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ABSTRACT: Episodic memory, which depends critically on the integ-
rity of the medial temporal lobe (MTL), has been described as ‘‘mental
time travel’’ in which the rememberer ‘‘jumps back in time.’’ The neural
mechanism underlying this ability remains elusive. Mathematical and
computational models of performance in episodic memory tasks provide
a specific hypothesis regarding the computation that supports such a
jump back in time. The models suggest that a representation of temporal
context, a representation that changes gradually over macroscopic peri-
ods of time, is the cue for episodic recall. According to these models, a
jump back in time corresponds to a stimulus recovering a prior state of
temporal context. In vivo single-neuron recordings were taken from the
human MTL while epilepsy patients distinguished novel from repeated
images in a continuous recognition memory task. The firing pattern of
the ensemble of MTL neurons showed robust temporal autocorrelation
over macroscopic periods of time during performance of the memory
task. The gradually-changing part of the ensemble state was causally
affected by the visual stimulus being presented. Critically, repetition of
a stimulus caused the ensemble to elicit a pattern of activity that
resembled the pattern of activity present before the initial presentation
of the stimulus. These findings confirm a direct prediction of this class
of temporal context models and may be a signature of the mechanism
that underlies the experience of episodic memory as mental time travel.
VVC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Theories of episodic memory postulate that the brain maintains a rep-
resentation of spatiotemporal context that changes gradually from
moment to moment (Tulving and Madigan, 1970; Kinsbourne and
Wood, 1975; O’Keefe and Nadel, 1978; Eichenbaum et al., 2007).
When an event is remembered, the state of spatiotemporal context is
recovered, leading to the experience of ‘‘mental time travel.’’ Episodic
memory exhibits two extremely robust temporal effects in the laboratory:
the recency effect and the contiguity effect. The recency effect describes

the finding that more recently presented items are bet-
ter remembered (Murdock, 1962; Glenberg et al.,
1980), while the contiguity effect refers to the finding
that when a stimulus from a list is remembered, mem-
ory for other stimuli nearby in the list is enhanced
(Kahana, 1996; Kahana et al., 2008). Recency and
contiguity are very general behavioral phenomena,
having been observed in a variety of recall (e.g., Ras-
kin and Cook, 1937; Howard et al., 2008) and recog-
nition tasks (e.g., Ratcliff and Murdock, 1976;
Schwartz et al., 2005).

There is a disconnect in the literature between cog-
nitive theories of episodic memory and neural circuit
models of the MTL. Cognitive theories focus on the
experience of mental time travel, which reinstates the
learning context, thereby causing the contiguity effect.
Neural circuit models of the MTL have focused on
forming direct inter-item associations between neurons
representing different stimuli active in short-term
memory (Mehta et al., 2000; Jensen and Lisman,
2005; Rolls and Kesner, 2006; Koene and Hasselmo,
2007). Direct inter-item associations can be formed
between stimuli separated in time if the cells activated
by the stimuli remain activated in a short-term mem-
ory after the stimulus is not longer available. Under
these circumstances, local synaptic plasticity could
support a contiguity effect; when one of the stimuli is
repeated, enhanced synaptic connections cause the cell
corresponding to the other stimulus to be reactivated.
If the neurons that represent stimuli that are simulta-
neously active in short-term memory become associ-
ated to one another, then this would be sufficient to
account for the existence of the contiguity effect (e.g.,
Kahana, 1996; Sirotin et al., 2005). Persistent activity
in short-term memory has long been proposed as an
explanation for the immediate recency effect (e.g.,
Atkinson and Shiffrin, 1968; Raaijmakers and Shif-
frin, 1980; Davelaar et al., 2005; Grossberg and Pear-
son, 2008).

Another stream of work in cognitive psychology
also accounts for recency and contiguity effects.
Retrieved temporal context models, which have been
widely applied in mathematical cognitive modeling
(Dennis and Humphreys, 2001; Howard and Kahana,
2002; Howard et al., 2005; Sederberg et al., 2008,
2011; Polyn et al., 2009), postulate a memory repre-
sentation that changes gradually over macroscopic
periods of time. Like short-term memory this gradu-
ally-changing representation of temporal context is
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caused by the previously presented stimuli and affected most
strongly by the most recently presented stimuli. However,
unlike short-term memory models, in retrieved temporal con-
text models, the contiguity effect is a result of a ‘‘jump back in
time.’’ A repeated stimulus need not cause the same input as it
did when it was first presented; a repeated stimulus can recover
the state of context that was available before it was initially pre-
sented. The recovered state is, in turn, a mixture of the inputs
caused by earlier stimuli weighted by their temporal proximity.

If it is physically implemented, the retrieved temporal context
approach requires that the state of the memory system should
change gradually over time and that these changes should be
caused by the stimuli presented. These predictions are shared
with short-term memory models. The unique predictions of the
retrieved temporal context approach are manifest when one con-
siders the comparison between the neural response caused by a
repeated stimulus and the neighbors of its original presentation.
If a gradually-changing memory state were a signature of a short-
term memory that contains stimuli, then the input caused by the
repeated stimulus would resemble the states of the short-term
memory following its original presentation, when that stimulus
was still active in short-term memory. The overlap between the
repeated state should decrease going forward from the original
presentation as that stimulus decays in short-term memory. How-
ever, if repeating a stimulus causes a jump back in time then the
state caused by the repeated stimulus will be similar to neighbor-
ing states in both the forward and backward directions. That is,
the signature of the jump back in time is that a repeated stimulus
recovers activity that was present before the original presentation
of the stimulus.

There is ample evidence for temporal autocorrelation in the
MTL that would be a signature of a gradually-changing repre-
sentation over various time-scales (Manns et al., 2007; Pastal-
kova et al., 2008; Paz et al., 2010; MacDonald et al., 2011;
Naya and Suzuki, 2011). There is also ample evidence for stim-
ulus-selectivity of MTL neurons in both human and animal
studies (Heit et al., 1988; Wood et al., 1999; Hampson et al.,
2004; Quiroga et al., 2005; Manns et al., 2007; Viskontas
et al., 2009; Naya and Suzuki, 2011), and evidence that stimu-
lus-selective firing is related to memory retrieval (Gelbard-Sagiv
et al., 2008). In a study of the free recall task, Manning et al.
(2011) found that when subjects free recalled a word from the
list, the pattern of activity observed in intracranial electrodes
resembled the pattern during study of preceding items. How-
ever, there are two important limitations of that study. First, it
is not clear whether the context reinstatement effect generalizes
to the level of units. Second, because the order of free recall is
unconstrained the study leaves open the possibility that the
neural state during retrieval of an item resembles the activity
associated with preceding items because those preceding items
were recalled shortly before the target word. There is as yet no
evidence, however, that repetition of a stimulus causes recovery
of prior neural ensemble states in the MTL that would be the
signature of a jump back in time. This article reports results
from single-unit recordings from the human MTL that address
this gap using a continuous recognition experiment. Because

the sequence of repetitions is under experimental control rather
than a consequence of the subject’s own retrieval strategy it
provides a better opportunity to assess the causal relationship
between repetition of a stimulus and the jump back in time.

