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• Traces themes established by stimulus sampling theory through subsequent memory models.
• Categorizes memory models according to the properties of the memory representations they generate.
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a b s t r a c t

Stimulus sampling theory (SST: Estes, 1950, 1955a,b, 1959) was the first rigorous mathematical model
of learning that posited a central role for an abstract cognitive representation distinct from the stimulus
or the response. SST posited that (a) conditioning takes place not on the nominal stimulus presented
to the learner, but on a cognitive representation caused by the nominal stimulus, and (b) the cognitive
representation caused by a nominal stimulus changes gradually across presentations of that stimulus.
Retrieved temporal context models assume that (a) a distributed representation of temporal context
changes gradually over time in response to the studied stimuli, and (b) repeating a stimulus can recover
a prior state of temporal context. We trace the evolution of these ideas from the early work on SST, and
argue that recent neuroscientific evidence provides a physical basis for the abstract models that Estes
envisioned more than a half-century ago.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Scientists working in mathematical learning theory wrote
down equations implementing elementary psychological mecha-
nisms. These mechanisms were then treated analytically to gen-
erate precise behavioral predictions for a variety of experimental
settings. Critically, the equations were not an exercise in simple
curve-fitting of behavioral data, but a concrete hypothesis about
how the mind learns. In retrospect, given what was known about
systems neurobiology in the 1950s, this was an audacious re-
search program. The brain has, in principle, a huge number of
degrees of freedom at its disposal to generate behavior. Writing
down correct expressions for the actual physical process support-
ing memory, given only constraints from behavioral data, seems
impossible. In this paper, we follow the implications of two key
insights introduced and formalized in stimulus sampling theory
(SST) through decades of subsequent memory modeling to con-
temporary findings from cognitive neuroscience. Even though it
must have seemed impossible in the 1950s, we argue that the re-
search program of mathematical learning theory has been largely
successful in describing essential features of neural data.Moreover,
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the key insights of SST were essential in setting the agenda for
these developments.

One key insight of SST is that the nominal stimulus – the light
or tone presented to the subject – is not isomorphic to the func-
tional stimulus. In Estes (1950), the nominal stimulus evokes a set
of ‘‘conditioning elements’’ that can be conditioned to a particular
response. In contemporary terms, we might say that the current
set of active conditioning elements is the state of a ‘‘memory rep-
resentation’’ at the time of the presentation of the nominal stimu-
lus. At each moment, the currently active memory representation
is conditioned to a response. At later times, the degree to which a
particular responsewill be evoked is determined by the overlap be-
tween the currently active memory representation and the stored
memory representation in which the response was learned.

The second key insight of SST is the concept that the memory
representation following one presentation of a stimulus changes
across different presentations of the stimulus. In much the same
way that one cannot step into the same river twice, in SST the func-
tional stimulus caused by different presentations of the same nom-
inal stimulus need not be identical.Moreover, in SST, the functional
stimulus caused by a particular nominal stimulus changes gradu-
ally across multiple presentations of the nominal stimulus (Estes,
1955a,b). This property enabled a treatment of a variety of phe-
nomena that involve sensitivity to temporal variables, such as for-
getting, spontaneous recovery, and the spacing effect.
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Fig. 1. Schematic for illustrating temporal structure. Models ofmemory can be distinguished by the similarity of thememory representations across three variables. First, do
the states after different presentations of D change over presentations such that the state at D3 is more similar to the state at D2 than to D1?We define the stimulus recency
between D3 and D2 to be −1; the stimulus recency between D3 and D1 is −2. Second, how does the state of memory vary across time around the presentation of a stimulus.
That is, is the set of cells active after presentation of G more similar to the representation after presentation of F than it is to the representation after E? We define recency
as the difference in serial position between two events. The recency between G and F is −1; the recency between G and E is −2. Third, how does repeating a stimulus affect
the relationships in the memory representation? This can be assessed by comparing the memory representation after D3 to the neighbors of a prior presentation of D, here
D2 . We refer to this variable as lag. The lag between D3 and D2 is defined to be 0. The lag between D3 and P is +2; the lag between D3 and N is −1.
In the simple conditioning experiments primarily considered
by SST, it was only necessary to consider one nominal stimulus.
In subsequent years, memory researchers considered more
elaborate verbal learning experiments in which many stimuli are
experienced and the categorical distinction between stimulus and
response is blurred. For instance, in a free recall experiment, the
subject might be presented with a list of 20 words presented one
at a time. After a delay, the subject’s task is to recall the words
from the list in the order they come to mind. The nominal stimuli
in this experiment are the sequence of words. But the concept of
the response is more ambiguous. Associations between strings of
recalls (see, e.g., Bousfield, 1953; Kahana, 1996; Pollio, Kasschau,
& DeNise, 1968) suggest that memory must include a network
of evolving associations between many stimuli that double as
their own response. These associations could be mediated by the
functional stimuli caused by each nominal stimulus.

