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This article pursues the hypothesis that a scale-invariant representation of history could support perfor-
mance in a variety of learning and memory tasks. This representation maintains a conjunctive represen-
tation of what happened when that grows continuously less accurate for events further and further in the
past. Simple behavioral models using a few operations, including scanning, matching and a “jump back
in time” that recovers previous states of the history, describe a range of behavioral phenomena. These
behavioral applications include canonical results from the judgment of recency task over short and long
scales, the recency and contiguity effect across scales in episodic recall, and temporal mapping
phenomena in conditioning. A growing body of neural data suggests that neural representations in several
brain regions have qualitative properties predicted by the representation of temporal history. Taken
together, these results suggest that a scale-invariant representation of temporal history may serve as a
cornerstone of a physical model of cognition in learning and memory.
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The psychological hypothesis that memory and time perception
are intimately related to one another has a long and rich history.
For instance, Aristotle (1930, para. 3) wrote, “Only those animals
which perceive time remember, and the organ whereby they per-
ceive time is also that whereby they remember.” More recently,
Tulving (1983, 1985) proposed that episodic memory results from
recovery of a prior state of an internal timeline so that it seems as
if we are reexperiencing that prior moment (e.g., Tulving, 1985).
Influential quantitative models have pursued similarities between
human memory for lists of words and temporal judgments (e.g.,
Brown, Neath, & Chater, 2007; Brown, Preece, & Hulme, 2000;
Brown, Vousden, & McCormack, 2009). Similarly, a growing
body of theoretical work holds that animal learning and condition-
ing must be understood as the learning of temporal contingencies
between stimuli, leading to a deep connection between condition-
ing and temporal judgments (e.g., Balsam & Gallistel, 2009;
Gallistel & Gibbon, 2000; Matzel, Held, & Miller, 1988; Savas-

tano & Miller, 1998). The effort to construct a unified quantitative
account of time and memory across these different disciplines has
been hindered by the lack of a consensus view for how to construct
a representation of internal time.

We argue that the brain ought to maintain a conjunctive repre-
sentation of what happened when. This representation places
events—a “what”—on an internal timeline—a “when.” This con-
cept may be more clear by means of analogy with sensory repre-
sentations. For instance, in the retina different photoreceptors
respond to light landing on different regions of the retina. If we
consider a one-dimensional strip across the retina, the activity of
the photoreceptors gives illumination as a function of retinal
position. Two spots of light are not represented as the average
location of the two spots but as two “bumps” of activity across the
photoreceptors.

Sensory representations make use of an ordered representation.
In the case of retinal position, the photoreceptors themselves are
associated with a location. We know that one position is to the left
of another, or that two receptors represent positions that are closer
or farther from one another. This ordered representation is used
throughout the visual system to construct a representation of what
and where. Locations are accessible independently of the content
they contain. For instance, we can direct attention to one particular
region of retinal space in the absence of eye movements (e.g.,
Posner, Snyder, & Davidson, 1980) resulting in enhanced discrim-
inability for the stimuli present in that location. Similarly, under
normal circumstances, observing a particular object—a what—is
accompanied by information about its location—a where.

Much like (one-dimensional) retinal position, physical time is
also an ordered physical dimension. It makes sense to say that one
moment is more recent than another or that two pairs of times are
closer or farther from one another. We argue that our internal
representation of the past respects this ordered relationship and
exploits it by placing events on an internal timeline analogous to
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retinal position. This representation should allow attention to be
focused on a subset of temporal “locations,” providing enhanced
access to the stimuli encoded in that part of the timeline.

Unlike sensory representations, it is nontrivial to construct a tem-
poral history. Unlike photoeceptors located at different physical po-
sitions of the retina that respond to light in the environment, there are
no “time receptors” that directly respond to stimuli from different
points in the past. Some computation must intervene to allow a past
state of the world to affect the current state of the memory represen-
tation. Unfortunately, obvious computational solutions have serious
computational flaws that limit their usefulness in constructing models
of cognition. For instance, consider a memory buffer (e.g., Atkinson
& Shiffrin, 1968). As each stimulus enters, it pushes the contents of
each slot in the buffer one step toward the past. The slot number of a
stimulus carries information about how far in the past it was experi-
enced; slot number functions like a timeline relative to the present.
This kind of representation is referred to as a shift register in engi-
neering fields. While the shift register can maintain a timeline, it
scales up poorly, making it ill-suited as a cognitive model of many
tasks. A broad range of evidence from laboratory studies of episodic
memory (e.g., Glenberg et al., 1980; Howard, Youker, & Venkata-
dass, 2008), interval timing (e.g., Lewis & Miall, 2009), and condi-
tioning (e.g., Balsam & Gallistel, 2009) suggest that a representation
of internal time should have similar properties over a time scales from
a few hundred milliseconds to a few thousand seconds. This is not to
say that memory, or timing accuracy, does not grow worse as time
passes. But rather the observation is that memory, or timing accuracy,
gets worse smoothly and continuously over a wide time scale rather
than falling off abruptly as some scale is passed. Consider the chal-
lenge scale-invariance raises for a memory buffer. As the number of
items to remember exceeds the size of the buffer, there should be an
abrupt change in memory performance. The amount of resources a
shift register must utilize in order to represent N time steps into the
past goes up like N. As N gets large to encompass large time scales,
this cost becomes prohibitive. Moreover, we desire that the accuracy
of the buffer decays gracefully with progressively less detailed infor-
mation about the past for progressively less recent events. Getting the
correct form for the decrease in accuracy is a serious challenge, even
for sophisticated variants of the shift register (Goldman, 2009).

In this article we utilize a principled computational hypothesis
for how the brain could construct and maintain a scale-invariant
representation of past events (Shankar & Howard, 2012, 2013).
This representation provides a rich source of information that
could be flexibly engaged to solve many different problems in
cognitive psychology. We describe a set of such operations, in-
cluding scanning, matching, and retrieval of previous states of
temporal history, that could be used to query and exploit this
representation to support behavior in a variety of tasks. Behavioral
applications will show that this representation can be exploited to
account for core findings from a variety of fields, including short-
term memory, episodic memory, and conditioning. Finally, we
review a growing body of evidence that suggests the brain main-
tains an ever-moving representation of internal time with at least
some of the properties we have hypothesized.

A Scale-Invariant Model for Internal Time

The mathematical details of the model for representing temporal
history have been described elsewhere (Shankar & Howard, 2012,

2013). Because these details are not essential for appreciating the
ability of the model to describe behavioral data we do not reca-
pitulate them here. Rather we emphasize the qualitative properties
of the representation. The important point to appreciate here is that
these properties are not simply assumed to be possible but are the
result of a well-specified computational process.

The hypothesized representation takes in an input function f(�).
The function f depends on the particular behavioral experiment.
For instance, in a list learning experiment, we might imagine that
the input function is a vector-valued representation of the word
presented at each moment �. Critically, the input function only
describes the currently available stimulus; we do not assume that
the memory system at time � has direct access to previous values
of f; the goal of the memory representation is to make past values
of f available at time �.

Figure 1 provides a cartoon illustrating the basic idea. In the top
panel, a series of tones is presented as an input pattern over time.1

At each moment the currently sounded tone is the input. If we
imagine a set of 11 nodes in f corresponding to the 11 notes on the
lines and spaces of the staff, then the corresponding node in f is
activated at the time each tone is played. After the entire sequence
has been played (dashed line), the inputs are no longer activated,
but the sequence ought to remain in memory. The goal of the
representation is to estimate the history leading up to the present,
enabling us to recover which tone was sounded how far in the past.

At each moment, the input function f(�) provides input to a sheet
of leaky integrators t. The sheet of nodes t serves as an interme-
diate representation. Each node in t receives input from a subset of
the nodes in f, allowing it to convey “what” information, and a
value s that controls its time constant of integration; the fact that
the set of nodes in t contains many different time constants can be
exploited to recover “when” information from the sheet of t
nodes.2 Information about the history hidden in t is extracted by an
operator Lk

�1 and written out to another set of nodes T at each
moment:

T(�*) � Lk
�1t(s). (1)

Analogous to t, each node in the sheet T corresponds to a stimulus
dimension and is indexed by a value of �*. The nodes in T are
aligned with the nodes in t: each value of �* corresponds to a value
of s. The weights Lk

�1 compute the value in each �* by taking a
difference of the values of t at neighboring values of s, closely
analogous to a series of lateral inhibition circuits in a sensory
system.3 The construction of Lk

�1 depends on the value of a
constant k; larger values of k result in more accurate estimates of
the history.4 We set k � 4 throughout this article unless otherwise
noted. For a particular value �*, at any moment the set of active
nodes in T��*� estimates the input pattern f a lag �* in the past (�* is
defined to be negative).

1 This motif may be familiar to movie fans.
2 Each node in t is activated by its input and then decays exponentially

with a time constant controlled by its value of s. At time �, the set of all
nodes in t encodes the Laplace transform of the history leading up to the
present, f��� � ��.

3 More precisely, Lk
�1 estimates the kth derivative with respect to s.

4 Post (1930) proved that in the limit as k goes to infinity, Lk
�1 imple-

ments the inverse Laplace transform. For finite k, the inversion is impre-
cise, resulting in a smear in the estimate of the history.
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More details of the rules for updating t, the precise specification
of the weights Lk

�1, and the rationale for why this approach works
are described in depth elsewhere (Shankar & Howard, 2012,
2013). Here we simply describe key properties of the representa-
tion T in simplified form and attempt to provide an intuition for
why these properties are useful in accounting for results from
cognitive psychology.

Nodes in the Representation Respond to Conjunctions
of What and When

The middle panel of Figure 1 shows a cartoon depiction of the
history T at the end of the sequence. Each row (i.e., each line and
space of the staff) corresponds to a set of nodes that respond to one

tone. Each column corresponds to a set of nodes that correspond to
a particular value of past time. More recent times are to the right
and less recent times to the left; the spacing of this cartoon is
chosen such that the values of �* are lined up with the value of
physical time to which they correspond. Taking the pattern of
active nodes across a column at any one moment gives an estimate
of the stimulus that took place at that time in the past. Taking a row
across T gives an estimate of the history of that particular tone as
a function of past time. Peaks appear at values of �* corresponding
to remembered occurrences of that tone.

Notice that the pattern of active nodes across the sheet
changes as time unfolds. Consider a particular node coding for
a particular tone a particular �* in the past. That node will not
become activated unless the history contains its preferred stim-
ulus at the appropriate time in the past. This means that after the
tone is presented, the node will not respond immediately, but
after some characteristic delay (determined by the node’s value
of �*). Because there are many nodes that respond to any
particular tone with a variety of different values of �*, presenting
the tone sets off a sequence of nodes in T as they become
activated at different delays. This sequence ought to repeat if
the same tone is repeated at a later time.

The Representation of History Is Less Accurate for
Events Further in the Past

The representation of history represents recent events with more
precision than less recent events. This is manifest in two ways.
First, the peak of activity is less pronounced for events further in
the past; Figure 1 shows this in cartoon form as lighter shading for
events further in the past. Second, the estimate of the internal time
at which an event took place becomes less precise; Figure 1
captures this in cartoon form as wider and overlapping patterns of
activity.

These properties can be seen more precisely by looking at the
actual pattern of activity across values of internal time in Figure 2.
The middle panel of Figure 2 shows bumps of activity across
nodes. Each line corresponds to the activity of a set of nodes
coding for a particular stimulus. The most recent stimulus has
caused a bump of activity that is the farthest to the right; less recent
stimuli cause bumps of activity that peak progressively further to
the left. The change in overall level of activity can be seen by
noting that the peak of each curve becomes progressively lower for
stimuli further in the past. This decrease is accompanied by a
spread in the peak along the �* axis. The overlap in the curves also
increases as the stimuli recede further into the past.

This spread, looked at from the perspective of a single node,
means that the “temporal receptive field” for nodes with larger
values of |�*| coding for times further in the past, is broader than the
temporal receptive field for nodes with smaller values of |�*| coding
for times nearer to the present. This means that after presentation
of a single stimulus, nodes with larger values of |�*| are activated for
a longer amount of time than nodes with smaller values of |�*| as the
stimulus recedes into the distant past. The decrease in the peak
trades off with this longer duration of firing, such that the total
activation summed over time is constant for all values of �*. The
spread in the temporal receptive fields shows scalar variability,

Figure 1. Schematic for a scale-invariant representation of what hap-
pened when . . . a: A series of tones, D-E-C-low C-G unfolds in time. In
musical notation, left-right position indicates the order of the notes to be
played; vertical position indicates the pitch. After the sequence has been
played, at a time indicated by the vertical dashed line, the history includes
five tones at various points in the past. For instance, G is closer in time than
the low C, which is closer than the high C. b: Schematic of the scale-
invariant representation. Each node in a sheet corresponds to a what and a
when. In this schematic figure, nodes associated with the same tone are
organized in horizontal strips (corresponding to the lines and spaces of the
staff); nodes associated with the same value on the internal time dimension
are organized in vertical strips. The shading of the note schematically
indicates the relative activation of the corresponding node; events further in
the past result in a lower level of activation. The increasing spread for notes
further in the past is intended to capture decreased temporal precision for
events further in the past. Critically, the nodes are not evenly spaced along
the internal time axis. Rather, if one node represents a Time 1 unit in the
past and the next node represents Time 2, the subsequent node would
represent Time 4. The light vertical dashed lines show the relative spacing
of nodes. c: Here the representation is shown schematically as a function
of node number rather than internal time. Note that the light dashed lines
are now evenly spaced and that the representation of events further in the
past becomes compressed in internal time as well as decreasing in mag-
nitude.
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such that the spread goes up linearly with |�*|; the peak activation
goes down with |�*|

�1.