METHODS

Patients

Four patients with pharmacologically resistant epilepsy for
whom extensive noninvasive evaluation failed to yield a single
epileptogenic zone participated in our study. To obtain localizing
information for potential curative resection, patients were stereo-
tactically implanted with 6 to 14 depth electrodes from a lateral
orthogonal approach aiming at targets selected using clinical cri-
teria. Following implantation, patients remained on the ward for
1 to 2 weeks, and were monitored for spontaneous seizures. The
four patients participated in a total of eight recording sessions
(see Table 1) during which they performed a continuous recogni-
tion task. All patients provided informed consent and every re-
cording session conformed to the guidelines of the Medical Insti-
tutional Review Board at UCLA. Single-unit analyses of the repe-
tition effect observed for a subset of these data have already been
reported (Viskontas et al., 2006).

Behavioral Task

Patients were shown pictures of unknown faces and places,
each stimulus repeated once, and asked to indicate whether or
not the picture had been previously presented: via button press,
patients were instructed to respond ‘‘no’’ to the first presenta-
tion of a given image and ‘‘yes’’ to the second. Pictures were
shown in four alternating blocks of 20 nonfamous faces taken
from the Stirling database (available at http://pics.stir.ac.uk)
and 20 unfamiliar indoor and outdoor places. All pictures were
black and white photographs and were presented for 2 s. The
distances between repeated stimuli varied quasi-randomly with
the constraint that the repetition of a stimulus took place
within the same block of 20 stimulus presentations in which
the first presentation of that stimulus took place. The patients

TABLE 1.

Number of Units for Each Recording Session

Patient number Session number No. units

371 1 44

2 45

3 22

373 1 45

2 29

378 1 38

380 1 24

2 23
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were able to reliably discriminate new from previously seen
stimuli and showed no trend toward a response bias (hit rate
5 0.82 6 0.07; correct rejection rate 5 0.83 6 0.07). Patients
participated in the task up to three times, with each recording
session separated by a minimum of 48 h. The image sets were
not randomized; that is, the first session for every patient con-
tained the same images, and each session following also used
the same stimulus set, albeit in a different order.

Stimuli within a block were presented in a quasi-random
order. It would be impossible to completely control all possible
relevant variables. For instance, it is necessarily the case that
the first stimulus shown in a block is new and the last stimulus
in the block is old. There is a general tendency for there to be
more old stimuli later in the block than earlier in the block. In
addition, the recencies that can be sampled at any one time
depend on the position within the block and the stimuli that
have been previously presented.

Recording Methods

At the tip of each intracranial depth electrode was a set of
nine 40 lm platinum–iridium microwires: the ninth microwire
served as a reference. It was stripped of insulation to allow sam-

pling over a wider anatomical region and had a lower imped-
ance than the other eight microwires, which provided possible
cellular signals. Anatomical locations of electrodes were verified
via postplacement MRI scans and images created by fusing CT
scans taken while electrodes were implanted with high-resolu-
tion MRI scans taken immediately before implantation (Fried
et al., 1999). Signals from each microwire were amplified (gain
5 10,000), digitally sampled at 27.8 kHz and bandpass filtered
between 1 and 6 kHz (Neuralynx, Tucson, AZ). Using the
spike separation algorithm wave_clus (Quiroga et al., 2004),
we isolated single- and multiunit activity during microwire
recordings. Single units were defined as waveforms with clear
refractory periods, that were of high amplitude (>100 micro-
volts), and had less than 1% of spikes occurring at less than 3
ms. As an additional check for noise, we plotted the power
spectral density using the times when spikes occurred for that
unit; putative cell activity showing significant amounts of 60
Hz power-line activity was excluded from further analysis. We
took steps to eliminate channels with gross changes in the dis-
tribution of voltages or signal-to-noise ratio over the course of
the recording session. All channels were visually inspected for
such changes. Figures 1a,b give an example of a channel that
was included and a channel that was rejected on the basis of

FIGURE 1. Extracellular recording. a and b. Selection of
channels. Voltage is shown as a function of time over the course
of the recording session for two channels. a. Channel 25 was con-
sidered viable. b. Channel 46 was not considered viable. It is
likely that channel 46 was contaminated by electrical noise that
was not biological in origin. c. Example of spike clustering. In
this case, three clusters were isolated from the channel shown on
the left. The panel on the far left shows all the waveforms for all

of the spikes recorded by that channel. The three clusters to the
right of that figure show the results of the algorithm. Cluster 1
was classified as a multiunit (8,097 spikes), whereas clusters 2 and
3 were classified to be single units. Note that the figures include
all of the instances of spiking throughout the recording session.
[Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]
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these criteria. Figure 1c shows an example of a channel that
was clustered into three units. These results were typical of the
units in our experiment. Each and every unit was observed and
evaluated by a human observer in addition to the clustering
algorithm.

Neural data Analyses

We computed the average firing rate for each unit in the 3 s
interval following each stimulus presentation event. The mini-
mum amount of time between presentation of stimuli, includ-
ing the time for the behavioral response, was 3.10 s, so there is
no chance that a single spike is counted as part of two separate
events. Let us refer to the firing rate on the jth event as fj. To
calculate the lag one regression coefficient for each cell and esti-
mate its responsiveness to the stimulus categories, we fit the
linear model

f j ¼ c þ /fj�1 þ b0~Xj þ ej ð1Þ

where Xj is a vector describing the category of the stimulus pre-
sented at event j and b0 are the coefficients estimated from that
fit. We refer to the fitted value of / as the lag one regression
coefficient (see e.g., Fig. 3a). Because information about subca-
tegory—male or female face, indoor or outdoor place—was
recorded we used all four categories in this regression. Using
just the broader categories of face versus place did not affect
the results of the analyses examined here in any significant way.

To compare ensemble similarities of event vectors, we z-
transformed each unit’s activity across events before taking a

weighted inner product. Referring to one ensemble vector
across units as ~v, and another as ~u,

Simð~v;~uÞ ¼ 1

N

XN

k¼1

1

r2
k

vk � lkð Þ uk � lkð Þ; ð2Þ

where k indexes the units, lk is the mean of the kth unit across
events, rk is the standard deviation of the kth unit across
events and N is the number of units in the ensemble for that
session. In addition to comparing event vectors, we also used
the similarity function, Eq. (2), to compare the subset of the
ensemble that was temporally autocorrelated.

