as
discussed further in Section 4.3). After trying 6 differematues,
we decided to experiment with 1, 5, and 10 episodes of data for
HOLLER, affecting Algorithm 1, lines 33 and 34.

2: Given the data collected, dLLER is then used to learn a dis-
tance metric. We experimented with 10 values)dfa parameter
for Algorithm 1) from 0.0001-0.5 and found that 0.01 and 0.05
produced the best behavior on the 2D Mountain Car task for 1, 5
and 10 episodes. The performance of 0.01 and 0.05 were nrot dis

start state is perturbed by a random number-ifi.005, 0.005], as
was done previously in this domain [17].

3See http://library.rl-conmunity.org/w ki/
Mount ai n_Car _(Java)

tinguishable, suggesting thatdLER'’s performance is not overly
dependent on this parameter. Experiments in the follonéagens
usen = 0.05. We also tested four values MiimPts the parame-
ter that determines how many temporally similar states togae,
and found that a value of 10 produced slightly better reshéis 1,
5, or 20.

3: Although HOLLER is designed to be an on-line algorithm, it
can be run multiple times over the same constraints if tha dat
not immediately discarded (Algorithm 1, line 32). In our exp
ments we tried iterating over the collected data for 1, 2,,3ril
10 times. For 1, 5, and 10 episodes, iterating over the data tw
produced slightly better results than the other parameertsthe
differences between the final performance (as measuree ifolkh
lowing sections) were small. In our experiments, we runatier
over the collected data twice.

4: Having determined all the necessary parametets,#R can
be used to learn a distance metric. Initially we learned glsidis-
tance metric per action. However, in the Mountain Car domain
the action outcomes are similar enough that the learnedrdist
metrics for the different actions were indistinguishafilaerefore,
the experiments below focus on learning a single distandeane

agents take longer to discover the goal state, but that esint
achieve a slightly higher reward.

One reasonable dimension along which to evaluate the efect
ness of FOLLER would be the average reward at a set amount of
data (e.g., after 100 episodes). However, such a metricégrtbe
“speed” of learning — Sarsa has a higher performance at @piso
100 but suffers from a slow start. Analyzing the cumulatewards
also shows that using Fitted ®®ax with HOLLER learning from 1
episode of data outperforms the other learning methods.

In the standard 2D Mountain Car problempH_ ER with 1, 5,
and 10 episodes of data outperforms FittesiR% without HOLLER
in terms of the final average reward and the cumulative rew/sdel
ditionally, the difference in cumulative rewards is stitally sig-
nificant. While Sarsa outperforms Fitted\NRxX on this test both
in terms of final and cumulative reward, previous work hassho
that it is difficult for Sarsa to scale to higher-dimensionatsions
of this problem [18]. Experiments showing the superiorit{itted
R-MAX are replicated later in Section 4.4. A summary of this and
other experiments can be found in Table 1.

4.3.1 Variant 1: Inflated State Variable

Wieutral (using on|y instances where the agent random|y executed As a second task, we consider the more general case where the

theNeut r al action) and using that metric for div, when learn-
ing an action-value function.

5: To evaluate KWLLER, we then learn the 2D Mountain Car
task using Fitted R4AX, with and without the learned distance
metrics. The effect of the distance metric is compared infohe
lowing sections by evaluating the final and total rewardagibioth
the Euclidean distance and using the leariiéd

4.3 2D Mountain Car Results

First, consider the distance metri#;, learned by KbLLER from
10 episodes worth of data. Examining the 10 trials, we fint tha

0.119 £0.012 —0.006 £ 0.003

—0.006 £ 0.003 0.096 + 0.008

where thet terms show the standard error. The values on the diag-
onal show that, the first state variable, is slightly more important
thanz, the second state variable. The off-diagonal values ase ver
small, showing that linear combinations of the two statéaldes

are not critical in this domain. However, it is impossiblesay
whether this distance metric is “correct” — instead, thditytdf

this metric is in the observed performance of the RL agent.

Figure 1(a) shows learning curves for learning the 2D Momanta
Car task with Fitted R4AX, both with (for 1, 5, or 10 episodes
of data) and without (No Metric Learning) #LLER. The x-axis
shows the episode and the y-axis shows the average rewatdhfor
episode number. Error bars show the standard error over-10 in
dependent trials. All experiments are averaged over 10 taiad
all experiments in this section are ended after 100 episodibe
three trials that use BILLER after collecting data for 1, 5, and 10
episodes learn to reach the goal very quickly, quickly odtpen-
ing learning with the no distance metric. However, this gsial
does not account for the number of episodes spent colledtiay
(Algorithm 1, lines 5-11).