SST specified how thememory representation following a stim-
ulus changes over time, but it did not specify how the rela-
tionships between memory representations following different
stimuli change as a function of the structure of experience.Wewill
see that subsequent mathematical models of memory distinguish
themselves from each other largely by how they respond to this
structure. We will review these models in Section 2, making ex-
plicit their concrete hypotheses about how memory representa-
tions change over time. If we could directly measure the similarity
betweenmemory representations at various times, these hypothe-
ses could be directly evaluated.

It is now possible to directly measure the similarity between
brain states at different times using a variety of methods. We
will discuss three such techniques. Functional magnetic resonance
imaging (fMRI) provides an estimate of the oxygenation of blood,
believed to be a correlate of neural function, at the spatial scale
of millimeters. The pattern of activation across many individual
voxels at different points in time can be compared to one an-
other. In human epilepsy patients, electrodes are often placed be-
low the skull for clinical reasons. In many cases these electrodes
are too large to record the activity of single neurons, but they can
nonetheless record meaningful signals believed to be associated
with aspects of cognition. When individual neurons cannot be re-
solved, oscillatory fluctuations in voltage can be recorded at differ-
ent anatomical locations. Finally, it is possible to record frommany
individual neurons using extracellular recording techniques.While
it is relatively rare to record at the level of resolution necessary
to identify individual neurons in humans, these methods are rou-
tinely applied in animal preparations. Extracellular recording can
be used to generate a vector of firing rate across neurons, either
simultaneously measured or inferred from many single neurons
recorded in identical experimental preparations. In each case these
methods give rise to a distributed pattern of activity across voxels,
or electrodes, or neurons. Each pattern of activity can be compared
to the pattern of activity at another point in time; one can construct
a scalar measure to characterize the similarity between states. The
similarity can be aggregated as a function of behaviorally relevant
variables and compared to predictions from mathematical mod-
els describing cognition (see, e.g., Kriegeskorte, Mur, & Bandettini,
2008). In Section 3, we review recent neuroscientific work that at-
tempts to address empirical questions about the nature ofmemory
representations raised by SST.

2. Dynamicmemory representations inmathematical memory
models

Prior to SST, many models of memory simply described the
strength of direct atomic associations between stimuli and re-
sponses. Modern memory models construct a description of a
memory representation that changes dynamically in response to
stimuli. This representation can be quite abstract (as in the SIM-
PLE model Brown, Steyvers, & Hemmer, 2007) or considerably
more concrete (as, for instance, in TODAM2Murdock, 1997). In this
section, we describe how the memory representations developed
by various mathematical memory models evolve over experience
with different stimuli and how these choices endow the models
with power to explain various behavioral phenomena. Although
these models are in all cases quantitatively implemented, we will
not focus on their precise mathematical form, focusing instead on
the qualitative changes in the memory representation caused by
different kinds of experience. So, for instance, we will not focus on
the difference between the context representation in the Mensink
and Raaijmakers (1988)model of interference and the context rep-
resentation in theMurdock (1997) TODAM2model. Although these
representations change over time according to different equations,
they share the property that they change gradually over time and
are independent of the stimuli presented.

Fig. 1 provides a schematic that enables us to illustrate three
distinguishable types of temporal relationship. Let us denote the
state of the memory representation when, say, stimulus A is pre-
sented as sA. First, we can consider how the state changes across
different presentations of a particular nominal stimulus. Consider
the three occurrences of D in Fig. 1. Indexing the three presen-
tations by a subscript, we can ask whether these representations
change gradually over time, or if they are independent of one an-
other. That is, if thememory states are independent, then sD1 ·sD2 =

sD1 · sD3 . In contrast, if the memory representation after presenta-
tion of the nominal stimulus D changes gradually over time, then
we would expect that sD1 · sD2 > sD1 · sD3 . We refer to the vari-
able describing the number of presentations of the same stimu-
lus as stimulus recency (Fig. 1). For instance, the stimulus recency
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between D3 and D2 is −1, whereas the stimulus recency between
D3 and D1 is −2. A decrease in the similarity of the memory rep-
resentation as a function of stimulus recency is a key feature of
SST (Estes, 1955a,b).