Internal Time Uses Weber-Fechner Spacing of Nodes

Nodes in T��*� representing events further in the past have wider
temporal receptive fields than nodes representing more recent
events. In sensory systems, an analogous systematic widening of
receptive fields is commonplace. For instance, in the visual sys-
tem, cells with receptive fields further from the fovea are broader
than receptive fields close to the retina. However, cells with wide
receptive fields that have centers close together are redundant with
one another. It is adaptive to have a cell density that is inversely

related to receptive field width. Indeed the density of photorecep-
tors on the retina decreases with distance from the fovea. We can
describe the “location” of a given photoreceptor along a one-
dimensional strip of the retinal surface either in terms of its
physical position along the retina, or in terms of its relative cell
number, starting at 1 at the center of the fovea and incrementing
the count every time we encounter another cell as we move out
radially. These two numbers are in one-to-one correspondence.
However, because the density of receptors is not constant, the
relationship between physical location and cell number is not
linear.

We propose that the spacing of nodes supporting the �* axis is
not constant but instead has Weber-Fechner law scaling, such
that the Nth set of nodes is associated with a �* that goes like

N � A log|�*| � B, where A and B are some constants.5 This
relationship implies that the spacing between adjacent nodes goes
up proportional to �*. The middle panel of Figure 1 shows the
relative spacing of cells (thin vertical lines) on the �* axis; the
bottom panel shows, in cartoon form, how the particular history in
the middle panel would look in terms of node number. The
argument that Weber-Fechner scaling is optimal can be made in
several ways (for detailed information theoretic arguments see
Shankar & Howard, 2013). However, many of these arguments
hinge on a simple observation—that the shape of the bump of
activity in T as a function of node number does not change shape
as the stimulus recedes into the past (Figure 2, bottom). This
means that the discriminability of adjacent nodes is constant for all
values of �*, equating redundancy across the set of nodes. As a
consequence of Weber-Fechner law spacing, the longest time scale
that can be represented goes up exponentially as a function of the
number of nodes dedicated to the representation.6 This is a tre-
mendous savings in terms of resources relative to a shift register
where the number of nodes would go up linearly with the longest
time scale that can be represented.

The Representation of History Is Scale-Invariant

Natural signals contain potentially useful information over a
wide range of temporal scales (e.g., Alvarez-Lacalle, Dorow, Eck-
mann, & Moses, 2006; Sreekumar, Dennis, Doxas, Zhuang, &
Belkin, 2014; Voss & Clarke, 1975). Mathematical scale-
invariance, the property that memory does not have a characteristic
scale, has been argued to be a central principle of cognitive
psychology (Anderson & Schooler, 1991; Chater & Brown, 2008;
Kello et al., 2010) and is a key feature of many behavioral models
of timing, conditioning and episodic memory (Brown et al., 2000,
2007; Gallistel & Gibbon, 2000; Gibbon, 1977; Miall, 1989). It

5 These constants are not identifiable from behavioral data and are not
considered further.

6 It is a nontrivial computational challenge to implement a temporal dimension
with Weber-Fechner law spacing. For instance, consider a shift register in which
chains of cells connect one to the other to cause a “bump” of activity to gradually
move back in time (e.g., Goldman, 2009). In order to implement Weber-Fechner
law spacing, the rate at which one node communicates with its neighbors must
change dramatically as a function of cell number. Even if this could be accom-
plished, these “chains” are still sensitive to disruption and noise. Because T��*� is
constructed directly from t in the neighborhood of a particular value of s, there is
not a chain of information that flows from one value of �* to another. Choosing the
spacing of �* nodes amounts to choosing the spacing of the values of s.

Physical time
0

0

Internal time
0

0

Cell number
1Nmax

0

Figure 2. More detailed depiction of the scale-invariant representation of
internal time. Top: Five stimuli, corresponding to the five tones in Figure
1 were presented in the past. Middle: At a time after presentation of the last
tone, the activation across nodes representing internal time are shown for
each of the five tones. Each line corresponds to the activation of the set of
nodes corresponding to that tone (i.e., a row in Figure 1). Stimuli further in
the past are represented by bumps of activity with lower peaks and broader
uncertainty. Bottom: The same set of activations in the middle panel is
shown as a function of node number rather than along the internal time
axis. This is the same distinction as between the bottom two panels of
Figure 1. Because the nodes are logarithmically spaced, the time axis is
“foreshortened” relative to node number. When viewed as a function of
node number, the bumps of activity still have decreasing amplitude but
now have the same relative width. In this schematic figure, k � 12 for
visual clarity.
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can be shown that the representation of history we have just
described is mathematically scale-invariant (Shankar & Howard,
2012). The spread in the temporal representation is proportional to
the time in the past that is being represented. This property is
computationally nontrivial7 and is a consequence of the specific
computational mechanism used to construct T. By constructing
different behavioral applications from this scale-invariant repre-
sentation we can account for scale-invariant behavior in some
circumstances but scaled behavior in other circumstances. The
converse—constructing a scale-invariant behavioral model from a
scaled memory representation—is very difficult; scale-invariant
behavior all-but-requires a scale-invariant memory representation.

Accessing and Exploiting Internal
Time to Support Behavior

We propose that subjects maintain at each moment an ordered
representation of internal history that records the stimuli experi-
enced in the past. However, this representation is not necessarily
queried at each moment, nor is the mode of access necessarily
automatic. Rather, the representation is queried and exploited
using a variety of methods appropriate to the demands of the
cognitive task at hand. Consider the analogy to the ordered repre-
sentation of retinotopic position available to the visual system.
While patterns of light might be available at all parts of the retina
at a particular moment, this does not require that we direct our
attention uniformly to the entire retinal display. Based on our goals
at a particular moment we may choose to direct attention to a
particular region, giving us enhanced access to the information
present in that part of the retina. Alternatively, we may choose to
retrieve from memory (or even imagination) a previously experi-
enced image, which is then in some sense projected onto the
“mind’s eye,” retrieving the ordered relationships between the
components of the recovered image. Also note that these different
operations may rely on very different brain regions. How we
choose to utilize the visual information available at any moment
depends on our goals, but the essential point is that these opera-
tions are only possible because of the existence of an ordered
representation of retinal position.

We hypothesize that an analogous set of operations on an
ordered representation of temporal history could be used to gen-
erate performance in a broad variety of memory tasks. We con-
struct a variety of behavioral models that draw on the representa-
tion of internal time in task-appropriate ways. We restrict our
attention to three basic operations that could be utilized to support
behavioral performance: scanning, matching, and a “jump back in
time.” Scanning is analogous to the direction of visual attention to
a sequence of retinal locations, sweeping from the present toward
the past. Matching compares the overlap, summed over past times,
between two states of temporal history. A “jump back in time”
causes a past state of temporal history to be recovered for use in
the present. This recovered state could then be used to match (or,
in principle at least) scan as appropriate to drive an appropriate
response.

Scanning: Sequential Examination of
Internal Past Time

Many authors have made the analogy between time and a
perceptual dimension (e.g., Brown et al., 2007; Crowder, 1976;

Murdock, 1960, 1974). It is clear that subjects can choose to
strategically direct focused attention to a region of a particular
perceptual dimension—for instance a region of retinotopic space
or a band of frequencies. Taking the analogy between ordered
perceptual dimensions and the ordered representation of history
seriously, we propose that subjects can choose to access contigu-
ous subsets of the ordered representation. Summing T��*� over a
region on the ordered “when” dimension results in a vector across
stimulus dimensions—i.e., a “what” vector in the same space as f.
Critically, we assume that the summation across the temporal
dimension is with respect to Weber-Fechner-spaced node number
(Figures 1c, 2 bottom) and not with respect to the internal time axis
(Figures 1b, 2 middle). The “what” output of this operation can
then be compared to a probe stimulus and used to drive a decision
process.

This framework is sufficiently broad to encompass serial scan-
ning models and parallel access models. Serial scanning is analo-
gous to sliding this window of “attention” smoothly, one set of
nodes at a time. Parallel access is analogous to generating a more
broad window of attention over a range of contiguous nodes in T.
We utilize sequential scanning in a behavioral model of the judg-
ment of recency (JOR) task below. Because of the Weber-Fechner
spacing of the internal time axis, the number of nodes that need to
be traversed to reach a particular time �* in the past should go up

like log|�*| (Hinrichs, 1970). If one were to access a broader region
of past time in parallel, the strength of each stimulus representation
in T falls off like a power law function of the time since it was
presented (e.g., Donkin & Nosofsky, 2012). This last result follows
from the Weber-Fechner spacing of the nodes supporting the
temporal axis. The area under the curves in the bottom panel of
Figure 2 give an intuition into why this property holds. Because
each curve has precisely the same shape as a function of node

number, and because the peak values are scaled by �o
�1, the area

under the curve also falls off like a power law.

Matching States of Temporal History

In some circumstances it is advantageous to base a decision or
action not directly on the contents of the current T, but on how
well the current T matches some previously stored state of T.
Consider the case in which a stimulus A is presented and 10 s later
B is presented; A and B could be the conditioned stimulus (CS) and
unconditioned stimulus (US) in a Pavlovian trace conditioning
experiment. The state of history at the moment when B is pre-
sented, lets call it TB, includes A 10 s in the past. Now suppose A

is provided as a cue long after the original presentation of the
pairing of A and B. It would be advantageous to be able to predict
that B will occur at the correct time. But note that the current state
of temporal history after A is presented as a cue contains no
information about B per se. However, suppose an associative
memory was constructed whereby the state of history when B was

7 Consider the result of averaging noise in a chain. Under a wide range
of circumstances, we would expect the variability to be subject to the law
of large numbers. The law of large numbers implies that the standard
deviation of the distribution should go with the square root of the number
of links in the chain, rather than linearly with the number of links in the
chain.
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originally presented, TB, is associated to B.8 This association
means that a state of history predicts B to the extent it matches B’s
encoding history, TB. After A is repeated, A enters the current state
of the history and begins receding into the past. Shortly after A is
repeated, the match between the current state of T and TB is weak;
TB includes A 10 s in the past, not one or 2 s in the past. As A

recedes further into the past, the match to TB increases as A

approaches 10 s in the past. In this way, the match between a
stored state of history and the current state of history can support
an appropriately timed behavioral association between A and B.

Because of the “blur” in the timeline, the match between a state
and a subsequent state changes gradually from moment to moment.
We use the match between stored states of T and the current state
of T to drive performance in free recall and conditioning tasks.

Jump Back in Time

The third operation we make use of is the recovery of a previous
state of temporal history. Suppose that A is presented at a specific
point in time, preceded by some stimuli. Let us refer to the state of
history immediately preceding the presentation of A as TA. We
propose that if A is repeated at a later occasion, then under some
circumstances this can cause the partial reconstruction of TA,
making information about the stimuli preceding the initial presen-
tation of A available in the present. The recovery of a previous state
of history is analogous to the “jump back in time” hypothesized to
support episodic memory (Tulving, 1983). The recovery of a
previous state of temporal context is a prominent feature of several
detailed models of episodic recall (Howard, Jing, Rao, Provyn, &
Datey, 2009; Polyn, Norman, & Kahana, 2009; Sederberg, How-
ard, & Kahana, 2008), where this mechanism enables a behavioral
account of backward associations in episodic recall (e.g., Kahana,
1996; Kiliç, Criss, & Howard, 2013) as well as the ability to
integrate fragmented episodes into an integrated representation
(Howard, Fotedar, Datey, & Hasselmo, 2005; Howard, Jing, et al.,
2009). For instance, consider a double function list where subjects
study a pair A B and then later study a pair with an overlapping
stimulus B C. Subjects show a transitive association between A and
C even though those stimuli were never presented close together in
time (Bunsey & Eichenbaum, 1996; Primoff, 1938; Slamecka,
1976). This finding makes sense if the second presentation of B

causes a “jump back in time” recovering the temporal context in
which it was previously experienced; the temporal context of B

includes information about A, providing a mechanism for A to
become associated to C.

In the behavioral applications we use here, recovery of a scale-
invariant temporal history affords several advantages over the
recovery of a temporal context vector as used in the temporal
context model (TCM). First, because the representation of history
is scale-invariant and the temporal context vector is not (Howard,
2004), recovery of the temporal history can result in behavioral
contiguity effects that persist over long periods of time. Second,
because the state of temporal history, contains a representation of
what happened when9 integrating different histories enables the
formation of a temporal map that provides information about
temporal relationships between different events (Cole, Barnet, &
Miller, 1995). That is, rather than simply being able to learn that
A “goes with” C, information about the temporal relationships
between stimuli can be extracted and integrated. As with the other

operations for accessing and exploiting internal time, we have not
provided a detailed mechanism by which a jump back in time
could be accomplished. We simply assume that the recovery is
accomplished somehow at some appropriate times. We emphasize
that this “jump back in time” is not an obligatory consequence of
repeating a stimulus.

Overview of Behavioral Applications

We start by building a simple behavioral model using sequential
scanning of T��*� and apply this behavioral model to JORs over
short (a few seconds, e.g., Hacker, 1980) and long (several dozen
seconds, e.g., Yntema & Trask, 1963) laboratory time scales. In
the next subsection we build a simple behavioral model of recency
and contiguity effects in episodic recall across a range of time
scales. This model makes use of matching and the recovery of
prior states of temporal history. Finally, we use matching and the
recovery of previous states of temporal history to account for
temporal mapping phenomena observed in second-order condi-
tioning experiments (e.g., Cole et al., 1995).