Figure 1(b) explicitly shows the time spent collecting dfia
HOLLER; for instance, when collecting data for 10 episodes, the
learning curve begins on episode 10, as episodes 0-9 amnmeadsu
to have reward -500. To make the graph more readable, a 6depis
sliding window is used and error bars are not shown. Additilgn
the performance of Sarsa (a popular model-free learnirayigthgn)
with CMAC function approximation is compared by using thexsa
parameters as those in the literature [7, 14, 17]), showiag3arsa

range of the second state variable is not known. The statablar

& still ranges from [-0.007, 0.007], but we assume that in otde
ensure that all data is scaled so that all state variableemaage
within the expected range of [-1, 1}; is divided by 0.7 (rather
than 0.007), causing the observed range to become [-0.01]. 0.
Such non-optimal scaling could occur if the human desigmer d
not know the true variable range and was being careful. Adter
tively, the range could be automatically determined thfoagm-
pling the minimum and maximum values, but two noisy readings
(one high and one low) could throw off the scaling. As seeré t
previous subsection, theandz state variables are both important
for accurately predicting the transition function and weundoex-
pect that Fitted R4AX, using parameters set for the standard 2D
mountain car task, will not perform as well as when it is cedpl
with a learned distance metric.

As shown in Figure 2(a), the episodes spent learning thardist
metric initially hurt the learners: Fitted RAX without a distance
metric initially outperform an agent that collected 10 epliss of
data for HOLLER. However, the final average reward and average
cumulative reward is better for all three settings of theLHER
agents, although the differences are only statisticatiyificant
about half of the time (see Table 1 for Student’s t-test tskul

4.3.2 Variant 2: Sensor and Actuator Noise

To test the efficacy of HLLER in the presence of noise, we next
consider a variant of mountain car that includes partiakolzbil-
ity and stochasticity. As before, the position and velodtgte
variables are scaled to the rangel, 1] and then Gaussian noise
is added to the agent’s observation, drawn randomly on eaeh t
step from\/(0, 0.1). Similarly, on every time step, the agent's ve-
locity is multiplied by zero-mean noise drawn froki(0, 0.01).

Figure 2(b) shows that although the noise makes learning mor
difficult for all learners (i.e., their reward is lower thagemts in
Figure 1(b)), FOLLERIs able to learn distance metric functions that
allow the agents to outperform the default scaling. Thispsudic-
ularly important test as it shows thatotLER is robust to noise,
as desired. Using BILLER produces a higher final and cumulative
reward in all three cases, although only the differencesdsen the
cumulative rewards are statistically significant.

4.3.3 \Variant 3: Irregular Action Function
Next, consider the situation where the transition funcisdmghly

2D Mountain Car

-100

-150

-200

-250

-300

Reward

-350

-400

No Metric Learning —+—
-

1 Episode

5 Episodes
10 Episodes
Sarsa ---

80

-450

40 60
Episodes

(a) The episodes used bydLER are ignored, with standard error

100

2D Mountain Car
-100

-150

-200

-250

-300

Reward

-350

-400

No Metric Learning —+—
1 Episode -3

5 Episodes - :

10 Episodes -
Sarsa ---

80

-450

-500

40 60
Episodes

(b) 2D Normal

100

Figure 1: These figures show the same learning curve data where the xiaxs the episode number and the y-axis shows the reward. In)athe y-axis
shows the average reward on a given episode (higher is betjerith the standard error. (b) also shows the average reward pr episode, but accounts
for the episodes spent learning the distance metric and usess-episode sliding window.

dependent on the state, as was done in the 2009 Reinforcemenbecause of the increased state space size and additiomaisact

Learning Competition (c.fht t p: //2009. r| - conpeti ti on.

or g/ and [21]). In particular, the actions 0-R€ft , Neutral ,

and Ri ght) were mapped such that the action executed by the
agent depended aihanda (the action selected by the agent). The
action executed by the car in the simulator was

<a + (LO'O? .99.0)) mod 3.