Second, we can ask what is the moment-to-moment change
in the stimulus representation as different stimuli are presented.
Rather than asking about different presentations of the same stim-
ulus, we can compare, for instance, sA to sB. We refer to the differ-
ence between serial positions of different stimulus presentations
as recency (Fig. 1). Referring to the list described in Fig. 1, the re-
cency of E to D1 is −1, whereas the recency between E and C is
−2. Note that it is logically possible that there could be an effect of
stimulus recency on the similarity of the states in amemory repre-
sentation but no effect of recency on memory states following the
presentation of different stimuli. We will see that a decrease in the
similarity of the memory representation as a function of recency
can be used to account for behavioral recency effects is predicted
by all three successors to SST that we consider.

There are many distinct mechanisms that predict an effect of
stimulus recency on similarity of the memory representation. We
need a third variable to distinguish among thesemechanisms. Thus
far, we have described two variables. Stimulus recency can be used
to describe the similarity of the memory representation following
successive presentations of the same nominal stimulus. Recency
can be used to describe the similarity of the memory representa-
tion following successive presentations of different nominal stim-
uli. It remains to describe the relationship between a repetition of
a nominal stimulus and the nominal stimuli surrounding its prior
presentation. We define a third variable, lag, to describe the rela-
tionship between a repetition of a nominal stimulus and the neigh-
bors of the previous presentation of that stimulus (Fig. 1). Referring
to Fig. 1, the lag between D3 and O is +1; the lag between D3 and
M is −2. We will see that predictions about the effect of lag on the
similarity of the memory representation distinguish successors of
SST from one another.

2.1. Stimulus sampling theory

In SST, a nominal stimulus evokes a set of conditioning elements
each time the nominal stimulus is presented. The idea is that there
is a large set of internal states that might follow presentation
of, say, a 500 Hz tone. These internal states are composed of
different combinations of ‘‘conditioning elements’’, which we can
think of as analogous to neurons. Across different presentations of
the tone, different states consisting of different combinations of
stimulus elements are activated. Critically, like neurons obeying
the Hebb rule, only the elements that are actually activated during
a particular presentation of the stimulus can be conditioned to
a response. In a testing situation, the nominal stimulus activates
some set of conditioning elements—only the elements that are
both activated at test and previously conditioned to the response
can cause a behavioral response. As a consequence, the correlation
structure among the different presentations of a nominal stimulus
have a tremendous effect on the behavioral predictions that the
model makes.

In the earliest versions of SST (exemplified by Estes, 1950),
the set of elements available after each stimulus presentation was
chosen independently of one another. That is, referring to the
currently active set of conditioning elements after presentation of
the ith presentation of nominal stimulus D as sDi , the assumption
is that E


sDi · sDj


is independent of the relationship between j and

i for j ≠ i. As the nominal stimulus is repeated, the probability
that a randomly chosen set of elements is conditioned to the
response increases, leading to a gradual (exponential) increase in
the proportion of active elements that have been conditioned to
the response. This gradual increase in the number of conditioned
elements specifies a learning curve. Similarly, this simple model
can account for the gradualness of extinction.

In later versions of SST, the memory representation following
a nominal stimulus changed slowly across presentations of that
stimulus. Estes (1955a,b) assumed that the population of active
elements available to be conditioned fluctuated over time, with a
probability that an active element would become inactive and a
probability that an inactive elementwould become active. Because
the active elements are no longer chosen independently, this
means that E


sDi · sDj


is a decreasing function of stimulus recency

−|i − j|.
The simple assumption of autocorrelation in the active stimulus

elements leads directly to a number of remarkable behavioral pre-
dictions. First, it provides an account of forgetting over time (Estes,
1955b). Imagine that an association has been rapidly learned such
that all of the active elements are conditioned to a response but
the inactive elements are not. Over time, the conditioned elements
will tend to fluctuate out of the active state, and unconditioned ele-
mentswill tend to fluctuate into the active state. As a consequence,
the more time that has elapsed since learning an association, the
smaller the number of active conditioned elements, and thus the
lower the probability of a behavioral response. Using similar rea-
soning, one can also account for spontaneous recovery. Suppose
that after extensive learning the set of all active and inactive el-
ements had been conditioned. Now, the active elements are un-
learned by extinguishing the response. Immediately after extin-
guishing, all of the active elements are unconditioned; over time,
inactive elements that are still conditioned fluctuate into the active
state, causing a recovery of the response. The simple assumption of
stimulus fluctuation also provides a natural account of the spacing
effect (Estes, 1955a), the very general finding that memory at long
time delays is better if repeated practice is spaced out in time (see,
e.g., Cepeda, Pashler, Vul, Wixted, & Rohrer, 2006).