Judgments of Recency Across Time Scales

The JOR task taps subjects’ estimates of the time in the past at
which an event took place. In a relative JOR task, participants are
presented two probe items and asked to select the probe that
occurred more recently. In an absolute JOR task subjects are
presented a single probe and judge the time, or number of stimulus
presentations, that have passed since its most recent presentation.
In many short-term JOR experiments (Hacker, 1980; Hockley,
1984; McElree & Dosher, 1993; Muter, 1979), subjects perform
relative JOR on a list of common stimuli (e.g., letters) presented
rapidly one at a time over a few seconds. The pattern of response
times (RTs) from short-term JOR have been taken as strong
evidence for scanning. In the short-term JOR task, when subjects
correctly select the more recent probe item, their RT is a mono-
tonic function of the recency of the more recent probe such that
more distant items had longer RTs. However, there is little or no
effect of the recency of the less-recent probe item on correct RT
(Hacker, 1980; Hockley, 1984; McElree & Dosher, 1993; Muter,
1979). In contrast when subjects incorrectly choose the less-recent
probe, RT is a monotonic function of the recency of that item but
is only minimally affected by the recency of the more recent probe.
The top panel of Figure 3 shows representative data from the
Hacker (1980) study. These results, and several other related
findings, suggest that subjects examine their memory by starting at
the present moment and serially scan to earlier times to find the
probe stimuli, stopping when one of the probes is matched by the

8 In Shankar and Howard (2012) this was accomplished via a simple
Hebbian outer product association between T and f, but other approaches
are possible.

9 In TCM, the temporal context vector is a leaky integration of the inputs
caused by the items presented. As such, the history of a single item is
described by a single scalar value rather than a function of prior time. The
temporal context vector is thus an ahistorical strength.
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contents of memory (Hacker, 1980; Hockley, 1984; McElree &
Dosher, 1993; Muter, 1979).10

Here we develop a simple behavioral scanning model based on
sequential access of the representation of internal past time. This
simple model describes short-term JOR data from the Hacker
(1980) paradigm over a few seconds. Because the representation is
scale-invariant, there is no reason the same behavioral model
couldn’t also extend to longer laboratory time scales. We show that
the same simple behavioral model also accounts for key features of
JORs observed over time scales up to a few minutes (Hintzman,
2010; Yntema & Trask, 1963).

The scanning model is very simple. Each point in the timeline
T��*� is sequentially accessed starting from the present and moving
subsequently to progressively less recent values of �*. With refer-
ence to the bottom panel of Figure 2, we start at the right hand side
of the figure. At each step we query the representation to determine

what stimulus was presented at that point in time. At the next time
step we move one node to the left and repeat the query. The output
of the contents of memory is compared to the probe stimulus in
absolute JOR, or the two probe stimuli in relative JOR. At each
step of the scan, the decision process terminates with probability a
times the match between T��*� and the corresponding probe. a is a
free parameter. In a relative JOR task, the subject chooses the
probe whose process terminates first. If the search goes on long
enough with neither probe being selected, the subject guesses

10 The scanning interpretation is not only supported by mean RT. Hock-
ley (1984) found that the entire RT distribution shifted as the more recent
probe was moved further into the past (see also Hacker, 1980; Muter,
1979). Similarly, McElree and Dosher (1993), using the response signal
procedure, found that the time at which information began to accumulate
depended on the recency of the probe.
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Figure 3. Short-term memory scanning. In Experiment 2 of Hacker (1980), participants were shown a list of
consonants at a rate of one item every 180 ms. At the end of the list, they were shown two probe stimuli and
asked to select the most recent item. The top row shows experimental results for accuracy (top left), response
time (RT) for correct responses (top center), and incorrect RTs (top right). Note especially that the recency of
the less recent probe has little or no effect on correct RT but has a dramatic effect on error RT. The bottom panels
contain corresponding model fits using a simple scanning model over internal past time. Memory for each of the
probes was queried by scanning successive points of the timeline T. The probe that returned useful information
first was selected. If neither probe returned useful information when the scan reached three times the list length,
the model guessed. RT is estimated as the number of nodes that were scanned prior to the decision. The
parameter controlling the instantaneous probability of terminating the search was adjusted to fit the accuracy data
(a � 2.69). See the online article for a color version of this figure.
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randomly (Hacker, 1980). In absolute JOR, the model is the same
except there is only one decision process corresponding to the one
probe stimulus. In absolute JOR we assume that the subject reports
the node number on which the search terminates and uses that
information as the basis for a response. Recall that node number
goes up logarithmically with |�*| (Figure 2, bottom). Appendix A
provides a more formal description of the scanning model and
several useful results.

A few comments are in order to give the reader a stronger
intuition before comparing the model to data. First, the smear in
the representation T��*� makes it easier to confuse pairs of events
further in the past than recent events. That is, the representation of
two events separated in time by a fixed duration overlap less if the
two events are close to the present and overlap more as the pair of
events recedes into the past. Because the probability of termination
depends on the value of T��*�, more overlap means that there is a
greater probability that the incorrect probe will be chosen. Second,
more recent stimuli are more likely to return information even if
there is only one probe competing. This is because the peak
activation caused by a studied item is a decreasing function of the
delay since it was presented. Both of these factors make memory
worse for stimuli further in the past. Third, the Weber-Fechner
spacing of the �* axis causes the scanning model to show a loga-
rithmic increase in scanning time as a probe becomes less recent.
Moreover, the scanning model of absolute JOR generates logarith-
mic increase in rated recency as a function of actual recency
(Hinrichs & Buschke, 1968).

Serial Scanning in Short-Term Memory

The bottom panels in Figure 3 show predictions of the simple
scanning model described above for the Hacker (1980) results. The
parameter a was manipulated to provide the best fit to the exper-
imentally observed accuracy. We calculated the probability of a
correct response by numerically integrating the appropriate expres-
sions (see Appendix A). To estimate RT, we calculated the expec-
tation of the number of the node at which the search terminated.
There were no parameters manipulated to try and fit the RT data
per se but several choices that had to be made to generate reason-
able numbers. We set the guess RT to the log of three times the �*

corresponding to the longest list length to roughly correspond to
the parameters of the experiment. We also added a constant to the
expectation of log|�*| to represent the lower limit of integration (i.e.,
the value of �* closest to zero) and the nondecision time. This
affected all RTs by the same constant amount and had no effect on
their relative spacing.

Despite not being fit to RT, the scanning model captures the
basic pattern of results for RT for both correct responses and
errors. Correct RTs depend a great deal on the lag of the more
recent probe and only minimally on the lag of the less recent probe.
In contrast, error RTs depend greatly on the recency of the less
recent probe and almost not at all on the recency of the more recent
probe.11 The model deviates slightly from the data in that the
correct RT functions are not precisely flat, trending slightly away
from a distance function. The model produces this behavior for the
same reason as the Hacker (1980) behavioral model—less recent
items are missed at a higher rate than more recent items. As a
consequence, the proportion of correct responses attributable to
guesses goes up as the recency of the less recent item decreases.

Because the guess RT is big relative to the nonguess RT, the result
is a slight increase in RT.

Serial Scanning in Long-Term Memory

In this subsection, we show results from two experiments that
illustrate important properties of the scanning model with respect
to JORs over longer laboratory time scales. First, we show that the
simple scanning model captures the basic pattern of accuracy as a
function of lag in a relative JOR task (Yntema & Trask, 1963).
Second, we show that the scanning model is able to account for the
separate effect of multiple presentations of an item, a key feature
of the data that lends support to multiple-trace models of the JOR
task (Hintzman, 2010).

Yntema and Trask (1963) performed a continuous relative JOR
task over a range of time scales up to several dozen seconds. On
each study trial, a pair of words was presented. On each test trial,
a pair of probe words was also presented, with the subject required
to judge which of the probes was presented most recently. In a
relative JOR, there are two relevant delays associated with the test
of the two probes. Let us refer to the difference between the time
of presentation of the two probes as the lag and the delay from the
more recent probe at the time of test as the retention interval. In the
relative JOR task, accuracy is relatively good when the retention
interval is small compared to the lag; as the retention interval gets
large relative to lag, accuracy decreases (e.g., Frey & Fozard,
1970; Lockhart, 1969; Wasserman, DeLong, & Larew, 1984;
Yntema & Trask, 1963). The basic findings (Figure 4) are that, all
other things being equal,

1. accuracy decreases with the retention interval to the more
recent probe and

2. accuracy increases with the lag between the two probes.

The scanning model captures both of these properties quite well
(Figure 4). Note that the self-terminating scanning model used here
would predict latency differences in long-term relative JORs sim-
ilar to those observed in the Hacker (1980) data. To our knowl-
edge, there have been no reports of latency data in relative JORs
over the time scale of dozens of seconds.

The Yntema and Trask (1963) findings are perfectly consistent
with a strength account and do not independently require a tem-
poral representation. However, the fact that subjects show memory
for separate presentations of an item argues strongly against a
strength account of JOR performance. Hintzman (2010) presented
subjects a continuous absolute JOR task. Words were presented
three times; we refer to the three presentations as P1, P2 and P3.
On P1, the first presentation of an item, subjects were to judge it
as new. On P2 and P3, subjects were to rate it as old. For words the
subjects correctly judged as old, they were to rate its absolute
recency. Let us refer to recency of the probe the second time it is
presented as R1 and the recency of the probe the third time it is
presented (i.e., the difference between P2 and P3) as R2 (see
Figure 5, top). At P2, subjects rated R1 for the words they

11 It should be noted that the apparent increase in the empirical RT when
the probes are close together in the list did not hold up to statistical scrutiny
(Hacker, 1980) and is not present in replications of this study by other
authors (Hockley, 1984; McElree & Dosher, 1993; Muter, 1979).
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judged as old. Their ratings display an approximately logarith-
mic judgment for the words they rated as old (Figure 5a, black
line labeled P2). At P3, there are two prior presentations of the
probe, one at recency R2, and the other at recency R2 � R1. As
R1 and R2 are factorially varied, the question is whether R1 has
an effect on the judgment at R2. The nearly horizontal colored
lines in Figure 5a show that there is a minimal effect of R1 on
the judgment of R2.

Because the Hintzman (2010) experiment only reported JOR
ratings for probes that were also judged old, we only included
results for searches that returned useful temporal information.
The false alarm rate to the recognition judgment on the first
presentation in the Hintzman (2010) data was only .03 (the hit
rate on P2 was .93; on P3 it was .98), so it is reasonable that
very few judgments were based on guessing. The relatively high
value a � 15 for the parameter controlling the instantaneous
probability of the search returning means that the probability of
a search returning a useful value at any point during the scan is
correspondingly high. We assume, but do not model, a linear
mapping between N, the output of a particular search, and the
subjects’ understanding of physical time, leaving the answer in
terms of log|�*|.12

Figure 5 shows that the simple behavioral model based on the
scale-invariant representation of temporal history captures the
basic trends in the data. It describes the form of the increase in
the rating at P2 with R1. It describes the strong effect of R2 on
the recency judgment at P3 and the relatively minimal effect of
R1 on the judgment at P3. It even describes the slight increase
in the judgment at P3 as R1 increases. In most cases, the query
is already returning information due to the most recent presen-
tation of the item. Because the search is self-terminating and
there is a strong recency effect, additional information about the
earlier presentation does not contribute much to the judgment.
However, it does tend to move the judgment slightly toward the
past.

Discussion

We showed that a one-parameter backward self-terminating
scanning model built on top of the distributed representation of
temporal history captures canonical effects from the JOR task. The
model smoothly transitions between putative short-term (Hacker,
1980) to long-term (Yntema & Trask, 1963) results using a scale-
invariant memory representation. With respect to the account of
short-term JOR data, the model differs very little from previous
scanning models, but the representation of internal time, with its
Weber-Fechner spacing, makes predictions about longer-term JOR
that are not shared by previous treatments of short-term JORs. For
instance, the fits for the Hacker (1980) data of the model used here
are very similar to those from the scanning model in Hacker
(1980). However, in that model the availability of the stimuli were
allowed to vary as free parameters—availability was found to fall
off with recency. Here, that recency effect emerges from properties
of the representation of internal time and generates predictions for
longer-term JORs as well. Similarly, Brown et al. (2000) con-
structed a behavioral scanning model of short-term JORs built
from the coupled oscillators in the OSCAR framework. In
OSCAR, the state of the oscillators during study is associated to
each list item. The similarity of the state of the oscillators at the
end of the list is used to generate a strength for each list item. The
strengths are then sorted, and the subject scans through the list
items weighted by their strength until a match to a probe is found.
This is something of a quasiscanning model—sequential access is
assumed to be taken on an ahistorical strength. While the predic-
tions of the present model are quite similar for the Hacker (1980)
data, the quasiscanning model based on OSCAR would tend to
make counterfactual predictions for the Hintzman (2010) experi-
ment. Because both P1 and P2 would contribute to the strength, the

12 We have also added a constant, corresponding to the lower limit of
integration, to avoid reporting negative values of RT.
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Figure 4. Long-term memory scanning. In Experiment 2 of Yntema and Trask (1963), subjects were presented
with a continuous stream of pairs of words. On test trials, they were shown two probes and asked to select which
one was presented more recently. The plot gives the probability of choosing item A as the more recent item
(either correctly or incorrectly) as a function of its recency. The separate lines represent the recency of the other
probe item, B. The model predictions are for the same scanning model as in Figure 3, with a � 9.71. See the
online article for a color version of this figure.
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near-independence of absolute JOR for the most recent presenta-
tion on the recency of the previous presentation (Figure 5) is
difficult to reconcile with an ahistorical strength representation.13

Although the present behavioral model does a reasonable job of
accounting for behavior in both short-term memory and long-term
memory, this is not to say that the behavioral model, nor behavior
across the tasks, is scale-invariant. The relationship between a
scale-invariant representation and behavior is more nuanced, as it
depends on the behavioral model used to generate behavior. The
scanning model used here has a scale set by the parameter a, which
controls the instantaneous probability of the search returning, and
exhibits different properties in different regimes. When the re-
cency of a probe item �o �� a, memory scans return useful
information almost certainly. In this regime, different probes com-
pete with one another. On the other hand, when �o �� a, memory
searches do not often return information and the searches behave
as if they were independent. Although the underlying representa-
tion is precisely scale-invariant, the behavioral model exhibits
qualitatively different behavior in these two regimes.