Because of the variability in the number of units across re-
cording sessions (Table 1), we do not simply report means aver-
aged across sessions. Rather, the mean values report the average
across units. That is, for the purposes of doing statistics, each
unit was treated as a one-cell ensemble. Because recording ses-
sions from a particular patient were separated by at least 48 h,
we treated each unit as an independent observation.

RESULTS

Our analyses revealed a variety of findings. First we char-
acterize the tendency of many units to change their firing
gradually over macroscopic periods of time, on the order of
tens of seconds. Second, we describe the stimulus- and cat-
egory-specificity of recorded units. Finally we describe a conti-

FIGURE 2. MTL units show autocorrelated firing over macro-
scopic periods of time. a. Schematic of the behavioral task. Sub-
jects were presented with a series of pictures. For each picture, the
subject’s task was to indicate whether or not the stimulus had
been seen previously. There were four blocks of 20 stimuli. Stimu-
lus repetitions were within the same block and all stimuli within a
block were from the same category. The stimuli in blocks 1 and 3
were faces (schematically represented by letters); in blocks 2 and 4
were places (schematically represented by numbers). b. Representa-
tive units showing autocorrelated firing. For each unit, the upper
left shows a raster plot from each of the 80 stimulus events
aligned on stimulus presentation. The bottom left panel shows a

peristimulus time histogram. The upper right shows the firing rate
averaged across the 3 s post-stimulus for each event. The bottom
right shows some properties of the units, including the session
and unit, the brain region the unit was recorded from (hipp: hip-
pocampus; parahipp: parahippocampus; EC: entorhinal cortex).
The number ar(1) gives the magnitude of the unit’s lag one regres-
sion coefficient. Stim F gives the F statistic for an ANOVA evaluat-
ing stimulus type. With 3 and 74 degrees of freedom, values of
Stim F above 2.73 are significant at the 0.05 level. See text for
details. The Appendix shows similar plots for an additional 24
units that were classified as temporally-autocorrelated.
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guity analysis performed on the gradually-changing part of the
ensemble. To anticipate the results, units will show temporal
autocorrelation over tens of seconds. The contiguity analysis
will both rule out the possibility that the temporal autocorrela-
tion is solely a recording artifact and also demonstrate both for-
ward and backward contiguity effects, confirming a key predic-
tion of the retrieved context approach.

MTL Ensembles Change Gradually Over Time

A memory representation that changes gradually over time
should show evidence for temporal autocorrelation in unit fir-
ing. Informal observation of the firing of units across time
revealed evidence of strong temporal autocorrelation (Fig. 2b).
For many units, firing persisted for long periods of time. For
instance, the second unit shown starts firing at an elevated rate
after presentation of the stimulus on the 69th event and fires at
an elevated rate for the remainder of the session—more than
30 s. Similarly, the fourth unit shown appears to show a grad-
ual increase in firing rate from about event 22 to about event
60, events that are separated by more than 100 s, followed by
a gradual decrease in firing rate that takes about 10 events, or
more than 30 s. Autocorrelated units showed elevated firing in
the time before stimulus presentation suggesting they were not
simply responding to the just-presented stimulus.

Analysis of Single-Unit Autocorrelation

To quantify the autocorrelation across the behavioral session,
we first averaged the firing rate of each unit over the 3 s following

presentation of each stimulus. We then regressed firing rate across
events onto the firing rate from the previous event and the category
of the presented stimulus. The value of the lag one regression coef-
ficient provides a measure of the unit’s autocorrelation across
events. The distribution of lag one regression coefficients across
units was significantly greater than zero, mean 0.094 6 0.01,
t(269) 5 9.31, P < .001 (see Fig. 3a). We refer to units that had a
lag one regression coefficient significantly greater than zero (P <
.05) as temporally-autocorrelated units. Almost one quarter of all
units recorded (0.248) were classified as temporally-autocorrelated
units. The proportion of temporally-autocorrelated units in the
hippocampus, parahippocampal region, and entorhinal cortex far
exceeded the Type I error rate (0.05) and did not reliably differ
among those regions, v2 (2) 5 4.87, P > 0.05 (see Table 2). The
number of units in the amygdala classified as temporally-autocor-
related did not exceed the Type I error rate. The proportions of
autocorrelated units did not differ across sessions v2 (7) 5 7.03, P
> 0.4. We did not identify any other reliable differences between
brain regions in these analyses. Note, however, that we averaged
over 3 s intervals so that differences between regions that manifest
on shorter time scales would be invisible to us.

Ensemble Changes Across Blocks of Stimuli

To characterize the temporal sensitivity of the ensemble of
units, we constructed event vectors by taking the average firing
rate for each event across units. We then aggregated the ensem-
ble similarity between events as a function of the recency from
each event to its predecessors. For instance, comparison of the

FIGURE 3. Quantification of the temporal autocorrelation of
MTL ensembles. a. Distribution of lag one regression coefficients
across cells. The lag one regression coefficient indicates the degree
to which the firing of the cell at a stimulus event is predicted by its
firing on the previous event, after controlling for stimulus identity.
The distribution is significantly skewed in the positive direction.
Light-shaded region indicates cells categorized as temporally-auto-
correlated cells. b. MTL ensemble similarity reflected stimulus cate-
gory, recency within block, as well as block structure. Left: event
comparisons between different stimuli were aggregated as a function
of recency separately for comparisons involving events from the
same stimulus category (dark) or different categories (light). Mid-
dle: Ensemble similarity for all units was aggregated as a function
of recency collapsed into five bins. The bins were chosen such that
the largest absolute value of recency in each bin was 10, 20, 40, 60,
or 80. The average ensemble similarity in each bin is shown as a
function of the least recent event in each bin for within-category

comparisons (dark) and between-category comparisons (light). The
dashed lines connect recency bins that are separated by an entire
block of 20 stimuli from one category. **P < 0.005; ***P < 0.001.
Right: For example, the largest recency possible within a block of
stimuli from the same category is 19. A recency of 20 is not possi-
ble for comparisons of stimuli from the same category. A recency of
21 for a same category comparison requires that a block of stimuli
from the other category intervened between the two events. Simi-
larly, an across-category comparison with a lag of 40 is not possible.
c. Similarity of the ensemble for each event to preceding events
within block as a function of the recency of the preceding event.
For instance, comparing stimulus event 10 to stimulus event 3
yields a recency of 7. Pairs of events corresponding to the same
stimulus or to stimuli from different categories are excluded from
this analysis. All units were included in this analysis. In all figures,
error bars are 95% confidence intervals calculated across units.
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event corresponding to the presentation of the 10th stimulus to
the event corresponding to the 7th stimulus yields a recency of
23. Similarly, comparison of the event corresponding to pre-
sentation of the 10th stimulus to the event corresponding to
the third stimulus yields a recency of 27. For this analysis, we
excluded comparisons in which the events corresponded to pre-
sentation of the same stimulus.