The Estes (1950) formulation of SST differs from the Estes
(1955a,b) formulation in the autocorrelation of the active stimulus
elements as a function of stimulus recency. If the Estes (1950)
formulation is correct, there would be no effect of stimulus
recency, because the activated set is chosen independently each
time the nominal stimulus is shown. In contrast, the Estes
(1955a,b) version predicts decreasing similarity as a function of
stimulus recency. The schematic pattern of results for stimulus
recency for the Estes (1955a,b) variant is summarized in the
leftmost column of Fig. 2 (top row).

Note that, while the Estes (1955a,b) variant of SST specifies the
similarity of the memory representation when the nominal stimu-
lus is presented, it does not specify how the representation changes
between presentations of the nominal stimulus. On the one hand,
we might assume that the representation changes gradually dur-
ing that interval, which would lead to a decrease in similarity as a
function of recency aswell as of stimulus recency. Thiswouldmean
that stimulus elements after presentation of D would remain ac-
tive even long after the nominal stimulus presented. But this seems
to contradict the observation that the response is presumably not
made during the time between presentations of the nominal stim-
ulus. SST as such is ambiguous as to the state of the memory rep-
resentation during the times when the nominal stimulus is not
presented.

This ambiguity in SST is reflected in Fig. 2. Because SST does
not specify how the set of activated stimulus elements will change
as a function of recency across presentations of different stimuli,
we have left the middle column blank. Similarly, the similarity as
a function of lag predicted by SST is ambiguous. While SST tells
us that there will be a measure of similarity between the memory
representation after the repeated stimulus and the representation
after the original presentation of that stimulus, reflected in the
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Fig. 2. Schematic of similarity relationships among memory representations induced by various models of memory. Each row shows a model described in the text. Each
column shows a different relationship. If a panel is blank, this indicates that the model does not specify that relationship. The three columns show the similarity of the
memory representation as a function of the three relationships depicted Fig. 1. The top row provides a schematic for the three relationships. See the text for explanations of
the models and why they predict these relationships.
point at lag zero in the right column of Fig. 2, SST does not specify
the pattern as a function of lag for non-zero values of lag.

2.2. Successors to SST

The subsequent decades saw numerous mathematical models
of memory that can be seen as successors to SST. Like SST, these
models depend critically on the properties of an internal represen-
tation that is distinct from the nominal stimuli and exploit grad-
ual changes in that representation over time to describe canonical
memory effects. We will focus on a subset of these models to
highlight the impact of different choices to fill in the ambiguities
left by SST with respect to the causes of autocorrelation in the
memory representation. For clarity of exposition, we will go out
of historical order. We will first discuss random context models
(Mensink & Raaijmakers, 1988; Murdock, 1997; Sirotin, Kimball, &
Kahana, 2005). Next, we will discuss models of short-term mem-
ory (STM, Atkinson & Shiffrin, 1968; Grossberg & Pearson, 2008;
Raaijmakers & Shiffrin, 1980).
2.2.1. Random context models
Mensink and Raaijmakers (1988) introduced an extension of

the search of associative memory (SAM, Raaijmakers & Shiffrin,
1980) model to account for interference effects in paired associate
learning (see, e.g., Barnes & Underwood, 1959; Melton & Irwin,
1940; Postman & Underwood, 1973). Their model assumes that as-
sociations in paired associate learning are not simply formed by
strengthening of direct item–item bonds, but are also mediated by
a gradually changing context representation. The context repre-
sentation followed precisely the equations governing the change
in the active state described by Estes (1955b). By including the con-
text representation, the model was able to account for a variety of
findings in which the results of various memory tests after paired
associate learning change with the amount of time after learning
(see, e.g., Briggs, 1954; Koppenaal, 1978). Although the equations
governing the context representation in Mensink and Raaijmak-
ers (1988) are identical to those in SST, their conception makes
several choices to disambiguate the gaps in SST. First, the context
representation changes gradually over time independently of the
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pairs that are presented. Second, conceptually the representation
can change continuously across items within a list.1