Scale-Invariant Recency and Contiguity in Free Recall

In the free recall task, subjects are presented with a list of words
and asked to recall as many of the words as they can in the order
they come to mind. Data from the recency effect in free recall

(Glanzer & Cunitz, 1966; Murdock, 1962) were instrumental in the
adoption of the distinction between short-term and long-term
memory (Atkinson & Shiffrin, 1968; Glanzer, 1972). The imme-
diate recency effect was taken as evidence of the enhanced avail-
ability of items that remained active in short-term memory. Insert-
ing a delay at the end of the list (Glanzer & Cunitz, 1966; Postman
& Phillips, 1965) sharply attenuates the recency effect; according
to models of short-term memory, this attenuation happens because
the end-of-list items are displaced from short-term memory by the
distractor.14 Subsequent evidence on the long-term recency effect
(Bjork & Whitten, 1974; Glenberg et al., 1980) showed that the
recency effect in free recall experiments can persist even when
the delay between the last item and the test is long enough to
eliminate the recency effect in delayed free recall if the spacing

13 One might have chosen to implement a scanning model in OSCAR by
assuming that the oscillators can run backward from the time of test—
stimuli would be activated sequentially as the state of the oscillators
matches the state during study of each list item. While this approach would
no longer be ahistorical, we would still expect scanning time to go up
linearly with recency rather than logarithmically as in the present approach.

14 In some sense, the distinction between short-term and long-term
memory can be understood as a strong assertion that memory representa-
tion has a characteristic scale defined by the capacity of short-term mem-
ory.

P1 P2 P3

R1 R2

Hintzman (2010)

R1

P
(J

O
R

 | 
ol

d)

5 10 30

5
10

15
20

25

P2

Lag 2:

5
10
30

Model

R1
lo

g 
 (

ar
bi

tr
ar

y 
un

its
)

5 10 30

0
1

2
3

4

P2

R2

*

M
ea

n 
A

bs
ol

ut
e 

JO
R

 R
at

in
g

Figure 5. Relative independence of separate presentations of an item. Top: In Experiment 1 of Hintzman (2010),
words were presented on three occasions, P1, P2, and P3. At each presentation, the subject had to indicate whether
the word had been presented earlier and, if so, estimate its recency. The recency of the word when it was repeated at
P2 is denoted R1. The recency when the word was repeated the second time at P3 is referred to as R2. R1 and R2
were set to 5, 10, or 30. The black line with filled circles gives performance on P2. The other symbols give
performance on P3 (see legend). Bottom left: Empirical results for the absolute recency judgment for probes judged
old as a function of R1. Note that R1 has little or no effect on the judgments at P3. Bottom right: The mean value of
the node number at which the scan through history returned. a � 15. JOR � judgment of recency. Adapted from
“How Does Repetition Affect Memory? Evidence From Judgments of Recency,” by D. L. Hintzman, 2010, Memory
& Cognition, 38, Figure 3, p. 105. Copyright 2010 by Springer. See the online article for a color version of this figure.
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between the list items is increased. In addition to recency, free
recall also manifests a contiguity effect. When a word is recalled,
the next word recalled tends to come from a nearby list position
(Kahana, 1996; Kahana, Howard, & Polyn, 2008). In analogy to
the recency effect, there is also a long-term contiguity effect that
is observed even with long delay intervals between the items
(Howard & Kahana, 1999; Howard et al., 2008; Kiliç et al., 2013;
Unsworth, 2008).

Here we focus on describing the recency effect, as measured by
the probability of first recall (PFR) and the contiguity effect, as
measured by the conditional response probability as a function of
lag (lag-CRP) with special attention to capturing their qualitative
behavior across time scales. To empirically calculate the PFR, one
simply takes a serial position curve for the first word that the
subject recalls in each trial. To calculate the lag-CRP, one counts
the number of times that recall transitions of a certain lag are
observed and divides that number by the number of times correct
recall transitions of that lag could have been observed given the
serial position of the just-recalled word and the previous recalls
(Howard, Addis, Jing, & Kahana, 2007; Howard & Kahana, 1999;
Kahana, Howard, Zaromb, & Wingfield, 2002). The “lag-CRP”
curve shows remarkable consistency across experiments and sub-
jects (Healey & Kahana, 2014; Kahana et al., 2008) and is not
simply a confound of serial position effects (see especially Farrell
& Lewandowsky, 2008; Howard, Sederberg, & Kahana, 2009) nor
correlated encoding processes (Howard, Venkatadass, Norman, &
Kahana, 2007; Kiliç et al., 2013; Siegel & Kahana, 2014).

We describe PFR and lag-CRP curves using an account very
similar to that offered by TCM, but with the scale-invariant rep-
resentation of temporal history playing the role of the temporal
context vector. In TCM, when an item is studied, an association is
formed between the current state of context at that moment. In
TCM, at each recall attempt, the current state of context is used as
a probe. Each potential recall is activated to the extent its encoding
context matches the probe context. In TCM, when an item is
remembered, it causes a partial reset of the state of the temporal
context vector to the state in which that item was encoded—a
“jump back in time.” Here, we assume that each potential recall is
activated to the extent the state of history when it was encoded
matches the history at the time of test, which functions as a probe.
We assume further that remembering an item causes partial recov-
ery of the state of T available when the item was encoded. To
describe the PFR, we use the current state of the temporal history
at the time of the free recall test as a cue (Shankar & Howard,
2012). In contrast, in calculating the lag-CRP we assume that the
delay and/or the process of averaging over many retrieval attempts
renders the state of T prior to retrieval of the recalled item
ineffective in generating the contiguity effect (see Farrell & Le-
wandowsky, 2008; Howard, Sederberg, & Kahana, 2009). The
state of history used as a cue in modeling the contiguity effect is
a mixture of input caused by the retrieved item itself and a “jump
back in time” that recovers the previous state of temporal history.
Appendix B describes the calculations of these quantities in detail.

Given the activation of each of the list items based on their
match, we still need a way to map these activations onto an
observable probability of recall. Let pi be the match between state
of history of the ith word in the list and state of history used as a
probe. For simplicity we assume that the probability of recalling
item i in a list of � items is given by a simple rule:

PR(i) �
(pi � c)b

�j�1
� (pj � c)b

, (2)

where b is a free parameter specific to the free recall applications.
b � 2 throughout this article. The parameter c provides a way to
take into account associative cues such as semantic similarity that
do not depend on the lag between the just-recalled item and
potential recalls. In calculating the PFR, we set c � 0.

Scale-Invariant Recency in the PFR

Because list items are encoded in their state of T, and because
T changes gradually over time, the match between the state of the
history and the encoding history of each list item demonstrates a
recency effect. Because T changes in a scale-invariant way and
because the retrieval rule Equation 2 describes a power law, this
simple model predicts recency effects that are precisely scale-
invariant. In the continuous distractor procedure, the subject ex-
periences some type of stimulus, either a word or a distractor, at
each moment in order to prevent rehearsal. Although the calcula-
tion is somewhat involved (see Appendix B), the result is quite
simple to appreciate. Under these circumstances, if a word is
presented every �� seconds, it turns out that a word presented n
time steps in the past will have a match of

pn � n�1(��)�2 (3)

between its encoding history and the history at the time of test.15

All that remains in order to apply Equation 2 to the recency effect
in free recall experiments is to plug in the appropriate delays
between the list items and the time of test (see Equation B6). This
simple framework is sufficient to account for the basic properties
of the recency effect in free recall measured in the PFR.

Property 1: A delay at the end of the list decreases the
sharpness of the recency effect. The top left panel of Figure 6
shows the PFRs from a free recall experiment (analyses of the data
in Lohnas & Kahana, 2014, performed by S. P. Polyn, personal
communication August 7, 2011) where subjects recall lists of 16
items with different end of list delays of 0, 8, and 16 s. In the top
right panel, Equation B6 is plotted with delays set appropriately for
the three conditions.

Property 2: Increasing the gap between the words increases
the sharpness of the recency effect. The bottom left panel of
Figure 6 shows the PFRs of a continuous distractor free recall
experiment (Howard & Kahana, 1999) where subjects recalled
lists of 12 words. The conditions had a fixed retention interval
of 16 s and interitem intervals of 2, 4, 8, or 16 s. In the bottom
right panel, Equation B6 is plotted with delays set according to
the experimental values. Although the numerical similarity to
the data is not particularly strong, the qualitative pattern is
correct.

Property 3: The recency effect persists across multiple time
scales. The scale-invariance of T enables the model to gener-
ate recency effects across a broad variety of time scales. If

15 Notice that (��)�2 will factor out when plugged into Equation 2 with
c � 0. Because the PFR is independent of the spacing between the items
��, the behavioral model is precisely scale-invariant. When c 	 0, �� does
not factor out and the model is not scale-invariant.
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nothing in the performance function (e.g., Equation 2) disrupts
the scale-invariance, models built using T predict precisely
scale-invariant recency. The recency effect over time-scales of
seconds to dozens of seconds is already demonstrated in Figure
6. Final free recall experiments have demonstrated recency
effects over even longer time scales. In final free recall exper-
iments, subjects study and recall a number of lists. At the end
of the session, subjects are asked to free recall all the words
from all the lists in the order they come to mind. In final free
recall experiments, the recency effect is observed spanning
across several lists over several hundred seconds (Glenberg et
al., 1980; Howard et al., 2008; Tzeng, 1973).

Figure 7 shows the recency effect, as measured by the PFR,
from immediate and final free recall in Howard et al. (2008). In
this experiment, lists of 10 words were followed by an imme-
diate test. The PFR shows a strong recency effect extending
over the last several items (top). The PFR across lists is shown
in the bottom row of Figure 7. Again, there is a strong recency
effect across the last several lists of items. We described these
findings using Equation B6 for a representative item from each
list (see Appendix B for details). As for all the model predic-

tions for free recall data, we fixed b � 2. For immediate free
recall, we took d � 1 and D � 1; for final free recall we took
d � 250 and D � 49, consistent with the values of the
experiment.

Contiguity

We consider only the contribution of the just-recalled word to
T in calculating the probability of recalling each of the candi-
date words from the list. This is certainly a simplification. In
addition to the most recently recalled word, the recency effect
can also contribute to subsequent recalls affecting the shape of
the lag-CRP (see Howard, Sederberg, & Kahana, 2009, for a
thorough discussion). Moreover, there is also evidence that
several previous recalls, not just the most recent one, can affect
the lag-CRP (Lohnas & Kahana, 2014). However, the lag-CRP
with its characteristic shape is observed in free recall even when
the recency effect is absent. Moreover, the contribution of
remote recalls appears to have the same qualitative properties as
the contribution of the immediately previous recall. Ignoring

Figure 6. The recency effect in free recall depends on the relative spacing of the list. Probability of first recall
(PFR) from two experiments (top � Lohnas & Kahana, 2014; bottom � Howard & Kahana, 1999). In the
Lohnas & Kahana, (2014) data (top), the duration of the filled distractor interval at the end of the list, d, is
manipulated. The recency effect decreases as the delay interval increases. In the Howard and Kahana (1999)
data (bottom), the duration of the distractor interval between list items, D, is manipulated while the delay
prior to test is kept constant at 16 s. Increasing the delay between items enhances the recency effect. On
the right side, the corresponding experiments are modeled using Equation B6 with b � 2. Note the change
of scale on the bottom row. Analyses of the Lohnas & Kahana (2014) data were provided by S. P. Polyn
(personal communication, August 7, 2011).
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recency and compound cuing enables us to focus on the essen-
tial properties of the contiguity effect.

One of the notable features of the lag-CRP in free recall is the
near-ubiquitous asymmetry. Across a variety of studies the
lag-CRP corresponding to adjacent forward transitions is higher
than the lag-CRP corresponding to adjacent backward transi-
tions (Kahana et al., 2008). We account for this asymmetry in
a way analogous to the account TCM provides. Briefly, when a
word is recalled, it has two effects on the temporal history.
First, because this word is the same as a word from the list, as
this word enters the history and gradually moves back in time,
the history comes to resemble the encoding history of words in
the list that followed the inital presentation of the word. Con-
sider the list A B C D E. The encoding history of D contains the
word C one time step in the past; the encoding history of E

contains C two time steps in the past. In the time after C is
recalled, the history again includes C. This match provides a
basis for forward associations between C and words that fol-
lowed its original presentation. In addition, when a word is
recalled it can also retrieve the prior state of history. The history
when C was originally presented matches the encoding history

of D more than it matches the encoding history of E. In addition,
the jump back in time results in a cue that also supports a
backward association; the history recovered by C matches the
encoding history of B moreso than it matches the encoding
history of A. Appendix B works out the details of the calculation
of the match. A free parameter 
 controls the relative contri-
bution of these two components, with 
 � 0 corresponding to
no recovery of the previous state of history.

