Shankar, K. H., Singh, I., and Howard M. W. (Revised).
Neural mechanism to simulate a scale-invariant future.
(pdf)
Singh, I., Oliva, A., and Howard, M. W. (revised). Visual
memories are stored on logarithmically-compressed representation of the
past.
(pdf)
Tiganj, Z., Kim, J., Jung, M. W., and Howard M. W.
(revised). Sequential firing codes for time in rodent mPFC.
(pdf)
Published
Howard, M. W., Shankar, K. H., and Tiganj, Z. (2015).
Efficient neural computation in the Laplace domain. In
Tarek R. Besold, Artur d'Avila Garcez, Gary F. Marcus, Risto Miikulainen
(eds.): Proceedings of the NIPS 2015 workshop on Cognitive Computation:
Integrating Neural and Symbolic Approaches. Montreal, Canada,
2015. (pdf)
Howard, M.W. and Eichenbaum, H. (2015). Time
and space in the hippocampus. Brain Research.
1621, 345-354.
(pdf)(doi)
Criss, A.H. and Howard, M.W. (2015). Episodic memory. In
Oxford Handbook of Computational and Mathematical Psychology
J.R. Busemeyer, J.T. Townsend, Z.J. Wang, and
A. Eidels (Eds.). Oxford University Press.
Howard, M.W., Shankar, K.H., Aue, W.R., and Criss, A.H.
(2015). A distributed representation of internal
time, Psychological Review, 122, 24-53.
(pdf)
(doi)
Shankar, K.H. (2015).
Generic construction of scale-invariantly coarse grained memory.
Australasian Conference on Artificial Life and Computational
Intelligence 2015, S.K. Chalup et al. (Eds.), 8955,
175-184.
(pdf)
Tiganj, Z., Hasselmo, M.E., and Howard, M.W. (2015).
A simple biophysically plausible model for long time
constants in single neurons, Hippocampus, 25, 27-37.
(pdf)(doi)
Howard, M.W., MacDonald, C.J., Tiganj, Z., Shankar, K.H., Du, Q., Hasselmo,
M.E., and Eichenbaum, H. (2014). A unified mathematical
framework for coding time, space, and sequences
in the hippocampal region. Journal of Neuroscience, 34,
4692-4707. (pdf)
Howard, M.W. (2014). Mathematical learning theory
through time. Journal of Mathematical Psychology, 59,
18-29. (pdf)(doi)
Shankar, K.H. and Howard, M.W. (2013). Optimally
fuzzy scale-free memory, Journal of Machine Learning Research,
14, 3753-3780.
(pdf)
Howard, M.W. and Eichenbaum, H. (2013). The
hippocampus, time, and memory across scales.
Journal of Experimental Psychology: General, 142,
1211-1230. (pdf)(doi)
Shankar, K.H. (2013). Quantum random walks and decision making.
Topics in Cognitive Science, 6, 108-113. (pdf)
Komorowski, R.W., Garcia, C.G., Wilson, A., Hattori, S., Howard,
M.W., and
Eichenbaum, H. (2013). Ventral hippocampal neurons are shaped by
experience
to represent behaviorally relevant contexts. Journal of
Neuroscience,
33, 8079-8087.
(pdf)
Kilic, A., Hoyer, W.J., and Howard, M.W. (2013).
Effects of Spacing of Item Repetitions in Continuous Recognition Memory: Does
Item Retrieval Difficulty Promote Item Retention in Older Adults?
Experimental Aging Research, 39, 322-341.
Kilic, A., Criss, A.H.,
and Howard, M.W. (2013).
A causal contiguity effect that persists across time scales.
Journal of Experimental Psychology: Learning, Memory and
Cognition, 39, 297-303.
(pdf)
Howard, M.W., Viskontas, I.V., Shankar, K.H., and Fried, I. (2012).
Ensembles of human MTL neurons ``jump back in time'' in response to a repeated
stimulus. Hippocampus, 22, 1833-1847.
(pdf)
Shankar, K.H., and Howard, M.W. (2012).
A scale-invariant internal
representation of time.
Neural Computation, 24, 134-193.
(pdf)
Howard, M.W., Shankar, K.H., and Jagadisan, U.K.K. (2011).
Constructing semantic representations from a gradually-changing representation
of temporal context. Topics in Cognitive Science, 3, 48-73.
(pdf)(doi)
Shankar, K.H., and Howard, M.W. (2010). Timing using temporal context.
Brain Research, 1365, 3-17.
(doi)
Onyper, S.V., Zhang, Y., and Howard, M.W. (2010). Some-or-none recollection: Evidence from item and source memory.
Journal of Experimental Psychology: General,
139, 341-364.
(pdf)(PMC)
Shankar, K.H., Jagadisan, U.K.K., and Howard, M.W. (2009). Sequential
learning using temporal context. Journal of Mathematical Psychology,
53, 474-485.
(pdf)
Howard, M.W., Sederberg, P.B., and Kahana, M. J.(2009). Reply to Farrell
& Lewandowsky: Recency-contiguity interactions predicted by the temporal context model.
Psychonomic Bulletin & Review, 16, 973-984.
(doi)
Howard, M.W., Jing, B., Rao, V.A., Provyn, J.P., & Datey, A.V. (2009).
Bridging the gap: Transitive associations between items presented in similar
temporal contexts.
Journal of Experimental Psychology: Learning, Memory &
Cognition, 35, 391-407.
(pdf)
Howard, M.W. (2009). Memory: Computational models. in L. R. Squire (Ed),
New Encyclopedia of Neuroscience, volume 5, pp. 771-777. Oxford:
Academic Press.