Subsequent to the Mensink and Raaijmakers (1988) model,
other authors constructed models of various memory tasks that
maintained a categorical distinction between item and context
representations (Murdock, 1997; Murdock, Smith, & Bai, 2001;
Sirotin et al., 2005). In thesemodels, the context representation did
not change according to the same equations as Estes (1955b), but
were conceptually quite similar to the Mensink and Raaijmakers
(1988) formulation. In the Murdock (1997) model, the state of
context at time step i evolved according to

ci = ρci−1 +


1 − ρ2ηi, (1)

where 0 < ρ < 1 and the vector of noise at each time step ηi is
chosen independently. From Eq. (1), it is easy to see that the state
of context is autocorrelated such that E


ci · cj


falls off with |i− j|.

In these ‘‘random context’’ models, the memory representation
includes the context representation and the item representation.
The item representation is assumed to be caused by the nominal
stimulus that is currently presented, but otherwise does not
change over time. Let us refer to the representation of the item
presented at time step i as fi. In this case, we would expect fi · fj to
be large when the nominal stimulus presented at time step i is the
same as the nominal stimulus presented at time step j. The entire
state of the memory representation in a random context model at
time step i is just fi ⊕ci. The similarity of this representation at one
time step with that at another time step is just the sum of the two
similarities, fi · fj + ci · cj.

Fig. 2 summarizes the temporal relationships among the states
of the memory representation composed of a fixed item represen-
tation and a randomly varying context representation as a func-
tion of the three variables we have described. In the left column
we see that, unlike the Estes (1955b) variant of SST, the state fi ⊕ci
after presentation of a particular nominal stimulus does respond
robustly to stimulus recency. The similarity of the item represen-
tation with itself is constant across presentations of the nominal
stimulus. The similarity of the random context representationwith
itself changes gradually as a function of recency independently of
the nominal stimuli presented. However, although recency is cor-
related with stimulus recency, if one chooses the time between
repetitions of the nominal stimulus to be sufficiently large, then
there could be a vanishingly small effect of stimulus recency on
similarity. Unlike SST, random context models also specify that the
representation should change gradually within a series of nominal
stimuli (middle column). Thememory representation after presen-
tation of a nominal stimulus after presentation of a series of differ-
ent nominal stimuli should fall off over time. This autocorrelation
is due to the properties of random context (see Eq. (1)).

The rightmost columnof Fig. 2 shows the similarity of themem-
ory representation following repeated presentation of a nominal
stimulus with neighbors of the original presentation of that stim-
ulus. Here, the item representation and the random context rep-
resentation contribute separately. First, the item representations
following different presentations of a nominal stimulus D should
be similar to one another. There is, however, no reason to expect
that the item representation of D should be systematically related
to the item representations of the neighbors of D (B, C , etc.) in a
randomly assembled list. If the delay between the presentations
of D is sufficiently large, there will be no detectable change due to
the context representation either. However, in the right column,
lag is confounded with recency. That is, E is closer to D1 than F is

1 In Mensink and Raaijmakers (1988), within-list changes were neglected under
the assumption that those changes are small compared to the changes between
phases of learning.
to D1. However, E is also closer to D2 than F is to D2. The increase
in the function for non-zero lags from left to right is intended to
communicate the possibility of a residual recency effect due to the
changing context representation.

2.2.2. Short-term memory (STM)
STM models also make predictions about the way the memory

representation – here the current contents of STM – changes over
different experiences. STM is understood as amechanism bywhich
an item representation remains in an activated state after the
nominal stimulus that caused it is no longer available. Typically,
a small number of item representations can be simultaneously
activated in STM. We can consider both discrete models of STM,
in which a stimulus is either in STM or not (see, e.g., Atkinson &
Shiffrin, 1968; Raaijmakers& Shiffrin, 1980), or continuousmodels,
in which items gradually decay from STM (see, e.g., Grossberg &
Pearson, 2008). Models of STM have been used to describe a wide
range of temporal effects in immediate and delayed free recall (for
a recent treatment, see Davelaar, Goshen-Gottstein, Ashkenazi,
Haarmann, & Usher, 2005) and paired associate learning (see,
e.g., Atkinson & Shiffrin, 1968).