There are two additional considerations prior to examining
model predictions. First, the effectiveness of repeating an item
as a cue for subsequent recalls changes in the moments after �r

when the stimulus is repeated. For simplicity, we assume that
the state a nonzero time r after repetition of the word, i.e., at
time �r � r, is the cue for retrieval of the next word. Second, as
discussed above, there are many reasons why one word would
cue another in a way that does not depend on their temporal
contiguity. The c parameter in Equation 2 accounts for these
factors. In the illustrations of model predictions that follow, we
set 
 � 0.9, r � .75, corresponding to 750 ms if �� � 1 s, and
c � 8 � 10– 5. As in the PFR calculations, b � 2.

Figure 7. Evidence suggesting scale-invariant recency in free recall. Subjects performed immediate free recall
on lists of 10 items. After 48 such lists, they recalled all the items from all the list. Within-list (top) and across-list
(bottom) probability of first recall functions. Left panels adapted from “The Persistence of Memory: Contiguity
Effects Across Several Minutes,” by M. W. Howard, T. E. Youker, and V. Venkatadass, 2008, Psychonomic
Bulletin & Review, 15, Figure 1, p. 60. Copyright 2008 by Springer. Equation B6 with b � 2 and delay
parameters set to experimental values are shown on the right.
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Figure 8 shows the lag-CRPs of the final free recall in the
experiment of Unsworth (2008).16 Unsworth (2008) presented
subjects with 10 lists of 10 words each. Each list was presented
at a rate of one word per second followed by a 16-s distracting
math task, subsequently followed by a 45-s recall period for that
list. The next list was presented immediately following the end
of the previous recall period. We take the time interval between
the study of two successive lists as 71 s. During the final recall,
whenever a successively recalled pair comes from the same
study list, it is grouped as a within list transition. The CRP of
the within-list transitions is plotted in the top left panel. When-
ever the successively recalled pairs were from different lists,
they are grouped as across-list transitions, meaning an across-
list transition of zero is not possible in this analysis. The
lag-CRP of the across-list transitions is plotted in the bottom
left panel. Note that the empirical data are not strictly scale-
invariant. If they were, the within- and across-list curves would
perfectly align. In addition to the change in the steepness of the

curves, there is also a change in the asymmetry apparent in the
data.

Equation 2 is plotted on the right side of Figure 8. The model
captures the qualitative aspects of the data. Both within- and
across-list contiguity effects exist in both the forward and
backward directions. Within-list transitions are asymmetric fa-
voring forward transitions. Across-list transitions are more
nearly symmetric and lower in amplitude. The behavioral model
deviates from scale-invariance, despite utilizing a scale-
invariant representation of internal time, because the behavioral
model fixes a scale. First, the parameter c fixes a scale, result-
ing in the behavioral model’s prediction of a more shallow

16 Howard, Youker, and Venkatadass (2008) conducted similar contigu-
ity analyses of FFR data and found qualitatively similar results. However,
in that experiment there was residual recency in the contiguity effect
observed in FFR, so that the simplifying assumptions used in Appendix B
do not apply.

Figure 8. The contiguity effect persists across time scales. After a word is recalled from serial position i, the
lag-CRP estimates the probability that the next recalled word comes from position i � lag. Within- and
across-list lag-CRP were measured during final free recall by focusing on transitions between words from the
same list and between words from different lists, respectively. The across-list lag-CRP (bottom) estimates the
probability of a transition from list i to list i � list lag. Left: Adapted from “Exploring the Retrieval Dynamics
of Delayed and Final Free Recall: Further Evidence for Temporal-Contextual Search,” by N. Unsworth, 2008,
Journal of Memory and Language, 59, Figure 7, p. 230. Copyright 2008 by Elsevier. Right: Equation 2 with
activations set using Equations B11 and B12. See text for details. CRP � conditional response probability.
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across-list contiguity effect. The model captures the change in
asymmetry across time scales because r, the time after recall of
the preceding word, also fixes a scale. For the within list
transitions, r is similar to the time interval between list items
(1 s), and we see a strong forward asymmetry. When r is small
compared to the study time between items, the lag-CRP will be
more nearly symmetric because the temporal history when the
stimulus was initially presented will dominate.

Discussion

Modeling of recency in the PFR and contiguity as measured by
the lag-CRP is a requirement for a free recall model, but it does not
constitute a complete model of the free recall task. Using the
temporal history T as a generalization of temporal context does not
sacrifice the ability to describe recency or contiguity effects,
showing performance at least comparable to the first presentation
of TCM (Howard & Kahana, 2002). In the following years, several
treatments of the details of free recall dynamics have been pre-
sented (e.g., Howard, Sederberg, & Kahana, 2009; Lohnas &
Kahana, 2014; Polyn et al., 2009; Sederberg, Howard, & Kahana,
2008; Siegel & Kahana, 2014). These models elaborate the basic
associative engine described in the Howard and Kahana (2002)
article by considering the effect of compound cuing, resampling,
and a detailed moment-by-moment retrieval process. These mod-
eling efforts have shown that the basic associative engine of the
original article can be used to account for the persistence of
recency across multiple retrieval attempts, latency differences in
recalls as a function of output position, lag effects, and the effects
of semantic similarity on retrieval dynamics, among other proper-
ties. The only substantive difference between the treatment of
recency and contiguity presented here using a scale-invariant his-
tory and the treatment of recency and contiguity in the Howard and
Kahana (2002) article using the temporal context vector is the fact
that the history is genuinely scale-invariant, whereas the temporal
context vector is not (Howard, 2004). This gives the present
treatment the ability to account for recency and contiguity effects
over much longer scales without changing parameters.

Temporal Mapping

In temporal mapping experiments (e.g., Arcediano, Escobar, &
Miller, 2003; Arcediano & Miller, 2002; Barnet, Cole, & Miller,
1997; Cole et al., 1995; Savastano & Miller, 1998), subjects both
learn temporal relationships between pairs of stimuli and infer
temporal relationships between stimuli that were not actually ex-
perienced close together in time. Miller and colleagues have de-
veloped the temporal encoding hypothesis (Arcediano & Miller,
2002; Matzel et al., 1988; Savastano & Miller, 1998) to describe
learning. The temporal encoding hypothesis has two components
that are particularly relevant for the model of internal time devel-
oped here. First, Miller and colleagues argued that the temporal
relations between stimuli forms an essential and unavoidable part
of the learning event. Second, they argued that learners can inte-
grate disparate learning events into a coherent temporal map by
aligning different timelines on a common stimulus. We model core
results from the temporal mapping paradigm using matching and
the ability to jump back in time to a previous state of history.
Matching of a state of temporal history enables an appropriately
timed response that reflects the temporal relationship between the
CS and US; jumping back in time provides a mechanism for the
integration of temporal relationships across learning episodes.

To make temporal mapping more concrete, let us describe a spe-
cific experiment. Cole et al. (1995) trained rats to associate a 5-s CS1
with a US (shock). In one condition, the time between offset of the
CS1 and the onset of the US was 0 s (Figure 9a, top). In the other
condition, the time between the offset of CS1 and the US was 5 s
(Figure 9a, bottom). Let us refer to these as the 0-s and 5-s conditions,
respectively. After training the CS1-US association, a second-order
association was formed between CS1 and another 5-s CS2. In both
conditions, the onset of CS2 immediately followed the offset of CS1
(Figure 9b). In neither condition did CS2 ever cooccur with the US.
The first finding was, not surprisingly, that the CR to the CS1 was
stronger in the 0-s condition than in the 5-s condition. If the relation-
ships learned between the stimuli were atomic associations, we would
expect the second-order conditioning to CS2 would also be stronger in
the 0-s condition than in the 5-s condition. After all, the association

Figure 9. Procedure of a typical temporal mapping experiment. Both conditions involve two conditioned
stimuli. The conditions differ in the duration of the gap between Conditioned Stimulus 1 (CS1) and the
unconditioned stimulus (US) during an initial phase of learning. After learning, one can evaluate both trace
conditioning (the conditioned response to CS1) and second-order conditioning (the conditioned response to
CS2). a: In the first phase of training, subjects in the 0-s condition (top) received CS1 with the shock US
presented immediately after CS1 offset. Subjects in the 5-s condition (bottom) received the US 5 s after offset
of CS1. There was more robust conditioned responding (CR) to CS1 in the 0-s condition. b: In a second phase
of training, both groups received second-order conditioning between CS1 and CS2. c: The presumed integrated
representation according to the temporal mapping hypothesis after both phases of training. CS2 evoked a larger
CR in the 5-s condition than in the 0-s condition. Adapted from “Temporal Encoding in Trace Conditioning,”
R. P. Cole, R. C. Barnet, and R. R. Miller, 1995, Animal Learning & Behavior, 23, Figure 2, p. 149. Copyright
1995 by Springer.
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from CS2 to the US must be mediated by the association from CS1 to
the US. However, exactly the opposite was observed: the CR to CS2
was greater in the condition where the CR to CS1 was smaller. This
result makes no sense from the perspective of simple associative
strength. The temporal coding hypothesis (Matzel et al., 1988; Savas-
tano & Miller, 1998) of Miller and colleagues reconciles these find-
ings as follows. Note that if the two learning episodes were integrated
into a single coherent representation aligned on the CS1 (as in Figure
9c), then the CS2 would not predict the onset of the US in the 0-s
condition. In the 5-s condition, CS2 strongly predicts the onset of the
US when the two learning episodes are aligned on presentation of
CS1.

A behavioral model must have two basic properties in order to
account for the temporal mapping phenomenon. One is that the
temporal relationship between stimuli, rather than a simple scalar
associative strength, is learned. Second, there must be some mech-
anism for integrating different experiences into a coherent syn-
thetic representation. The representation of internal past and future
time satisfies the first constraint. The ability of a stimulus to
recover previous states of temporal history satisfies the second
constraint (see also Howard et al., 2005; Howard, Jing, et al. 2009;
Rao & Howard, 2008). When CS2 is given as a probe if it recovers
the state of history from the first phase of learning, the state of T
it recovers doesn’t just provide a general sense that it has some-
thing to do with CS1. Rather, it recovers information specifying
that CS1 was presented 5 s in the past. This recovered history
provides an effective cue for the US to the extent it matches the
state of history when the US was originally experienced. As time
passes after the presentation of CS2, the representation of CS1
drifts further into the past, changing the match with the US
(Figure 10).

In the Cole et al. (1995) experiment the CR is measured as the
time it takes for the rat to drink a threshold quantity of water after
the CS is presented. To mirror this measure in a simple behavioral
model, we assume that the rate of water drinking is exponentially
suppressed as a function of the normalized match between the
history after presentation of the CS and the encoding history of the
US.17 Since the rat has been trained for a long time, we assume
that the match is normalized to a peak value of 1 in trace condi-
tioning. For the second-order conditioning, the match is reduced
by a factor of 
. Figure 11 shows the predictions of this simple
behavioral model with the threshold set to 3, the d parameter set to
5/3, and 
 set to 0.5.

Discussion

Temporal mapping is not limited to the findings from the Cole
et al. (1995) experiment. For instance, if the order of the training
phases is reversed, training the relationship between CS1 and CS2
prior to learning the relationship between CS1 and the US, the
same qualitative results are obtained (Experiment 2, Cole et al.,
1995). The framework described here would predict the same
outcome even if the stages of training were reversed. Other vari-
ants of the paradigm (Arcediano et al., 2003; Arcediano, Escobar,
& Miller, 2005; Barnet, Cole, & Miller, 1997) may be consider-
ably more challenging, requiring a significant elaboration of the
model. For instance, in Experiment 2 of Arcediano et al. (2003),
rats first learned that CS2 preceded CS1 by 5 s. In a second phase
of learning, they learned that the US preceded CS1 by 4 s.

Integrating the phases of learning by aligning on CS1, the only
element common to both phases of learning, would result in the
offset of CS2 immediately preceding the US onset. Indeed, there
was robust conditioned responding to CS2 relative to control
conditions. Because the US is never preceded by either of the
conditioned stimuli, this experiment constitutes a challenge to
mechanistic models that require a match to the encoding history of
the US.

Neurophysiological Evidence for a Representation
of Internal Time

If a scale-invariant timeline of recent experience is at the center
of a wide variety of cognitive functions, then we would expect to
see signatures of this representation in a wide variety of brain
regions. There are three primary properties predicted for this type
of representation. First, a scale-invariant representation of history
predicts long-range correlations caused by the to-be-remembered
stimuli. Second, it should be possible to recover states of this
gradually changing representation. The jump-back-in-time was
essential for accounting for the contiguity effect in episodic mem-
ory as well as the integration of learning episodes in the temporal
mapping experiments. Third, the framework requires not only that
the representation change over time in a way that is sensitive to the
stimuli but also that the representation contain explicit information
about when stimuli were experienced. We review evidence for all
three of these predictions (see also Howard & Eichenbaum, 2013).

Gradually Changing Stimulus-Specific Representation

A scale-invariant timeline of recent experience would cause
neurophysiological measures to be temporally autocorrelated over
long time scales, in a way that both depends on the stimuli
presented and also correlates with performance in behavioral tasks.
We discuss evidence for these properties from the prefrontal cortex
(PFC) and medial temporal lobe (MTL) with special attention to
the JOR task.