There was a large effect of stimulus category and block of
the experiment on the ensemble response that coexisted with
the robust temporal autocorrelation effect.

Figure 3b shows similarity averaged across all units for each of
five recency bins. The first bin included recencies greater than
210. The second bin included 220 > r � 210. The borders
between the subsequent bins were 240 and 260; the last bin
contained r < 260. Ensemble similarity is broken out for com-
parisons between pairs of event of the same category excluding
events with the same stimulus (darker symbols), and among
pairs of events from different categories (lighter symbols). Both
within- and across-category comparisons showed a recency effect.
The ensemble similarity for across-category comparisons in the
first recency bin, including recencies 21 to 29 was significantly
greater than in the second recency bin, which contained recen-
cies 210 to 219, t(269) 5 2.03, P < 0.05. Even when control-
ling for the recency effect, there was a dramatic difference
among within- and between-category comparisons. In addition,
there was also an effect of category block. The dashed lines con-
nect points corresponding to bins that are separated by a com-
plete block of stimuli from one category. That is, because of the
blocked structure of the session, a recency of 219 for a within-
category comparison (the last event in a block compared with
the first event in that block) means that only events from the
same category intervene. A recency of 221 for a within-category
comparison (the first event of one block and the last event of
the previous block with the same category), however, requires
that a block of 20 events from the other category intervene. For
the within-category comparisons, there was a highly significant
difference between the bin with recencies 210 to 219 and the
bin containing recencies 221 to 240, t(269) 5 2.88, P <
0.005, but no difference between bins 4 and 5, t(269) 5 0.19.
Similarly, for the between-category comparisons, the difference
between bins three and four was highly significant, t(269) 5

5.49, P < 0.001.

Within-Block Temporal Autocorrelation

To isolate temporal autocorrelation from the effects of stimu-
lus category and block (which were also autocorrelated in time
due to the structure of the experiment) we restricted our atten-
tion to pairs of events within the same block. Because of the
blocked structure of the stimulus presentation, pairs of events
from the same block are necessarily from the same stimulus
category. As before, we excluded pairs of events corresponding
to the same stimulus. Figure 3c illustrates the results of this
analysis. The ensemble similarity of pairs of event vectors
decreased gradually as the time between the events increased. A
linear regression showed a significant effect of recency on en-
semble similarity, regression coefficient 0.006 6 0.001, F(1,17)

5 53.3, P < 0.001. The change over time was not simply due
to an elevated level of ensemble similarity for adjacent events.
A regression excluding recencies 28 to 21, focusing on just
recencies 219 to 29, still found a significant regression coeffi-
cient, 0.003 6 0.001, F(1,9) 5 5.64, P < 0.05. This analysis
sets a lower limit on the time scale of the change over time.
Because the similarity continued to decrease after recency 29,
this means that the ensemble continued changing reliably after
nine intervening stimuli, or a delay of more than 27 s.

MTL Ensembles Coded for Stimulus and
Category

Before turning to the contiguity analyses, we first character-
ize the sensitivity of MTL units to stimulus identity and cate-
gory. MTL ensembles exhibited robust stimulus and category
selectivity. Both of these properties were exhibited both by
units that did and that did not exhibit temporal autocorrela-
tion. The linear model used to assess lag one autocorrelation
also provided information about the responsiveness of the units
to the category of stimulus at each event. We categorized units
that showed an effect at the 0.05 level, F(3,74) > 2.73, as cate-
gory-selective. A total of 44/270 units were category-selective.
This greatly exceeded the Type I error rate, v2 (1) 5 70.1, P
< 0.001. Of the 44 category-selective units, 12 were also classi-
fied as temporally-autocorrelated. This proportion (0.27) did
not differ from the proportion of autocorrelated units among
units that were not category-selective (0.25), v2 (1) 5 0.05.

Because of the blocked structure of this experiment, the
category of the stimulus is confounded with the event num-
ber. As a consequence, comparisons that are recent are also
likely to be stimuli from the same category. In order to isolate
the effects of stimulus and category in relative isolation of
recency, ensemble similarities were aggregated as a function of
recency separately for (a) comparisons between presentations
of the same stimulus, (b) pairs in which both stimuli were
from the same category (faces or scenes) but were different
stimuli, and (c) pairs in which the stimuli were from different
categories. In order to assess the effect of these variables inde-
pendently of recency, we performed comparisons across pairs
of similarities with the same recency. These analyses yielded
several findings.

TABLE 2.

Number of Units and Number of Units That Showed Significant Tem-

poral Autocorrelation (t-Units) as a Function of the Anatomical

Region in Which They Were Located

Region t-Units Total Prop.

EC 19 98 0.19

PHG 25 73 0.34

Hipp. 20 72 0.28

Amyg. 3 27 0.11

EC, entorhinal cortex; PHG: parahippocampal gyrus; Hipp.: hippocampus;
Amyg.: amygdala.
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First, MTL ensembles distinguished individual stimuli.
Same-stimulus pairs were more similar than same category-
pairs, paired t-test across recencies, t(15) 5 3.18, P < 0.01.
Second, MTL ensembles captured information about properties
of the stimuli other than stimulus identity. The ensemble simi-
larity between same-category pairs was greater than for differ-
ent-category pairs, t(56) 5 13.9, P < 0.001. Because this com-
parison is across recencies, the difference cannot be attributed
to a confounding of recency and category structure.

We repeated these analyses for the units categorized as tem-
porally-autocorrelated, which we refer to as the temporally-
autocorrelated part of the ensemble, and the units that were
not categorized as temporally-autocorrelated. Robust stimulus
coding was not observed using this method in the temporally-
autocorrelated part of the ensemble, t(15) 5 0.46.

Note that a contiguity effect caused by the stimuli in the
temporally-autocorrelated part of the ensemble would make an
effect of stimulus identity harder to identify. If the effect of a
stimulus is spread across many events, the difference between
the event when the stimulus was presented and neighboring
events would be reduced. However, there was robust category-
specificity in the temporally-autocorrelated part of the ensem-
ble; similarity was greater for comparisons between same-cate-
gory event pairs than between different-category pairs, t(56) 5

5.02, P < 0.001. The temporally-autocorrelated part of the en-
semble also showed a large effect of block structure comparable
to that shown in Figure 3b, with a significant effect between
bins 2 and 3 for the within-category comparisons, t(66) 5

3.32, P < 0.005, and between bins 3 and 4 for the between-
category comparisons, t(66) 5 3.67, P < 0.001. The non-auto-

correlated part of the ensemble showed robust stimulus and
category selectivity. Across recencies, same-stimulus comparisons
showed greater similarity than did same-category comparison,
t(15) 5 4.55, P < 0.001. Similarly, within-category compari-
sons were more similar to one another than between-category
comparisons, t(56) 5 14.68, P < 0.001.