0.14
As expected, Figure 3(a) shows that learning a metric sagmfly
improves learning, both in terms of the final reward and cuatine
reward, as the learned metric can automatically increaseeto-
lution to z, allowing it to better approximate a transition function
significantly more complex than for the standard 2D mountain

4.3.4 Variant4: A Third, Irrelevant, State Variable

As a final variant for the 2D Mountain Car task, we consider
adding an additional irrelevant state variable. Althoulgh transi-
tion and reward functions still depend only emandz, the agent
is provided a random number as a third feature on every tiege st
This state variable is drawn uniformly in [-0.025, 0.025]s Rig-
ure 3(b) shows, this additional state variable signifigadégrades
the performance of Fitted RAX with a Euclidean distance met-
ric as it must now generalize its data over an extra dimen@ien
it suffers from the“curse of dimensionality”). HoweveroHLER
allows this third state variable to be de-valued, allowimg agents
learn almost as well as in the standard 2D mountain car task.

HOLLER is not dependent on the number of state variables: al-
though Fitted RmAXx can generally not scale to high-dimensional
spaces, using BILLER would allow an experimenter to eliminate
irrelevant state variables, potentially enabling this attter meth-
ods to scale to much higher dimensional spaces.

4.4 AD Mountain Car

The 4D Mountain Car task extends the 2D task so that there are
four state variablesa(, z, y,) and the agent selects from five ac-
tions (Neut r al , West , East, Sout h, Nor t h) [18]. The transi-
tion function is similar to the 2D case, but now takes intooart
the extra dimensions. Likewise, the goal region is now 0.5 and
y > 0.5. Our task implementation is based on a publicly available
implementatiorf. This task is much more difficult than the 2D task

“http://library.rl-comunity.org/wki/
Mount ai n_Car _3D_(CPP)

After initial experimentation without distance metric femg, we
set the parameters of Fitted¥Rax to be similar to past work [17]
minFraction= 0.3, modelBreadth= 0.3, resolutionFactor= 3, and
agents train for a total of 250 episodes.

As shown in Figure 3(c), the final and cumulative performance
of learners using HLLER is higher than those that rely on the
Euclidean distance metric. Also, note that Sarsa, usinganee
parameters set in the literature [18], does much wore thtad-i
R-MAX, due to the high-dimensional space. Sarsa agents do not
consistently find the goal state until after 2,000 episodagiring
roughly two orders or magnitude more data than the instaased
learning method (with or without metric learning).

Taken as a whole, and summarized in Table 1, these expeEment
show that HbLLER can successfully improve learning performance
on a variety of tasks, both in terms of final and cumulativeamely

5. RELATED WORK

The most similar distance metric learning work has been dis-
cussed earlier in Sections 2.3 and 3.3. This section foauséise
most relevant existing reinforcement learning algorithms

Graph-based approaches to learning state representatiots
as usingoroto-value function§l 0], typically focus on using a known
connectivity graph (e.g., a transition function) to learmear-) op-
timal set of features. By using the eigenvectors of the cctivne
ity graph’s Laplacian, very accurate representations ofi@P’s
value function can be learned. However, proto-value famotvork
does not typically consider the sample complexity of leagrsuch
a connectivity graph — our work is directly concerned witini
mizing the amount of environmental samples needed to lestate
representation and thus attempt to maximize the on-linanew

The Bellman Error Basis Functions (BEBF) [12] method relies
on iteratively adding basis functions, where each basistfom is
constructed to improve the Bellman error over the previaios
basis functions. BEBF differs from the current work prinhain its
aim — while the BEBF work examines relatively simple RL tasks
with the goal of constructing very accurate value functifnasn
hundreds of thousands of samplespIHER instead aims to con-
struct a distance metric with relatively little data thah ¢ee used to
both guide exploration and improve value function estiorati

In a supervised learning setting, unlike in RL, trainingsgato-
vide the correct target label, enabling a more straightéodaappli-

2D Mountain Car: Scaled Velocity

-150

B
[
H
19}
14
No Metric Learning —+—
1 Episode ---©--
5 Episodes -
10 Episodes -
0 20 40 60 80 100
Episodes
(a) 2D, Scaled Velocity
2D Mountain Car: Sensor and Actuator Noise
-100
-150
-200
-250
B
g -300
19}
14
-350
-400
No Metric Learning —+—
-450 1 Episode ---©--
;X 5 Episodes -
-500 4% 10 Episodes -
0 20 40 60 80
Episodes

(b) 2D, Sensor and Actuator Noise

Figure 2: A learned distance metric improves both the total and final
reward when the velocity state variable is incorrectly scad (a) and
when there is noise in both the sensors and actuators (b).

cation of distance metric learning. For instanbfgtric Learning
for Kernel Regressiof20] (MLKR) is a metric learning method
designed for regression problems.