Howard, M.W., Kahana, M.J., and Sederberg, P.B., (2008). Postscript:
Distinguishing between temporal context and short-term store.
Psychological Review, 115, 1125-6.
Kahana, M.J., Sederberg, P.B., and Howard, M.W. (2008). Putting
short-term memory into context: Reply to Usher, Davelaar, Haarman and
Goshen-Gottstein (2008). Psychological Review, 115, 1119-1126.
Sederberg,
P.B., Howard, M.W., and Kahana, M.J. (2008). A context-based theory of
recency and contiguity in free recall. Psychological Review,
115, 893-912.
(pdf)
Rao, V. A. and Howard, M. W. (2008). Retrieved context and the discovery
of semantic structure.
Advances in Neural Information Processing Systems
20, J.C. Platt, D. Koller, Y. Singer and S. Roweis, Eds. MIT
Press: Cambridge, MA.
(pdf)
Kahana, M.J., Howard, M.W., & Polyn, S.M. (2008). Associative
retrieval processes in episodic memory. In, H. L. Roediger, (Ed), Learning
and Memory-A Comprehensive Reference, Academic Press, Oxford, pp. 467-490.
(pdf)
Howard, M.W., Youker, T.E., and Venkatadass, V. (2008). The persistence of
memory: Contiguity effects across several hundred seconds. Psychonomic
Bulletin & Review, 15, 58-63.
(pdf)
Provyn, J.P., Sliwinski, M.J. & Howard, M.W. (2007). Effects of age
on contextually mediated associations in paired associate learning. Psychology
and Aging, 22, 846-857.
Manns, J.R., Howard, M.W., & Eichenbaum, H.B. (2007). Gradual changes
in hippocampal activity support remembering the order of events,
Neuron, 56, 530-540.
(doi)
Howard, M.W., Addis, K.A., Jing, B., and Kahana, M.J. (2007), Semantic
structure and episodic recall, in Landauer, McNamara, Dennis, & Kintsch (Eds)
Handbook of Latent Semantic Analysis, Laurence Erlbaum Associates: Mahwah, NJ,
pp. 121-141.
Siekmeier, P.J., Hasselmo, M.E., Howard, M.W., and Coyle, J.T.
(2007). Modeling of context dependent retrieval in hippocampal region CA1:
Implications for cognitive function in schizophrenia. Schizophrenia
Research,
89, 177-190.
(pdf)
Zaromb, F.M., Howard, M.W., Dolan, E.D., Sirotin, Y.B., Tully, M.,
Wingfield, A.and Kahana, M.J. (2006). Temporally-based false memories in
free recall. Journal of Experimental Psychology: Learning, Memory and
Cognition, 32, 792-804.
Howard, M.W., Wingfield, A.and Kahana, M.J. (2006). Aging and
contextual binding: Modeling recency and lag-recency effects with the temporal
context model, Psychonomic Bulletin & Review, 13, 439-445.
Howard, M.W., Bessette-Symons, B.A., Zhang, Y., and Hoyer, W.J.
(2006). Aging selectively impairs recollection in recognition memory for
pictures: Evidence from modeling and ROC curves, Psychology and Aging,
21, 96-106. (pdf)
Howard, M.W., and Natu, V.S. (2005). Position from time: Spatial
precision in the temporal context model, Neural Networks, 18,
1150-1162.
(pdf)
Schwartz, G., Howard, M.W., Jing, B., and Kahana, M.J. (2005). Shadows
of the past: Temporal retrieval effects in recognition memory,
Psychological Science, 16, 898-904.
(pdf)
Kahana, M.J. and Howard, M.W. (2005). The spacing and lag effect in
free recall, Psychonomic Bulletin & Review, 12,
159-164.
Howard, M.W., Fotedar, M.S., Datey, A.V. and Hasselmo, M.E. (2005).
The temporal context model in spatial navigation and relational learning:
Toward a common explanation of medial temporal lobe function across domains,
Psychological Review, 112, 75-116.
(pdf)
Howard, M.W. (2004). Scaling behavior in the temporal context model,
Journal of Mathematical Psychology, 48, 230-238.
(pdf)
Sederberg, P.B., Kahana, M.J., Howard, M.W., Donner, E., and Madsen,
J.R. (2003). Theta and gamma oscillations during encoding predict subsequent
recall, Journal of Neuroscience, 23, 10809-14.
(pdf)
Howard, M.W., Rizzuto, D.S., Madsen, J.R., Lisman, J.E.,
Aschenbrenner-Scheibe, R., Schulze-Bonhage, A., and Kahana, M.J. (2003).
Gamma oscillations correlate with working memory load in humans,
Cerebral
Cortex,
13, 1369-1374.
(pdf)
Sherman, S.J., Atri, A., Hasselmo, M.E., Stern, C.E., and Howard, M.W.
(2003). Scopolamine impairs human recognition memory: Data and modeling.
Behavioral Neuroscience, 117, 526-539.
(pdf)
Kahana, M.J., Howard, M.W., Zaromb, F.M., and Wingfield, A. (2002).
Age dissociates recency and lag-recency effects in free recall.
Journal of
Experimental Psychology: Learning, Memory and Cognition,
28, 530-540.
Howard, M.W. and Kahana, M.J. (2002). A distributed representation of
temporal context. Journal of Mathematical Psychology,
46, 269-299.
(pdf)(doi)
Howard, M.W. and Kahana, M.J. (2002). When does semantic similarity
help episodic retrieval? Journal of Memory and Language, 46, 85-98.
Howard, M.W. and Kahana, M.J. (1999). Contextual variability and serial
position effects in free recall. Journal of Experimental Psychology:
Learning, Memory and Cognition, 25, 923-941.