A Neural Contiguity Effect in the MTL
Ensemble

Artifactual accounts of the temporal autocorrelation require
that there be no causal relationship between the stimuli being
presented and the gradually-changing ensemble response. To
take one example, although the shape of action potentials
recorded extracellularly might change over time, leading to an
artifactual temporal autocorrelation in the ensemble response,
there is no reason to suspect that the specific identity of the
picture presented to the patient affects the shape of the action
potential. We undertook a contiguity analysis of the tempo-
rally-autocorrelated ensemble. The analysis allows us to
diagnose a causal relationship between the stimulus presented
and the gradually-changing response, ruling out artifactual
accounts of the temporal autocorrelation. It also enables us to
look for the neural signature of a jump back in time.

It does not make sense to ask about whether the neural sig-
nature of mental time travel is observed in units that do not
show temporal autocorrelation. Because our interest here is in
the temporally-autocorrelated part of the ensemble response,
we restricted our attention to the units classified as temporally-
correlated (lighter distribution in Fig. 3a). Not surprisingly, this

FIGURE 4. MTL ensembles show the neural signature of a
jump back in time. a. Recency analysis, as in Figure 3b, but re-
stricted to cells showing a significant lag one autocorrelation func-
tion. b. Contiguity analyses. Left: Similarity of the ensemble repre-
sentation during presentation of a repeated stimulus was compared
with preceding stimulus events. As with the recency analysis in a,
comparisons to stimuli from the other stimulus category were
excluded. Rather than aggregating the results as a function of
recency, results were aggregated as a function of lag, the difference
in serial position between the original presentation of the stimulus
and its neighbors. Note the comparison is always between an event
and another event that preceded it. Right: Contiguity analysis

using only the temporally-correlated units. Rather than a
smoothly decreasing function, as one would expect from a pure
recency effect, the results appear to correspond to a peak around
zero superimposed on a recency effect. Inset: a recency effect is
shown with a contiguity effect. c. Analysis in (b) repeated after
subtracting out the part attributable to the recency effect. The
results show a robust contiguity effect, with significant effects of
|lag| in both the forward and backward directions. For all panels,
error bars are 95% confidence intervals calculated across units and
solid lines are the result of a LOESS locally-weighted least squares
spline regression.
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temporally-autocorrelated ensemble showed robust autocorrela-
tion as revealed by the recency analysis (Fig. 4a). Because the
experiment includes repeated presentations of the same stimu-
lus, we can examine the degree to which the ensemble responds
to that particular stimulus. Because we are interested not in
stimulus-selectivity per se but the degree to which the tempo-
rally-autocorrelated activity is caused by the stimuli, we exam-
ined the degree to which the response to a repeated stimulus
resembles the neighbors of its original presentation. In order to
avoid artifactual category-specific contiguity effects, we re-
stricted our attention to pairs of events within the same
block—these were necessarily from the same category. The left
part of Figure 4b describes this schematically. For each repeated
stimulus, we compared the ensemble activity for that event to
preceding events from the same block and aggregated the
results, not as a function of the recency of the comparison, but
as a function of the lag between the earlier event and the initial
presentation of the repeated stimulus.

Figure 4b shows the results of the contiguity analysis con-
ducted on the temporally-autocorrelated part of the ensemble.
Visually, the results are just as we would expect if it were the
combination of a recency effect due to ongoing activity with a
contiguity effect superimposed on top of it (inset). The recency
effect is visible in the overall tendency for the curve to rise
from left to right. The apparent boost in the similarity to the
neighbors of the original presentation of the repeated item
around lag 5 0 is consistent with a contiguity effect. To statis-
tically remove the recency effect, we estimated the results of the
contiguity analysis we would have obtained if recency were the
only factor causing ensemble similarity.

The strategy of this analysis was to directly estimate the way
the ensemble similarity as a function of lag (Fig. 4b) would
look if it were due only to the empirically-observed recency
gradient and then subtract that estimate from the actual curve.
The difference between the actual curve and the one expected
on the basis of recency ought to be attributable to the input to
the ensemble caused by the most recently presented stimulus.
The method thus enables a comparison of the input caused by
the repeated stimulus to the neighbors of its original
presentation.

The method starts by estimating the recency gradient iso-
lated as far as possible from contiguity effects. To do this, we
took the comparison between all pairs of events where the later
event was a stimulus presented for the first time and the previ-
ous event was from the same block of stimuli. We then aggre-
gated these ensemble similarities as a function of recency to
compute a recency gradient. This recency gradient closely
resembled Figure 4a (see Fig. A1a). The next step used this
recency gradient to estimate the part of the contiguity effect
solely attributable to recency. To do so, we took the same pairs
of events as used in the contiguity analysis. However, rather
than aggregating the observed ensemble similarity between
those events as a function of lag, we aggregated the value of
the recency gradient corresponding to the recency between the
two events being compared as a function of lag. This measure

uses the cleanest estimate of recency independent of stimulus
repetitions available to us and controls for the actual distribu-
tion of recencies sampled in the contiguity analysis. Because
the ensemble similarities get very noisy around the edges (note
the size of the error bars for extreme values of lag in Fig. 4b)
we focused our attention on the central region of the contiguity
analysis.

Figure 4c shows the difference between the observed ensem-
ble similarity (Fig. 4b) and the estimate due to the recency gra-
dient (the results of this intermediate step can be found in Fig.
A1b). First we note that if the temporal autocorrelation in the
ensemble response were solely caused by uncontrolled variables
or recording artifacts, this would require that the curve in Fig-
ure 4c be flat. This prediction was falsified. An ANOVA with
|lag| as a regressor and direction (forward vs. backward) as a
categorical variable yielded a main effect of the absolute value
of lag, F(1,18) 5 13.1, MSe 5 0.0081, P < 0.002, definitively
demonstrating that the autocorrelation in the ensemble cannot
be solely caused by random variation independent of the iden-
tity of the stimuli.

Figure 4c also enables us to examine the similarity of the
input caused by the repeated item to the neighbors of the origi-
nal presentation in the region around lag 5 0. Consider first
what we would expect if the temporal autocorrelation was a
consequence of a short-term memory acting as a container to
holding recently-presented stimuli for an extended period of
time. In this case, the input caused by the stimulus would be
the same across presentations. We would expect to see a boost
in similarity falling off as a decreasing function of lag in the
forward direction but no effect of lag in the backward direc-
tion. In contrast, if the repeated stimulus caused a ‘‘jump back
in time’’ by retrieving information available before the original
presentation of the stimulus, then ensemble similarity will
decrease with increasing |lag| in both the forward and backward
directions. The decrease in the backward direction would imply
that the repeated item caused a recovery of information avail-
able before its original presentation.