Three recent papers presented at ECML-10 also tackle simila
problems. Nouri and Littman [11] build upon MLKR to create
the Dimension Reduction in Exploratiadgorithm. The algorithm
constructs a set of “factorized” MLKR problems (F-MLKR),-un
der the assumption that individual state features for tiegustates
are independent of each other, where one MLKR problem is con-
structed per state feature, per action, for a tota||df| x [|S]|
F-MLKR regressors. F-MLKR agents must also be provided the
reward function, unlike in IBLLER, where the reward is learned.
Additionally, agents that use &1L LER benefit from dimensionally
reduction as well as proper scaling of state variables, amdbe
combined with existing RL methods.

2D Mountain Car: Modified Actions

-100

-150

-200

-250 r

-300

Reward

-350

No Metric Learning —+—
1 Episode

5 Episodes

10 Episodes

80

-450 r

-500 1

40 60
Episodes

(a) 2D, Custom Action Mapping

3D Mountain Car: 3rd Feature Random

No Metric Learning —+—

1 Episode ---©---

® | 5 Episodes -
-500 4)) 10 Episodes -

0 20 40 60 80

Episodes
(b) 3D, Irrelevant State Variable
4D Mountain Car

-200

Reward

No Metric Learning
1 Episode

5 Episodes

10 Episodes
Sarsa

100 150 200
Episodes

(c) 4D Mountain Car: Performance

0 50

Figure 3: Figures (a) and (b) show howHOLLER produces better

The second recent paper, Jung and Stone [8], trains multiple leaming in task with a custom action mapping and with an irrelevant

Gaussian processes in batches to approximate the tranfitio-
tion. The GP-RMAX algorithm requires a deterministic triing
function, must be provided the reward function. In contrast
both F-MLKR and GP-RMAX, HbLLER learns a distance func-
tion for the entire state space based on few samples, whielmsne
that HOLLER can quickly generalize over the entire state space.
The third paper [2] presents an actor-critic method to deite
where to place basis functions and what parameterizateynsthould

state variable, respectively. In (c), learning curves are \&eraged over
ten trials with a 10-episodes sliding window.

have, rather than learning a single metric that is usefudsacthe
state space (independent of the function approximatommpeesi-
zation). Additionally, we note that the authors test thégoathm
on an easier version of mountain car (where the agent startaia-
dom state rather than the bottom of the hill, making expioresig-

Domain Algorithm Final Ave. Stat. Cumulative St‘aﬂ.
Reward Sig. Reward Sig

Fitted RMAX -126 -17600
2D: HOLLER-1 -118 -13620 v
Standard HOLLER-5 -118 -14783 v
HOLLER-10 -117 -16440 v
Sarsa -106 v -19755 V)

Fitted RmAX -268 -28050

2D: HOLLER-1 -227 -25380
Scaled HOLLER-5 -199 v —24740 v

HOLLER-10 -199 v -26000

Fitted RmAX -157 -23600
2D: HOLLER-1 -136 -16840 v
Noisy HOLLER-5 -141 -17240 v
HOLLER-10 -150 -18733 Ve

2D: Fitted RmAX -260 -36190
Convoluted HOLLER-1 -154 v -19990 v
Actions HOLLER-5 -161 v -22660 v
HOLLER-10 -177 v -25460 v

3D: Fitted RmAX -164 -26360
Irrelevant HOLLER-1 -128 v -14500 v
Feature HOLLER-5 -117 v -14840 v
HOLLER-10 -124 v -17630 v

Fitted RmAX -291 -36190
4D: HOLLER-1 -225 -19990 v
Standard HOLLER-5 -239 -22663 v
HOLLER-10 -241 -25460 v
Sarsa -500) -50000 V)

Table 1: This table summarizes all experiments, averaging over ten
independent trials. The third column shows the average rewa at the
end of the trial (250 episodes for the 4D task, 100 episodes fall oth-
ers). The fourth column has a check if the difference in the fial reward
is statistically significantly different from learning wit h Fitted R-mMAX
without a learned distance metric, as determined by < 0.05 on Stu-
dent’s t-test results. The fifth and sixth columns report theaverage cu-
mulative reward and whether the difference in the cumulative rewards
and Fitted R-MAX are statistically significant.

nificantly easier), but their algorithm takes thousandpid@des to
converge.