Recent evidence suggests that JOR performance is supported by
distributed representations in the PFC and MTL that change grad-
ually over time. Jenkins and Ranganath (2010) observed BOLD
response using fMRI while subjects encoded a set of stimuli for a
subsequent absolute JOR task. The multivoxel pattern of activity in
the PFC during study changed gradually across the list. The rate of
change of the pattern in one region, the rostrolateral PFC, pre-
dicted subsequent performance on the JOR task. Ezzyat and Da-
vachi (2014) examined human JOR performance for stimuli (pic-
tures of objects) that were paired with a context picture of a scene
while recording multivoxel patterns of activity in the MTL. The
distance between multivoxel patterns in the hippocampus pre-
dicted subjects’ judgments for pairs of probes studied in different
contexts, as if the distance in the subjects’ neural response was
driving the rating of distance in the behavioral response. Manns,
Howard, and Eichenbaum (2007) measured the firing rate of

17 That is, at each moment � after the CS, the rate at which the rat drinks
is given by e�dp(�), where d is a free parameter and p(�) is the match
between the encoding state of the US and the current state of T at time �.
We then solve Threshold � �0

L e�dp���d� to find the value of L when the
threshold amount of water is consumed.
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ensembles of neurons recorded simultaneously from the hip-
pocampus of rats performing a JOR task in which they studied lists
of odors. They found that the distance between the population
vectors corresponding to study of the list odors increased with
temporal distance both within and across lists. The ensemble of
neurons in the hippocampus continued changing gradually over
more than a thousand seconds (see also Hyman, Ma, Balaguer-
Ballester, Durstewitz, & Seamans, 2012; Kim, Ghim, Lee, & Jung,
2013; Mankin et al., 2012).

The foregoing results do not provide strong evidence that the
gradually changing representation reflects memory for the to-be-
remembered stimuli; those results could simply be due to stochas-
tic noise rather than memory for the identity of the presented
stimuli. There is also evidence, from tasks other than the JOR task,
that indicates that the MTL and PFC contain a gradually changing
representation that retains information about past stimuli. Schoe-
nbaum and Eichenbaum (1995a, 1995b) presented rats with a
series of odors. They observed that some neurons in the rodent
PFC responded on a trial to the identity of the stimulus on the
preceding trial. In the MTL, Yakovlev, Fusi, Berman, and Zohary
(1998) showed that neurons in the monkey perirhinal cortex, a
cortical region within the MTL, showed stimulus-specific activity

during a delayed-match-to-sample task that persisted across trials.
Hsieh, Gruber, Jenkins, and Ranganath (2014) presented human
subjects with series of pictures of objects. They found that the
multivoxel pattern of activity in the hippocampus changed gradu-
ally across the presentation of multiple stimuli in a way that
reflected the identity of the preceding stimuli. Other recent fMRI
studies suggest multivoxel patterns of activation in the MTL form
a temporal context that drives performance in episodic memory
tasks (Chan, Applegate, Morton, Polyn, & Norman, 2013; Gersh-
man, Schapiro, Hupbach, & Norman, 2013).

Neural Evidence for Jumping Back in Time During
Performance of Episodic Memory Tasks

In several of the cognitive applications described here, we
assumed that prior states of the timeline can be recovered. In free
recall, this accounted for the contiguity effect. Recovery of previ-
ous states of internal time was also essential for bridging across
disparate experiences in the temporal mapping application. Previ-
ous work has argued that one of the functions of the MTL, and the
hippocampus in particular, is to enable this jump-back-in-time
(Howard et al., 2005). Although there is not yet definitive evidence
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Figure 10. Schematic illustration of the match to the encoding history of the US in the time after the onset of
CS1 (trace conditioning [TR]) or CS2 (second-order conditioning [SOC]) in the two conditions described in
Figure 9 (0-s delay or 5-s delay between CS1 and the US). The top row shows the match following CS1 (TR).
The bottom row shows the match following CS2 (SOC). The left column shows results for the 0 s condition (top
row of Figure 9); the right column shows results for the 5-s condition (bottom row of Figure 9). In the
second-order conditions, even though CS2 was not explicitly paired with the US, the match with the US is
nonzero because CS2 recovers a temporal history that includes CS1 5 s in the past, the delay between the onsets
of CS1 and CS2 during training (see Figure 9b). The temporal profile of the match following CS2 is the same
as the match following CS1 with a time shift of 5 s. CS � conditioned stimulus; US � unconditioned stimulus.
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that the brain is able to recover prior states of a temporal history,
we discuss several recent studies in humans that are suggestive of
this hypothesis.

Zeithamova, Dominick, and Preston (2012) showed evidence
suggesting a jump-back-in-time using fMRI data. They had sub-
jects learn simultaneously presented pairs of pictures. The pairs
shared an overlapping stimulus, i.e., A-B and B-C. Although A and
C were not learned at the same time, they were both experienced in
the context of B. Previous work has shown that bridging associa-
tions between A and C depend on the integrity of the hippocampus
(Bunsey & Eichenbaum, 1996; Greene, Gross, Elsinger, & Rao,
2006). In the Zeithamova et al. (2012) study, the stimuli were
chosen from different visual categories such that the category
could be distinguished using multivoxel pattern classification.
During study of B-C, the cortical pattern associated with the cate-
gory of stimulus A was preferentially activated even though A was
not physically present. The degree to which A was activated was
correlated with the degree to which the anterior MTL, including
the hippocampus, was activated by learning of the pairs.

Manning, Polyn, Litt, Baltuch, and Kahana (2011) found evi-
dence suggesting a jump-back-in-time supports the contiguity ef-
fect in free recall. They recorded intracranial EEG from patients
with epilepsy during study and free recall of a list of words. They
found that the pattern of oscillatory components changed gradually
over time during study of the list. Notably, the pattern of activity
just before recall of a word from the list resembled the pattern
during study of neighbors of the original presentation of the
about-to-be-recalled word. This similarity showed a contiguity
effect and was greater for subjects who showed a larger behavior-
ally observed contiguity effect.

Howard, Viskontas, Shankar, and Fried (2012) reanalyzed
single-unit recordings from the MTL of epileptic patients perform-

ing a continuous recognition task on images (Viskontas, Knowl-
ton, Steinmetz, & Fried, 2006). The population vector across
neurons after the presentation of each stimulus was computed.
Population vectors changed gradually across at least 20 s (Figure
12a), demonstrating a neural recency effect. When a stimulus was
repeated as an old item, the gradually changing part of the ensem-
ble resembled the neighbors of the original presentation of that
stimulus (Figure 12), exhibiting a neural contiguity effect.

While each of the studies described here have some limitations,
their limitations are complementary, so that taken as a group they
present a much stronger story than any study in isolation. Although
the Manning et al. (2011) result could be due to correlated retrieval
strategies, neither the Howard et al. (2012) result nor the
Zeithamova et al. (2012) result are susceptible to that concern.
While the Zeithamova et al. (2012) experiment involved stimuli
presented simultaneously, so that the finding does not require
recovery of a gradually changing memory state, both of the other
two articles were able to establish a gradually changing represen-
tation. While the Howard et al. (2012) article relied on statistically
isolating the contiguity effect from the recency effect, the methods
of both of the other two articles were such that there was little or
no recency effect and the neural contiguity effect could be directly
measured.

Evidence for a Representation of an Internal Timeline

Any number of methods would result in a representation that
changes gradually over time—for instance an ahistorical strength
model (Howard & Kahana, 2002), a set of coupled oscillators
(Brown et al., 2000), or stochastic noise (Estes, 1955; Mensink &
Raaijmakers, 1988). A short-term memory buffer or a decaying
strength vector would cause a gradually changing representation
that is specific to recent stimuli; if the buffer contents or temporal
context vector were recovered by a repeated stimulus this would
account for a jump back in time. However, an internal timeline
should not only change gradually over time but also contain
information about what stimulus was experienced when. The key
prediction of this form of conjunctive what-and-when coding is
that cells should respond to their preferred stimulus not immedi-
ately, but after some characteristic time (Figure 2; see also Howard
et al., 2014; Shankar & Howard, 2012). MacDonald, Lepage,
Eden, and Eichenbaum (2011) observed that neurons in the rodent
hippocampus fired at circumscribed periods of time after the
beginning of a delay period (Figure 13a; see also Pastalkova,
Itskov, Amarasingham, & Buzsaki, 2008). These cells have been
dubbed “time cells” because they fire in circumscribed regions of
time analogous to hippocampal “place cells” that fire in circum-
scribed regions of allocentric space (O’Keefe & Dostrovsky, 1971;
Wilson & McNaughton, 1993; see also Pastalkova et al., 2008).
Some hippocampal time cells have been shown to fire differen-
tially in response to the stimulus that precedes a delay (Gill,
Mizumori, & Smith, 2011; MacDonald, Carrow, Place, & Eichen-
baum, 2013; MacDonald et al., 2011; Pastalkova et al., 2008), thus
providing a record of what happened when. Howard et al. (2014)
confirmed several qualitative predictions of T, including the
spread in time fields that code for longer durations (see also Kraus,
Robinson, White, Eichenbaum, & Hasselmo, 2013) and also the
asymmetry in their time fields.

Figure 11. Results from a temporal mapping experiment. Left: The
conditioned response (CR) after training to CS1 (the trace conditioning
[TR] conditions, black bars) or CS2 (the second-order conditioning [SOC]
conditions, light bars) separated by the condition (0 or 5), corresponding to
the delay in seconds between the CS1 and the US in the first phase of
learning (see Figure 9a). The CR in each condition is the log of the mean
time taken by the rats to drink water for 5 cumulative seconds. Fear of the
shock US disrupts drinking. Right: Predictions of a simple behavioral
model in which the rate of drinking is suppressed by the degree to which
the state of history matches the encoding history of the US (see text for
details). CS � conditioned stimulus; US � unconditioned stimulus. Data
graph adapted from “Temporal Encoding in Trace Conditioning,” R. P.
Cole, R. C. Barnet, and R. R. Miller, 1995, Animal Learning & Behavior,
23, Figure 1, p. 147. Copyright 1995 by Springer.
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The foregoing suggests that cells in the hippocampus, a region
critically important in episodic memory, show qualitative proper-
ties consistent with those we would expect of T. If the represen-
tation of an internal timeline is accessed for a variety of tasks in
memory and timing, then, to the extent those different tasks
depend on different brain regions, we would also expect to see the
signature of the distributed representation of temporal history in
many different brain regions. Although this literature is not nearly
as developed as the hippocampal literature, some recent findings
suggest an internal timeline in the striatum and the medial PFC.

Adler et al. (2012) showed evidence for stimulus-specific time
cells in the monkey striatum during performance of a Pavlovian
conditioning task. They recorded from medium spiny neurons in
the putamen, a subregion of the dorsal striatum, while monkeys
were presented with simple stimulus–response pairings (Adler,
Finkes, Katabi, Prut, & Bergman, 2013, later reported similar
results for medium spiny neurons in other regions within the
striatum). Different stimuli predicted different outcomes. Figure
13b shows the response of each of the medium spiny neurons as a
function of time during the delay between the stimulus and the
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Figure 12. Neural recency and contiguity effects. Multiple neurons were recorded from human medial
temporal lobe during performance of a continuous recognition task. a: The vector of firing rate across cells
averaged over the 3 s each stimulus was presented was compared to the vector from previous presentations.
Comparisons were restricted to stimuli within the same block of stimuli and excluded comparisons to the same stimulus.
The ensemble changed gradually over macroscopic periods of time, here up to about 20 s. b: The population
vector when a stimulus was repeated was compared to the vector observed during presentation of the neighbors
of its original presentation. After statistically eliminating the contribution due to recency, these analyses revealed
a contiguity effect. From “Ensembles of Human MTL Neurons ’Jump Back in Time’ in Response to a Repeated
Stimulus,” by M. W. Howard, I. V. Viskontas, K. H. Shankar, and I. Fried, 2012, Hippocampus, 22, Figures 4a
and 4c, p. 1839. Copyright 2012 by Wiley Periodicals, Inc.

Figure 13. Temporal coding in diverse brain regions. In each panel, the average firing rates of many cells from
a particular brain region during a delay interval are shown. Each row is the firing rate of one neuron averaged
over trials with white indicating high firing rate and black indicating low firing rate. The neurons are numbered
such that cells that fire earlier during the delay are at the top of the figure and neurons that fire later in the delay
are at the bottom. Many cells fire for some circumscribed interval of time within the delay. The times at which
those cells peak are distributed smoothly across the delay interval. Cells that fire later in the delay show a wider
spread in their activation. a: Neurons in the rodent hippocampus during the delay of an object memory task.
Reanalysis of MacDonald, Lepage, Eden, and Eichenbaum (2011). b: Medium spiny neurons recorded from the
ventral striatum of monkeys during the delay of a classical conditioning task. Replotted from Adler et al. (2012).
c: Neurons from the rodent medial prefrontal cortex during the delay period of an interval discrimination task.
Reanalysis of Kim, Ghim, Lee, and Jung (2013) performed by Z. Tiganj (personal communication, April 15,
2014).
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outcome. The medium spiny neurons show several properties
predicted for cells participating in T. First, different cells respond
at different latencies after the stimulus. Second, the temporal
spread in the firing of cells increases with the latency at which they
respond. Finally, although Adler et al. (2012) did not analyze the
individual stimuli separately, they did show that medium spiny
neurons responded differently on trials with different outcomes.