The ANOVA did not show a main effect of direction, F(1,18)

5 1.64, MSe 5 0.001, nor an interaction between contiguity
and direction, F(1,18) 5 1.18, MSe 5 7 3 1024. To analyze
the effect of contiguity separately in the forward and backward
directions, we conducted linear regressions. There was a signifi-
cant decrease in similarity as a function of |lag| in the forward
direction, 0.008 6 0.003, F(1,9) 5 7.04, P < 0.03, consistent
with both short-term memory and retrieved context accounts.
There was also a significant effect in the backward direction.
The regression of similarity onto |lag| produced a value, signifi-
cantly less than zero, 0.0042 6 0.0015, F(1,9) 5 7.48, P <
0.03. The results of the contiguity analysis are inconsistent
with what one would expect if the repeated stimulus were sim-
ply matching ongoing activity that was induced by its original
presentation. They are consistent with the hypothesis that repe-
tition of a stimulus causes a jump back in time by recovering
information that was available prior to the original presentation
of the stimulus.
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DISCUSSION

The contiguity effect is an extremely robust feature of epi-
sodic memory experiments (Kahana et al., 2008). One hypoth-
esis for the contiguity effect in episodic memory as mental
time travel requires that the brain maintains a representation of
the ‘‘now’’ that changes gradually from moment to moment. In
this view episodic memory for an event should be accompanied
by a jump back in time in which the previous event is recov-
ered. This account of the contiguity effect is distinguishable
from persistent stimulus activation coupled with direct inter-
item associations by a qualitatively different neural contiguity
profile. Our results show strong evidence that the MTL main-
tains a representation that changes gradually over time that is
not attributable to recording artifacts nor to uncontrolled ex-
perimental variables. These accounts would have predicted a
flat curve in Figure 4c. The backward effect in Figure 4c is not
predicted by persistent stimulus activation in short-term mem-
ory but is predicted by a jump back in time.

Is it Possible These Findings are Recording
Artifacts?

The unit isolation algorithms used here are consistent with
many prior studies (Ekstrom et al., 2003; Gelbard-Sagiv et al.,
2008; Viskontas et al., 2006, 2009). Nonetheless, the problem
of sorting spikes from many individual neurons recorded on a
single recording wire is a difficult one. There are two types of
unit isolation errors we should consider. In one type of error, a
single neuron could have spikes sorted into multiple units. If
whatever factors that favor one unit over the other are autocor-
related, then this type of error could result in an artifactual
autocorrelation. This artifact, however, could not account for
the stimulus-specificity, sensitivity of the ensemble to the block
structure, or the fact that the autocorrelated signal retains infor-
mation about preceding stimuli. In the other type of error,
spikes from multiple neurons are counted as belonging to one
unit. This type of error could lead to artifactual conjunctions
in the properties of units. For instance, if spikes from a stimu-
lus-specific neuron were counted as part of the same unit as an
autocorrelated neuron, we might incorrectly conclude that there
was an autocorrelated stimulus-specific cell. Because the iden-
tity of the stimulus affects the response to the neighbors of the
original presentation of the stimulus, the results of our contigu-
ity analysis is not subject to this type of artifact either. At least
one of the neurons contributing to the unit would have to
have the property that its activity is sensitive to the recent his-
tory of stimulus presentation.

Although artifacts may exist, the contiguity analysis provides
very strong evidence against the hypothesis that all of the tem-
poral autocorrelation in ensemble activity is due to artifactual
sources. The fact that the contiguity analyses resulted in curves
that are peaked around zero and fall off gradually, in both the
forward and the backward direction, means that there is a
causal relationship between the stimulus being presented to the
patient and autocorrelated ensemble activity. If this result were

an artifact, this would require that there is a causal relationship
between the particular stimulus being shown to the patient and
the shape of the spikes being recorded.

The contiguity analysis also rules out the possibility that the
temporal autocorrelation results from uncontrolled environ-
mental stimuli that are extended in time (Estes, 1955; Mensink
and Raaijmakers, 1988; Murdock, 1997). For instance, perhaps
a cell fired for part of the recording session because there was a
fan or other environmental sound that was present only during
that part of the session. A number of mathematical and com-
putational models of memory postulate a memory representa-
tion that changes gradually from moment to moment in a way
that is more or less independent of the stimuli presented (e.g.,
Estes, 1955; Mensink and Raaijmakers, 1988; Murdock, 1997;
Burgess and Hitch, 1999; Brown et al., 2000).

How Does the MTL Accomplish a Jump Back
in Time?

The present results imply that the MTL responds to stimuli
over long periods of time and that repetition of a stimulus ena-
bles the MTL to partially recover its previous state. While nec-
essarily speculative, it is worth thinking about how these two
functions might be accomplished.

The long-term temporal autocorrelation could result from ei-
ther network properties or intrinsic cellular properties that lead
to persistent firing in response to a transient input. An exten-
sive and growing body of work from slice preparations suggests
that neurons in many parts of the MTL are equipped with a
variety of intrinsic mechanisms that enable them to show per-
sistent firing over long time scales in the absence of synaptic
input. Such cells have been observed in the entorhinal cortex
(Egorov et al., 2002; Fransén et al., 2006; Tahvildari et al.,
2007), lateral amygdala (Egorov et al., 2006), postsubiculum
(Yoshida and Hasselmo, 2009), perirhinal cortex (Navaroli
et al., in press), and hippocampus (Sheffield et al., 2011). Simi-
lar phenomena have been observed outside of the MTL in the
anterior cingulate cortex (Zhang and Seguela, 2010) and pre-
frontal cortex (Sidiropoulou et al., 2009). Some of these mech-
anisms appear dependent on acetylcholine (Egorov et al., 2002;
Tahvildari et al., 2007; Yoshida and Hasselmo, 2009; Navaroli
et al., in press); others do not (Yoshida et al., 2008; Sheeld
et al., 2011). These findings from slice preparations indicate a
variety of intracellular mechanisms in a number of different
MTL structures that lead to autocorrelation over long periods
of time. This suggests that autocorrelation over macroscopic
periods of time is an essential aspect of MTL function.

If there is a gradually-changing representation of recent expe-
rience accessible to the MTL, this naturally raises the question
of how it could be recovered to implement a jump back in
time. For decades, researchers have noted that the structure of
the hippocampus, in particular the recurrent structure of CA3,
could be used for autoassociative pattern completion (Marr,
1971; McNaughton and Morris, 1987; Hasselmo and Wyble,
1997; Norman and O’Reilly, 2003). The basic idea is that dur-
ing encoding, recurrent synapses are enhanced between coactive
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neurons. When a subset of the active neurons are reactivated
during retrieval, these strengthened connections enable reactiva-
tion of the remainder of the neurons that were active during
encoding. Of course, the pattern that is completed depends on
the nature of the representation that provides input to the hip-
pocampal region. If the representation in extrahippocampal
MTL regions is temporally-autocorrelated, then pattern com-
pletion of such a gradually-changing pattern would seem to be
sufficient to account for neural contiguity effect we observed
here. At each moment, the current state of the gradually-chang-
ing representation is updated with input caused by the present
stimulus. At any moment, inputs caused by multiple preceding
stimuli are available. Suppose that when a particular stimulus is
repeated, this result in pattern completion of the gradually-
changing pattern that was present when it was initially experi-
enced. This recovered pattern resembles the states that preceded
the original presentation of the stimulus in a way that falls off
with distance from the original presentation. In addition,
because the recovered state—and any stimulus-specific pattern
that is recovered—will also resemble states that followed the
initial presentation of the stimulus. The degree of this resem-
blance will fall off with the distance from the original presenta-
tion of the stimulus.