6. CONCLUSION AND FUTURE WORK

This paper has introduceddiLER and shown how it can be
combined with an off-the-shelf instance based RL algoritm-
pirically, this novel distance metric learning algorithigrsficantly
improves learning efficacy in a number of different tasksjud-
ing noise and irrelevant state variables. One of the keyfliera#
HOLLER is that very little data is required to learn an appropriate
state representation and thus the on-line reward can biéicignly
improved relative to learning with a Euclidean distancerioet

In the future, we intend to try to fully integrate learning’
and a control policy simultaneously. While such an intdégrat
would not be critical in domains where the distance metrit loa
quickly learned, it may prove useful in more complex and bigh
dimensional tasks. We also are interested in attemptingrtodr
improving the efficacy of lLLER by trying establish appropriate
decay rates for (rather than using a fixed learning rate), combin-
ing the updates from multiple actions (rather than leareimghiV,
in isolation), and trying to tune exploration to ledfnas quickly as
possible (rather than relying on random exploration). lyasthile
this paper has focused on FittedMRx , we expect that BLLER
would be beneficial to other instance-based RL methods, ds we
as model-free methods. For instance, future work could éxam
how W could be used by Sarsa to help select, or parameterize, its
function approximator so that the value function can bettatch
the underlying topology of the state space without relyingha-
man intuition or simple estimates of state variable rangestly,

it would be interesting to empirically compare our Mahalaiso
distance approach, with the LogDet loss function, to aitéve ap-
proaches.

Acknowledgements
The authors would like to the anonymous reviewers and Tobias
Jung for useful comments and suggestions.

7. REFERENCES
[1] J. S. Albus Brains, Behavior, and RoboticByte Books,
Peterborough, NH, 1981.
[2] D. D. Castro and S. Mannor. Adaptive bases for
reinforcement learning. IECML, 2010.
[3] J. Davis and I. Dhillon. Structured metric learning for
high-dimensional problems. KDD, 2008.
[4] J. Davis, B. Kulis, P. Jain, S. Sra, and I. Dhillon.
Information-theoretic metric learning. ICML, 2007.
[5] A. Globerson and S. Roweis. Metric learning by collagsin
classes. IINIPS 2005.
[6] P.Jain, B. Kulis, I. Dhillon, and K. Grauman. Online mietr
learning and fast similarity search. NIPS 2008.
[7] N. K. Jong and P. Stone. Model-based Function
Approximation for Reinforcement Learning. RMAMAS
2007.
T. Jung and P. Stone. Gaussian processes for sampleeffici
reinforcement learning with RMAX-like exploration. In

(8]

ECML, 2010.
[9] B. Kulis and P. Bartlett. Implicit online learning. ICML,
2010.
[10] S. Mahadevan and M. Maggioni. Proto-value functions: A

Laplacian framework for learning representation and antr

in Markov decision processedournal of Machine Learning

Research8:2169-2231, 2007.

A. Nouri and M. L. Littman. Dimension reduction and its

application to model-based exploration in continuous spac

In ECML PKDD, 2010.

R. Parr, C. Painter-Wakefield, L. Li, and M. L. Littman.

Analyzing feature generation for value-function

approximation. IfCML, 2007.

S. Shalev-Shwartz and Y. Singer. A primal-dual pertigec

of online learning algorithmsviachine Learning Journal

2(69):115-142, 2007.

S. Singh and R. S. Sutton. Reinforcement learning with

replacing eligibility tracesMachine Learning22:123-158,

1996.

M. Slaney, K. Weinberger, and W. White. Learning a neetri

for music similarity. INNSMIR, 2008.

R. S. Sutton and A. G. Bartintroduction to Reinforcement

Learning MIT Press, 1998.

M. E. Taylor, N. K. Jong, and P. Stone. Transferring

instances for model-based reinforcement learninge@ML

PKDD, 2008.

M. E. Taylor, G. Kuhlmann, and P. Stone. Autonomous

transfer for reinforcement learning. AMAMAS 2008.

K. Weinberger, J. Blitzer, and L. Saul. Distance metric

learning for large margin nearest neighbor classification.

NIPS 2006.

K. Q. Weinberger and G. Tesauro. Metric learning fomedr

regression. IRAI-STATS2007.

S. Whiteson, B. Tanner, and A. White. The reinforcement

learning competitionsAl Magazine 31(2):81-94, 2010.

E. Xing, A. Ng, M. Jordan, and S. Russell. Distance neetri

learning, with application to clustering with

side-information. IMNIPS 2002.

[23] M. Zinkevich. Online convex programming and generediz
infinitesimal gradient ascent. ICML, 2003.

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]