Kim et al. (2013) showed evidence for time cells in the rodent
PFC during performance of a temporal discrimination task. The
rats were required to wait in a circumscribed region of a T-maze
for some delay. If the delay was shorter than a criterion, a left turn
resulted in reward; if the delay was longer than a criterion, a right
turn resulted in reward. Figure 13c shows the firing rate of a subset
of the neurons that fired during the delay interval. Again, this set
of neurons showed peaks of firing that covered the entire delay
interval, and firing fields that spread out with the delay. Intrigu-
ingly, the distribution of the peak firing times was not uniform
(note the curved rather than linear ridge in Figure 13c), qualita-
tively consistent with a Weber-Fechner spacing. The width of the
temporal receptive fields was broader for cells that peaked later in
the interval (Z. Tiganj, personal communication, July 11, 2014),
qualitatively consistent with decrease in temporal accuracy with
delay in T.

While many additional experiments and analyses will be nec-
essary to determine if the “time cells” in various regions are
quantitatively consistent with the properties of cells supporting T,
it is striking that such similar results are observed in the hippocam-
pus, the striatum, and the medial PFC. The hippocampus is be-
lieved to be part of the declarative memory system (Squire, 1992;
Cohen & Eichenbaum, 1993), which is critically important for
episodic memory. The PFC is believed to be important in working
memory and executive control (Braver et al., 1997; Miller &
Cohen, 2001). The striatum, including the putamen, is usually
understood to be part of a nondeclarative habit learning memory
system (e.g., Knowlton, Mangels, & Squire, 1996; Squire & Zola,
1996) and believed to be critically important in a variety of timing
tasks (see Buhusi & Meck, 2005, for a review). Perhaps the
differences between the different memory systems can be under-
stood in terms of the different operations they make on a common
representation of internal time.

General Discussion

We constructed a series of behavioral models using a scale-
invariant representation of what happened when (Shankar & How-
ard, 2012, 2013). The results suggest that this representation, when
accessed and exploited with appropriate operations, is sufficiently
rich to describe performance in tasks from a variety of fields,
including working memory, episodic memory and conditioning.
We reviewed a growing body of neurophysiological evidence that
shows properties similar to those predicted for the representation
of an internal timeline in diverse brain regions believed to support
distinct memory systems. The behavioral models used here relied
on very distinct operations. For instance, whereas the JOR appli-
cation relied exclusively on scanning, the free recall application
did not, instead relying on matching and the recovery of a previous
state of temporal history. These findings suggest that a scale-
invariant internal timeline could provide the basis for a physical
theory that ties together many forms of memory.

Ordered Representations of Variables
Other Than Time

The method for constructing a scale-invariant internal timeline
(Shankar & Howard, 2012, 2013) can be generalized to construct
scale-invariant representations of variables other than time (How-
ard et al., 2014). In most of the behavioral experiments described
here, the data do not require an intrinsically temporal representa-
tion. For instance, in JOR experiments in which stimuli are re-
peated at a constant rate, the time since a stimulus was presented
is precisely confounded with the number of intervening stimuli.
Indeed, interference accounts of forgetting have a long history. An
interference-based account of forgetting can be constructed using
an ordinal representation.

To construct an ordered ordinal representation of past experi-
ence, it is necessary to alter the rate at which the leaky integrators
in the intermediate representation t(s) change.18 If the input is a
series of discrete stimulus presentations separated by various de-
lays, then in order to construct an ordinal representation, the
intermediate representation must not change except when a stim-
ulus is being presented.19 This causes the representation to remain
constant between stimulus presentations, advancing only when a
stimulus becomes available. The T constructed from this interme-
diate representation is an ordinal representation of what happened
in what order, ignoring the delays between stimulus presentations.
This representation still retains the property of scale-invariance.
Because it is still an ordered representation, it can still support
scanning.20

A quick survey of findings on time in memory suggests that
subjects can construct and utilize both temporal and ordinal rep-
resentations in different circumstances. Some results suggest that
memory should be sensitive to time per se. For instance Hintzman
(2004) presented subjects with a continuous absolute JOR task in
which the items were presented for different times. The ratings of
recency depended on the intervening time rather than the number
of intervening items. In contrast, there is evidence that temporal
gaps enhance item recognition (Morin, Brown, & Lewandowsky,
2010). In recall tasks, while there is evidence that free recall
performance is sensitive to temporal delays between list items
(Brown, Morin, & Lewandowsky, 2006), the recency effect is
unaffected by unfilled delay intervals (Baddeley & Hitch, 1977;
Murdock, 1963). In serial order memory, Lewandowsky, Ober-
auer, and colleagues have argued that temporal gaps have little or
no effect on short-term serial order memory (Lewandowsky &
Oberauer, 2009; Lewandowsky, Oberauer, & Brown, 2009; Ober-
auer & Lewandowsky, 2008, 2013), but this conclusion is not
universally supported (Lewandowsky, Nimmo, & Brown, 2008;
Morin et al., 2010).

18 More formally, it is necessary to change all the values of s in register
by setting s� � ����s.

19 More formally, set �(�) � |f(�)|.
20 By allowing the values of s to change in response to other variables,

this framework can also be used to construct scale-invariant representations
of other variables, including spatial position and numerosity (Howard et al.,
2014).
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Relationship to Previous Clock Models of
Timing and Memory

T provides a distributed representation of both what and when
information. In contrast, clock models keep track of time relative
to some starting point (Brown et al., 2000; Gibbon, 1977; Matell
& Meck, 2004). Clock models can be divided into models that
keep of track of time with a single counter versus models with a
distributed clock signal. The present method for representing in-
ternal time is more flexible than either of these classes of models
and is thus able to avoid conceptual problems that limit the
applicability of clock models of both types.

In counter models a counter keeps track of a set of pulses
accumulated over time (e.g., Gibbon, 1977). An advantage of
counter models is that they can be easily related to drift diffusion
processes (e.g., Luzardo, Ludvig, & Rivest, 2013; Simen, Balci, de
Souza, Cohen, & Holmes, 2011). A disadvantage of counter mod-
els is the difficulty in combining information about multiple in-
tervals. For instance, scalar expectancy theory, a widely used
model of timing and conditioning (Gallistel & Gibbon, 2000;
Gibbon, 1977; Rakitin et al., 1998), encounters a serious concep-
tual problem that is caused by the way time is represented
(Machado & Silva, 2007). Consider the following experiment. On
each trial, animals are rewarded either for the first response after
a short delay, say 10 s, or the first response after a long delay, say
120 s. When reward is omitted, animals show one peak of respond-
ing around 10 s and another peak around 120 s (Catania &
Reynolds, 1968; Leak & Gibbon, 1995). If one simply averaged
the counter values that obtain when a reward is delivered into a
common memory store, one would expect a unimodal peak some-
where between 10 s and 120 s. For scalar expectancy theory to
account for this result, there must be two memory stores corre-
sponding to the responses around the two time intervals. As
Machado and Silva (2007) pointed out, this is conceptually prob-
lematic: the system must have some way to know in which store to
place a given observation, which requires a way to discriminate the
intervals, which are identical except for their temporal content
(Gallistel, 2007).

Distributed clock models are not subject to this conceptual prob-
lem. If the clock setting is distributed across the activity of many
nodes, the combination of 10 s and 120 s can be a bimodal distribution
with a peak around 10 s and another peak around 120 s. However,
distributed clock models have other limitations. Consider how
OSCAR (Brown et al., 2000) would address appropriately timed
associations between a CS and US in trace conditioning. In OS-
CAR, the clock runs through a series of states, described by a set
of oscillators of different frequencies (Church & Broadbent, 1990;
Gallistel, 1990; Miall, 1989) that run independently of the stimuli
that are presented. In serial recall applications, the autonomy of the
memory representation has been considered to be a major advan-
tage over chaining models in which the internal state depends on
successful recall of previous list items (Burgess & Hitch, 1999;
Farrell & Lewandowsky, 2002; Henson, Norris, Page, & Baddeley,
1996; but see Farrell & Lewandowsky, 2004; Hulme, Stuart,
Brown, & Morin, 2003; Solway, Murdock, & Kahana, 2012).
Because the internal states in OSCAR are autonomous of the
stimuli, one must decide to externally “restart the clock” to pro-
ceed through the same states as before. Suppose a CS is presented,
starting the oscillators, and then later a US is experienced in some

state of the oscillators. One could account for a CR if repeating the
CS later on causes a reset of the state of the oscillators. Then, the
oscillators will run forward autonomously and reach the same state
they were in when the US was presented, enabling one to predict
the arrival of the US. But what if there are two CS-US pairings that
have been learned? Suppose that CS1 is presented and before US1
arrives, CS2 is presented. At this stage, there are two choices. If
the oscillators run independently of CS2, then US1 can be pre-
dicted, but US2 cannot. Conversely, if the oscillators are reset by
CS2, then US2 can be predicted but US1 cannot.

The scale-invariant timeline used here resembles a clock model in
that following presentation of a stimulus, the system runs through a
series of states autonomously. However, the states caused by distinct
stimuli are themselves distinct. The state with CS1 a certain time in
the past need not overlap with the state with CS2 a certain time in the
past. In this respect, the model of internal past time used here has
much in common with spectral resonance theory (Grossberg & Mer-
rill, 1992, 1996). Because of this, there is no difficulty in simultane-
ously retaining information about the separate stimuli and thus cor-
rectly predicting both US1 and US2. That is, because T contains
conjunctive information about what and when, it can describe both
autonomous sequential dynamics following a stimulus as well as
account for causal relationships between memory cues and outcomes.
The autonomous dynamics provide the ability to learn temporal
intervals. However, the ability to learn and express causal temporal
relationships between stimuli, which are observed in episodic mem-
ory tasks (Kiliç et al., 2013; Schwartz, Howard, Jing, & Kahana,
2005), sets it apart from other recent models of episodic recall (Dave-
laar, Goshen-Gottstein, Ashkenazi, Haarmann, & Usher, 2005; Far-
rell, 2012; Grossberg & Pearson, 2008).

The benefit of conjunctive coding of what and when comes at a
cost. The number of nodes required to maintain a conjunctive
representation goes like the product of the number of nodes re-
quired to represent items and the number of nodes required to
represent different times.

In principle at least, neurophysiological results can resolve the
question of whether the brain contains a scale-invariant conjunc-
tive representation of what happened when.

Memory and Timing Across Longer Time Scales

In this article we have constructed models of behavior over labo-
ratory cognitive time scales—ranging from a few hundred millisec-
onds (short-term JOR) up to several hundred seconds (across-list
recency and contiguity effects in free recall). There is evidence that
memory manifests temporal effects over much longer scales—across
days, weeks, and months (Ebbinghaus, 1885/1913; Moreton & Ward,
2010; Rubin & Wenzel, 1996; Wixted & Ebbesen, 1997). Is it
reasonable to simply extend the timeline and construct models with
the same form? As far as the equations are concerned, there is no limit
to the range of time scales that can be addressed; the equations have
the same properties for time scales arbitrarily close to zero or time
scales that increase without bound. However, the time scales that can
be supported in the timeline are restricted by the time constants that
can be implemented in the leaky integrators t(s). While a reasonable
argument can be made that persistently firing neurons (e.g., Egorov,
Hamam, Fransén, Hasselmo, & Alonso, 2002) can be used to con-
struct time constants up to a few thousand seconds (Tiganj, Hasselmo,
& Howard, in press), it is hard to extend the same neurophysiological
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argument to longer time scales. However, even if one restricts the
timeline to only a few thousand seconds it is still possible to construct
behavioral models that exhibit gradual forgetting over much longer
time scales.

First, there are several other ways to introduce temporal effects into
behavioral models based on this representation without extending the
timeline. For instance, in this article we used the match between two
states of temporal history to drive behavioral effects. With the simple
assumptions used in this article, there would be no decrease in the
efficacy of A as a cue for B as the retention interval following
presentation of the pair increases. However, if matching was imple-
mented in an associative memory, then allowing synaptic weights to
decrease over time would cause the resulting behavioral model to
show a decrease in performance with increasing retention interval.
Similarly, the ability of a cue to cause the recovery of a previous state
of T could decrease over time.

Second, in the real world environmental context changes gradually
over very long time scales. Consider an experiment in which the
subject studies a list of words in one session and then returns after
either 1 week or 1 month for a test session. Consider the set of stimuli
present in the history at the moment the subject enters the laboratory
on the two sessions. Gradual changes in the environment outside of
the laboratory would lead to gradual changes in the similarity of the
timelines across sessions. There are likely to be correlations in the
semantic (Alvarez-Lacalle et al., 2006; Anderson & Schooler, 1991;
Doxas, Dennis, & Oliver, 2010) and visual stimuli (Sreekumar et al.,
2014) that the subject has experienced over weeks and months. For
instance, suppose that the subject listened to the news prior to the two
sessions. The topics covered in the news in the first session are more
likely to overlap with the topics covered in the second session if the
two sessions are separated by 1 day than if the two sessions were
separated by 1 month. Similarly with respect to visual experience, if
there was snow on the ground prior to the first visit, the probability
that there was still snow on the ground prior to the second visit is
higher if it was a week after the first visit rather than a month after the
first visit. One can construct similar arguments for many aspects of
experience (mood, songs on the radio, plotlines of TV programs, size
of a child, relationship status) that are likely to contribute to the
subjects’ experience at the time a controlled stimulus is presented.
These gradual changes in environmental circumstances could contrib-
ute directly to memory and forgetting. Similarly, recovery of episodic
details of real-life situations may enable us to evaluate the age of a
memory over months and even decades. For instance, if a subject
recovers an episodic memory of singing their baby to sleep, the
knowledge of the child’s birthday would enable the subject to eval-
uate the age of the memory without scanning across an internal
timeline extending years or decades into the past.