The present result, coupled with extensive behavioral model-
ing of recency and contiguity effects in episodic memory tasks
(e.g., Howard et al., 2009a,b; Polyn et al., 2009; Sederberg
et al., 2008, 2011), suggest a proximal target for computational
neuroscience models that aspire to describe MTL-dependent
cognition. This work suggests that understanding the cellular
and network mechanisms that support temporal autocorrelation
and the recovery of gradually-changing MTL representations is
central to understanding the cognitive function of the MTL.

What is Being Retrieved?

Retrieved temporal context models hypothesize that the
input caused by a stimulus changes across presentations to
reflect the temporal contexts in which it has been experienced.
While we did observe strong evidence that the autocorrelated
ensemble activity is causally affected by the stimuli and reflects
the category membership of the stimuli, we cannot determine
with certainty from these data whether the change in the en-
semble activity caused by the initial presentation of a stimulus
had any relationship to the particular stimulus shown. A statis-
tically reliable asymmetry in Figure 4c would have been evi-
dence that the input to the autocorrelated ensemble during the
initial presentation was caused by the stimulus. Because we did
not observe such an asymmetry, it is possible that during the
initial presentation of a stimulus MTL activity changed due to
random processes; this random state could have been subse-
quently recovered by the repeated item.

At minimum our results show that the input caused by a
repeated item reflects the temporal context in which it has been
presented. This finding is consistent with neurophysiological
findings showing that stimulus representations in the MTL and
inferotemporal cortex do in fact change over time to reflect the

temporal cooccurrence of stimuli (Miyashita, 1988; Naya et al.,
2001). Indeed, a recent fMRI study showed that activation in
the parahippocampal cortex responds not only to the visual cat-
egory of the scene shown, but also to whether it is presented in
the same temporal context in which it was previously experi-
enced (Turk-Browne et al., unpublished data). Carried to the
extreme with many presentations of a stimulus in a variety of
temporal contexts over a statistically rich learning environment,
this process could result in the learning of useful semantic rep-
resentations (Rao and Howard, 2008; Howard et al., 2011).

Time-Scale of Autocorrelation

Recency and contiguity effects have been observed over time
scales considerably longer than the tens of seconds we were able
to measure reliable autocorrelation in this experiment (Howard
et al., 2008; Unsworth, 2008; Moreton and Ward, 2010). The
results from this experiment, however, do not place a strong con-
straint on the upper limit of the time-scale of the autocorrelation
of the ensemble representation. The experimental methods
impose two time scales. If there was autocorrelation caused by
the stimuli at a time scale faster than 3 s, the presentation rate of
the stimuli, it would have been invisible to these analyses. Simi-
larly, autocorrelation on the scale of the blocks of stimuli (on the
order of a minute) could have easily been confused with respon-
siveness to the stimulus categories. Nonetheless, the present anal-
yses suggest that the MTL maintains information over at least a
few dozen seconds. Although our data analyses assume that the
ensemble changes over time they do not uniquely support a par-
ticular mathematical form of the change. It is also possible that
the MTL is maintaining a representation of the recent past in
which cells are responding to prior history at a delay (Grossberg
and Merrill, 1992; Hasselmo, 2007; Shankar and Howard,
2012). Indeed, MacDonald et al. (2011) have shown evidence
that hippocampal pyramidal neurons encode the time since pre-
sentation of a nonspatial stimulus.

Jumping Back in Time in Other Brain Regions

While the present study showed evidence for the neural sig-
nature of a jump back in time in the medial temporal lobe,
this does not preclude the possibility that similar results could
be observed in other brain regions. In particular, it has been
suggested that the neural representation of a gradually-changing
state of temporal context should reside in prefrontal cortex
(Polyn and Kahana, 2008). Given the strong reciprocal func-
tional connections between the MTL and the PFC (Simons
and Spiers, 2003; Siapas et al., 2005; Anderson et al., 2010),
this is not at all contradictory to the hypothesis that the MTL
maintains and recovers a gradually-changing representation of
temporal context (Howard et al., 2005).

A recent study that examined evidence for a neural contigu-
ity effect in electrodes distributed throughout the brain found
strong evidence for a neural contiguity effect in the temporal
lobe but did not find evidence for a neural contiguity effect in
other regions. Manning et al. (2011) recorded from patients
implanted with intracranial electrodes while they freely-recalled
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from lists of high-frequency words. They compared the oscilla-
tory components in the time period just before recalling an
item to the states during the study of the neighbors of that
item, demonstrating a neural contiguity effect not unlike the
one observed in the present study. Notably, when considering
electrodes from the entire brain, they established a significant
association between the behavioral contiguity effect and the os-
cillatory contiguity effect. These effects were also observed
when they restricted their attention to the temporal lobe
(including MTL sites). Frontal lobe electrodes showed a trend
towards an effect but it did not reach significance.

There is other evidence that suggests that there is a special
role for the prefrontal cortex in temporal context memory.
Neuropsychological findings indicate that frontal lesions prefer-
entially affect temporal order judgments (Shimamura et al.,
1990; McAndrews and Milner, 1991). Jenkins and Ranganath
(2010) presented fMRI results suggesting that there is a gradu-
ally-changing representation in prefrontal regions that is associ-
ated with success on a judgment of recency task that depends
on subjects’ ability to remember the time at which an item was
presented. That study also found that activation in the parahip-
pocampal cortex and bilateral hippocampus was correlated with
success on temporal ordering tasks. One possible way to recon-
cile these findings with the present result is that a gradually-
changing representation of the past is maintained in both PFC
and the MTL but recovery of prior states depends on the
MTL. Perhaps performance in judgment of recency tasks
requires detailed examination of the present state rather than
recovery of a past state. Perhaps the ability to scan through cur-
rent and recovered memory states (Hacker, 1980; Chan et al.,
2009) depends critically on subregions of the PFC.