Conclusions

It has long been appreciated that there is a deep connection between
time and memory. We described a mathematical framework that
provides a mechanistic description of an ordered scale-invariant rep-
resentation of internal time. We showed that this framework is suffi-
cient to provide a concise description of fundamental behavioral
results from a variety of paradigms, including an account of JORs
over both short (Hacker, 1980) and longer laboratory time scales
(Hintzman, 2011; Yntema & Trask, 1963), recency and contiguity
effects in episodic memory (Glenberg et al., 1980; Kahana et al.,

2008), and temporal mapping from conditioning (Cole et al., 1995).
We reviewed neural evidence suggesting that the brain could imple-
ment something like this representation of internal time. Because of
the relatively close correspondence to neural data, this representation
could form the basis of a physical model of many aspects of learning
and memory.
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Appendix A

A Simple Self-Terminating Scanning Model Based on Sequential Access of Internal Time

The what-and-when representation T is a two-tensor with each
entry indexed by a stimulus dimension and a time-point �*. Fixing
a single value of �* gives a vector across stimuli—a what. We
assume that the subject can sequentially restrict attention to one
value of �* at a time starting from the present and extending
backward in time. At each step of the scan, this vector T��*� is
compared to the probe stimulus in the case of absolute JOR, or
each of the probe stimuli in the case of relative JOR. For simplic-
ity, we assume that there is no overlap in the representation of the
probe stimuli. Recall that the values of �* present in T are not
evenly separated but obey Weber-Fechner spacing.

Let us denote the scaled match of a probe to T��*� as pr��*�:

pr(�
*) � a � fA | T(�*) 	 , (A1)

where a is a free parameter, fA is the vector corresponding to probe
stimulus A and the �·	·	 notation here simply reflects the inner
product between two vectors. We assume that the instantaneous
probability of a search for probe stimulus fA terminating on T��*� is
given by pr��*�.
In a self-terminating scanning model, the decision terminates as
soon as one query terminates. Let us first consider only one probe
A. The probability that the query returns for the first time while
scanning at �* is given by

Pf(�
*) � 
1 � �

0

�*

Pf(�
*�) d�*�� pr(�

*) (A2)

This has the general solution

Pf(�
*) � pr(�

*)g(�*) exp
��
0

�*

pr(�
* � )g(�* � ) d�*��, (A3)

The function g��*� is the number density of the cells along the �*

axis, g��*� � dN
d�*

. Because the spacing of the �* axis is Weber-

Fechner, the number density goes like g��*� 
 |�*|
�1

. Equation A2

ensures that the integral of Pf is not greater than one, allowing the
integral to be understood as the probability that the query returns
useful information over the course of the scan.
When a is small relative to �A, the time in the past at which the
item was presented, then �0

� pr��*�g��*�d�* is much less than one
and Pf��*� � pr��*�g��*�. When �A is much less than a, then
�0

� pr��*�g��*�d�* is much greater than one. This means that the
probability of the search returning at least some information is
nearly one and more or less independent of �A. When �A is much
greater than a, the probability goes down like a/�A. When

g��*� � |�*|
�1

and �A �� a, the mean number of rows of T��*� that
must be scanned for the search to return goes up with log (�A).
In the absolute JOR task, we assume that the subject reports the number
of the node at which the search terminates. Because of the Weber-
Fechner spacing, the node number goes like log�	�*	�. In the relative
JOR task, we have two queries racing to be selected. Suppose we
have two probes, A and B. In this case, if we denote the probability
of first return for stimulus a as Pf,A��*�, and the probability of first
return for stimulus B as Pf,B��*�, then the probability of selecting
stimulus A while querying �* will be given by

PA(�*) � Pf,A(�*)�1 � �0

�* Pf,B(�*�) d�*�� (A4)

In order to generate predictions, all that is necessary is to pick a
value for the parameter a, put explicit values of T��*� given the
experimentally relevant delays �A and �B into Equation A1 and go
forward. Unfortunately, the resulting integrals cannot be calculated
analytically. Accordingly, we have estimated them numerically
using the R function integrate() in generating predicted re-
sults. The spacing between values of �* in the numerical integration
was set to .005; the upper limit of integration was set to three times
the longest lag.

(Appendices continue)
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Appendix B

Derivations of Quantities Used in Modeling Free Recall

Here we derive closed form expressions for the match between
two states of history at different points in a list of words. In order
to make the calculation analytically simple, we assume that there
is no overlap in the item representation of the words in the list and
that the representation of distractors neither overlap with one
another nor with the words in the list. In order to generate potential
recalls, we first calculate the match between the current state of
history and the state available when each word was encoded. The
primary difference between our treatment of the recency effect and
the contiguity effect is the state of history used to generate the
match. For the recency effect, the probe history is the state of T
when the recall test is initiated. For the contiguity effect, the probe
history incorporates the effects of the just-recalled word.

Recency: Computing the Match Between a State of
History and the Encoding History of a Word n Steps
in the Past

Let’s denote the list items by fn, where n denotes the position of
the item from the end of the list. Let the nth item be presented at
time �n. For simplicity, we shall take the time interval between
successive items to be a constant ��. We further assume that there
is a never-ending stream of stimuli, each presented with an inter-
stimulus interval of ��. This enables us to ignore edge effects.B1

The pattern T at the end of the list is T(�o) and the encoding
history prior to the presentation of the item fn is T(�n). This is
represented pictorially in the top of Figure B1.

At the time when an item is presented, only the columns
corresponding to preceding items contain information. This means
that only the predecessors of fn will leave an image in T(�n). As a
consequence, only the predecessors of fn contribute to the match
between the T(�o) and T(�n). Let’s denote the temporal history of

an item fn�m observed at time � as Tm��,�*�. The contribution of the
history from item fn�m to the match between the encoding history
of word n, at time �n and the test context, at time �o is then

An
m � � Tm(�o, �*) Tm(�n, �*) g(�*) d�* (B1)

The function g��*� is the number density of the nodes as a function
of �* (see Appendix A). Now, the match between the probe context
at time �o and the study context at time �n is the sum of the
contribution across all of the words that preceded n:

pn � � T(�n) | T(�o) 	 � �
m�1

�

An
m (B2)

The value of the coefficients An
m with g��*� � |�*|w can be calculated

analytically, although the calculation is somewhat involved. With
Weber-Fechner spacing, w � �1. It turns out that for any given n,
the summation of An

ms over all values of m converges only for w �
0. The value of pn when w � 0 is

pn � nw(��)(w�1) (B3)

The details of this calculation follow.
Detailed calculation of pn. The calculation of An

m follows an
analogous computation in Shankar and Howard (2012) closely (see
Equations 5.15–5.18 in Shankar & Howard, 2012). The only
difference here is that w � �1 with Weber-Fechner spacing rather

than w � 0 as assumed in that article. With g��*� � |�*|w, we find

An
m �

k(1�w)�(2k � 1 � w)

k!2 �(n ⁄ m)1�w(1 � n ⁄ m)k

(2 � n ⁄ m)2k�1�w 
(n��)(w�1)

(B4)

These coefficients are all finite and well defined except when both
m � n � 0. An important property to note is that for any nonzero
n, An

0 � 0, but for nonzero m, A0
m 
 0.

To compute pn for any given n, we have to sum over the contributions
from all its predecessors; that is, sum the coefficients An

m over all m. Note
from Equation B4 that for m �� n, An

m ~ m�w�1�. The summation will
converge for any w � 0 resulting in a finite pn, while for w � 0, the
summation will diverge. To obtain a qualitative functional form of pn, it
is convenient to approximate the summation by an integral.

B1 Because of the scale-invariance of the representation, this is a rea-
sonable approximation.

(Appendices continue)

Figure B1. Schematic showing how states of T are numbered for the
calculation of activations due to recency and contiguity. Top: Recency
calculation. Bottom: Contiguity calculation.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

51TIME AND MEMORY



pn ~ (n��)(w�1) �
m�1

� (n ⁄ m)1�w(1 � n ⁄ m)k

(2 � n ⁄ m)2k�1�w ¡

(n��)(w�1)�0

�
dm

(n ⁄ m)1�w(1 � n ⁄ m)k

(2 � n ⁄ m)2k�1�w

� nw(��)(w�1)�0

�
dz

z(w�1)(1 � z�1)k

(2 � z�1)2k�1�w (B5)

In the last step, m/n is relabeled as z. This integral converges for
all w � 0 and diverges for w � 0. Thus we see that for w � 0,
pn 
 nw(��)(w–1).

The effect of delay intervals on the PFR. Let the number of
distractor stimuli between two words be D � 1, making the total
time elapsed between the presentation of two successive words
(including the presentation of the first word) just D. Let us denote
the duration of the distractor interval after the last word in the list
and prior to the recall test as d. Now the positions of the list items
in the sequence of stimuli are (d � nD), where n is the word
number starting from the end of list. For the PFR, Equation 2
simplifies as

PFR(n) �
(d � nD)�b

�m (d � mD)�b
, (B6)

where the summation over m goes over all � words in the list.
In order to fit this expression to experimental data, we simply set

d and D to correspond to the experimental values. In continuous
distractor experiments, the delay between items is not repeated at
the end of the list. To get the delays in Equation B6 to correspond
to the experimental values, we let n in Equation B6 run from 0,
corresponding to the last word in the list, to � – 1, corresponding
to the first word in the list in continuous distractor experiments. In
final free recall experiments, the delay after presentation of an item
(consisting primarily of the recall period and the time between
lists) is repeated after the last item. To get Equation B6 to corre-
spond to the delays in the actual experiments, we let n run from 1,
corresponding to the last list in the session.

To describe final free recall, ideally we would sum over the
contributions from all items within each list and compare the
relative activations of different lists. However for the purpose of a
qualitative demonstration, we used an approximation. If all of the
� words in a list had precisely the same activation, then to calculate
the relative probability of recalling a word from the list it is
sufficient to treat the entire list as if it is a single item. To estimate
the probability of initiating final free recall with a word from list
n, we use Equation B6 with d and D chosen in accordance with the
experiment.

Contiguity Calculations

In order to calculate the contiguity effect caused by the recalled
item in isolation from the recency effect, let us now assume that a

lot of time has elapsed since the end of the study list and that one
item from the center of the list has just been recalled. Our aim is
to predict the probability that the other list items would be recalled
next as a function of the distance from the just-recalled word to the
potential recalls. Let the recalled item be labeled as 0, and let us
relabel the neighboring study list items by successive integers
(Figure 14, bottom). It will be necessary to keep track of the
activation for items that followed fo, namely, f�1, f�2, and so on,
separately from the activation of the items that preceded fo,
namely, f�1, f�2, etc.

Suppose that fo, the stimulus initially presented at time �o is
repeated (and remembered) at �r. In order to accommodate recov-
ery of the temporal history, we assume that when fo is repeated, we
momentarily alter the differential equation controlling t(s) as fol-
lows:

dt(s)

d�
� �st(s) � �t(�o, s) � �1 � ��f(�o) (B7)

Ordinarily, t evolves from moment-to-moment with 
 � 0 (Shan-
kar & Howard, 2012). The factor 
 must be less than one and
controls the strength of reinstatement of the previous temporal
history. When this new state of t(s) is operated on by Lk

�1, this
gives rise to two new components of T. One is the repetition of the
stimulus itself, weighted by 1 � 
 that enters at �* � 0 and triggers
the same sequence of activations in T it did when the item was
initially presented (except weighted by 1 � 
). The other is
� Lk

�1t��o�. This is the state T(�o) that was present just as fo was
originally presented. Note that immediately after �r, the former
component is not an effective cue for recall of any other list item.
That is because no item in the list was experienced with the
recalled item 0 s in the past. f�1 was experienced with the recalled
item �� seconds in the past. On the other hand, |T0	 is an effective
cue for other list items immediately after recovery. The match to
the encoding history for an item in the forward direction due to
|T0	 is given by pn � ��Tn	T0	, and in the backward direction is
given by p�n � ��T�n	T0	. Since it is the same amount of time
separation and item separation between T�n and T0 as between T0

and Tn, the prediction generated should be symmetric, meaning pn

and p�n are equal and are given by Equation B2. Hence immedi-
ately after the reinstatement of |T0	, the CRP should be symmetric
with

p�n � pn � � � Tn | T0 	 � ��
m�1

�

An
m (B8)

If we wait for some time following the context reinstatement,
the lag-CRP will become asymmetric favoring the forward direc-
tion. This happens because both T0 and the item representation
entering at �* � 0 evolve in time. First let’s consider the effect on
T0. Consider the state obtained by evolving T0 for a time � � r��.
Let us denote it by T0�r. Then the match for the nth item in the
forward and backward direction can be deduced to be

(Appendices continue)
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p�n � � � T�n | T0�r 	 � ��
m�1

�

An�r
m and (B9)

pn � � � Tn | T0�r 	 � � �
m�1�min(n,r)

�

A	n�r	
m (B10)

In addition, the pattern of activity in the T column corresponding
to the recalled item f0 will generate further asymmetry in the
forward direction because the activity in this T column only
matches the encoding history of items in the forward direction. The
match to item fn due to this activity is simply An�r

r when n � r and
is Ar�n

n when r � n. When r � 0, this quantity is zero, hence
immediately after the recall the CRP would still be symmetric, and
the asymmetry would grow with time. Combining the prediction

from this part along with the prediction from the reinstated context,
we have

p�n � � �
m�1

�

An�r
m and (B11)

pn � � �
m�1��

�

A	n�r	
m � (1 � �)A	n�r	

� (B12)

where � � min(n, r), the minimum of the numbers n and r.
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