Accommodating the Present Results in Neural
and Cognitive Models of Memory

Although the results of the contiguity analysis are not pre-
dicted by identification of the MTL ensemble with persistent
stimulus-specific activation, our findings could be accommo-
dated within existing mathematical cognitive models of short-
term memory. For instance, in the search of associative memory
model (SAM, Raaijmakers and Shiffrin, 1980), associations in
long-term memory are formed between items that co-occur in
short-term store. If the rules describing the contents of short-
term store were altered to reflect those associations, such that
repetition of a stimulus caused not only reactivation of that
stimulus in short-term memory, but also activated associated
stimuli, then the contents of short-term memory would show
the backward contiguity profile seen in Figure 4c. It is possible
that this conceptual change could represent a significant neuro-
computational challenge to neural circuit models of short-term
memory. If persistent activity in short-term memory reflects re-
verberatory activity via recurrent connections (Durstewitz et al.,
2000; Wang, 2001), then directly changing inter-item weights
within short-term memory could also affect the stability of
those attractor states thus affecting the stability of short-term
memory. In any event, by modifying the conception of short-

term memory in this way, our neural results could be accom-
modated, but at the cost of being able to conceptualize short-
term store as a container that holds representations of stimuli.
Put another way, the present results could be accommodated
within models of short-term memory by making short-term
memory less like a container that holds recently-presented stim-
uli and more like a gradually-changing memory representation
that jumps back in time when a stimulus is repeated.

It is also possible to account for the results of our analyses
by arguing that they reflect the recovery of information from
long-term memory rather than persistent activation of stimuli
in short-term memory (which may take place outside of the
MTL). This position is not falsified by our findings, but there
are several considerations worth mentioning. First, this position
would nonetheless have strong implications for neural circuit
models of the MTL that focus on direct inter-item associations
rather than a jump back in time (Lisman, 1999; Mehta et al.,
2000; Rolls and Kesner, 2006; Koene and Hasselmo, 2007).
Second, there is no task requirement for retrieval of associations
from long-term memory in item recognition. Although conti-
guity effects can be observed in item recognition (Schwartz
et al., 2005), they are considerably more subtle than in recall
tasks that explicitly tap the associations made between study
words. If it turns out that effortful retrieval of associations
from long-term memory is not necessary to observe a neural
contiguity effect, then this would argue against this view.

Recent mathematical and neurocomputational models of
item recognition in long-term memory (e.g., Shiffrin and
Steyvers, 1997; Norman and O’Reilly, 2003) would also not
account for the neural contiguity effect without significant
modification. For instance in the retrieving effectively from
memory (REM) model (Shiffrin and Steyvers, 1997) of item
recognition, a probe item is compared with each trace in long-
term memory in leading to a recognition decision. Even if the
model were elaborated such that traces included the contents of
short-term memory, then the match of an old probe to neigh-
boring study traces would not exhibit the bidirectional contigu-
ity profile we observed (Fig. 4c), showing instead only a for-
ward effect. However, if an old probe caused reactivation of the
trace that was formed when that stimulus was originally pre-
sented, this would account for the backward effect. This is so
because the study trace would include information from
recently-presented stimuli; the recovered study trace and would
thus overlap with traces that preceded initial presentation of
the stimulus. This elaboration of the model would exhibit the
bidirectional contiguity profile we observed. Similarly, the Nor-
man and O’Reilly (2003) model as published would not
account for the neural contiguity effect but could be elaborated
to do so. According to Norman and O’Reilly (2003) the recol-
lective process in recognition memory results in recovery of a
specific trace, enabling the recovery of temporally-defined asso-
ciations. However, in their simulations of item recognition,
only a single item was available in the entorhinal cortex input
to the hippocampus at one time. The Norman and O’Reilly
(2003) model could be altered to account for our neural conti-
guity findings by assuming that the representation in entorhinal
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cortex that provides input to the hippocampus changes gradu-
ally over time reflecting information from several recently-pre-
sented stimuli. This entorhinal representation would change
gradually over time and the input caused by a stimulus would
change from one presentation of the stimulus to another. Nota-
bly, in each of these cases, the modifications necessary to
account for our findings would move them closer to the con-
ception of episodic memory as a jump back in time to a previ-
ous state of a gradually-changing now.

CONCLUSIONS

Work from the behavioral human memory literature suggest
that the contiguity effect is a major component of episodic mem-
ory (Kahana et al., 2008; Sederberg et al., 2010). Modeling work
suggests that episodic memory is cued by a gradually-changing
representation of temporal context. In these models, the contigu-
ity effect is caused by a ‘‘jump back in time’’ by which a repeated
stimulus recovers the state of temporal context that was available
before its original presentation. We found evidence for both of
these predictions. The evidence for nonartifactual temporal auto-
correlation is strong. The ensemble response changed gradually
over tens of seconds and was causally affected by the identity of
the stimulus presented. The contiguity analysis showed a statisti-
cally reliable backward effect (Fig. 4c) confirming a prediction of
models that postulate that the contiguity effect results from a
jump back in time of a neural representation.

We sought evidence for a jump back in time by comparing
the ensemble state of a repeated stimulus to the states neighbor-
ing the original presentation of that stimulus. Manning et al.
(2011) used a similar strategy to analyze human ECoG during
performance of a free recall task. In principle at least, the same
gambit could be applied to data from a variety of tasks and de-
pendent measures, including fMRI data. The complexity of the
contiguity analyses used here was necessary to disentangle a large
recency effect from the contiguity effect. Future research should
disentangle recency from contiguity by, for instance, presenting
repeated stimuli after a long delay. In addition, behavioral meas-
ures distinguishing whether the repeated stimulus evoked an epi-
sodic memory would also be extremely useful establishing a rela-
tionship between the neural jump back in time and the cognitive
experience of episodic memory.
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APPENDIX: ADDITIONAL EXAMPLES OF
TEMPORALLY-AUTOCORRELATED UNITS AND
INTERMEDIATE STAGES OF THE CONTIGUITY

ANALYSIS

FIGURE A1. Intermediate stages of the contiguity analysis
shown in Figure 4. a. The recency gradient (an analog of Fig. 4a)
calculated separately according to whether the second event in the
pair corresponded to a stimulus presented for the first time (dark)
or a repeated stimulus (light). Note the slight change of scale com-
pared to Figure 4a. The location on the x-axis of the lighter points
is slightly offset for clarity. b. The estimate of the contiguity effect
(Fig. 4b) that results from using the recency gradient computed

when the second item is presented for the first time. Figure 4c is
computed by taking the difference between the observed ensemble
similarity (Fig. 4b) and this result. c. Same as b, but computed
with the recency gradient when the second event corresponds to a
repeated stimulus (light line in a). The choice of whether to use
the analysis in b or c did not have a dramatic effect on the results
of the contiguity analysis. The slight shoulder around zero in b
and c is a consequence of the non-uniform sampling of recencies.
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FIGURE A2. Additional examples of autocorrelated units. Format follows Figure 2b. Unit numbers, brain regions and various statis-
tics can be found in each panel.