Consider the set of activated stimuli in STM as a memory
representation. The similarity of the representation at two times in
a randomly assembledword list is a function of the degree towhich
the same items are active in STMat those two times. In particular, if
STM contains item representations, then the input to STM caused
by presentation of a nominal stimulus should be consistent from
one presentation of that stimulus to another. If the number of
other stimuli intervening between the two presentations of a
nominal stimulus is large relative to the capacity of STM, then we
would expect a flat function relating representational similarity to
stimulus recency (Fig. 2). A decreasing function could result if the
number of stimuli between presentations of a nominal stimulus
is not large relative to the capacity of STM.2 Like random context
models, STM can account for an effect of stimulus recency only
insofar as it is confounded with recency.

Like randomly changing context, the contents of STM also
change gradually over time. Unlike in random context models, the
change in STM depends critically on the identity of the nominal
stimuli presented. For concreteness, let us consider the Atkinson
and Shiffrin (1968) model with a buffer capacity of r items and a
random drop-out rule. In this case, after capacity has been reached
(i.e., after more than r items have been presented), the probability
of any item present in the buffer falling out is just 1

r . If each
stimulus enters with certainty, then the probability that the buffer
contains stimulus i at a later time step j is just


1 −

1
r

j−i
. Assuming

that each item is presented only once and that the list is randomly
assembled, this immediately gives rise to a recency effect, as the
similarity of one state of STM to another is solely determined by
the degree to which they contain the same item representations
(middle column, Fig. 2). Like random context models, STM models
also predict a representation that falls off with recency. Unlike in
random context models, the gradually changing representation is
sensitive to the nominal stimuli being presented, which leads to
divergent predictions for lag.

As mentioned previously, for a random word list, temporal
relationships in the contents of STM can only arise from the same
stimulus occupying STMat twodifferent times.3 Let us consider the
states of STM surrounding the initial presentations of a stimulus,

2 In the Grossberg and Pearson (2008) model, more complex relationships are
also possible.
3 In behavioral models based on STM, such as SAM (Raaijmakers & Shiffrin, 1980;

Sirotin et al., 2005), repetition of an item can cause a search and recovery process
that results in a behavioral contiguity effect. If one allows for search and recovery to
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L M N D2 O P Q , with the state after D being repeated for the
second time, D3, long after D2. First note that the contents of STM
following presentation of D3 include a representation of D and
whatever stimuli were present prior to that presentation. In the
example from Fig. 1, there would be high probabilities that stimuli
U , V , andW are active in STMwhen D3 is presented. None of those
stimuli should be in STMprior to presentation ofD2, so they cannot
contribute to the similarity of the states of STM. More precisely, if
the number of intervening stimuli between D2 and D3 is large with
respect to the buffer capacity, then the similarity of the contents
of STM after presentation of D3 to the contents of STM prior to the
presentation of D2 should be flat as a function of negative values of
lag. Now, when D is presented at D2, D enters STM. Because D has
also entered STM on D3, we would expect the similarity between
the states of STM at D2 and D3 to shoot up relative to the states
at L, M , and N . As additional stimuli are presented after D2, the
stimulusDhas the opportunity to fall out of STM. As a consequence,
on average, the similarity of STM following D3 decreases gradually
with increasing positive values of lag (Fig. 2, right). Note that this
asymmetric similarity function with respect to lag is qualitatively
distinct from the pattern that results from random contextmodels.

2.2.3. Retrieved temporal context models
The state of STM changes gradually over multiple serial posi-

tions as stimuli enter, persist in, and then leave STM. The changes
in STM over time are completely dependent on the identity of the
stimuli presented. The random context also changes gradually, but
the changes in the context representation are completely indepen-
dent of the nominal stimuli presented. Retrieved temporal context
models (Howard & Kahana, 2002; Polyn, Norman, & Kahana, 2009;
Sederberg, Howard, & Kahana, 2008) offer an alternative that is
something of a hybrid of these two approaches. Like STM, retrieved
context models hypothesize a gradually changing memory repre-
sentation – referred to as the temporal context – that is caused by
the nominal stimuli presented. Unlike STM, however, the input to
temporal context caused by a nominal stimulus can change across
presentations of that stimulus. In particular, repeated stimuli can
recover previous states of temporal context inwhich theywere ex-
perienced.

It will turn out that the predictions of retrieved temporal con-
text models for stimulus recency are somewhat involved. For that
reason, we will address stimulus recency last. Each time a nominal
stimulus is presented, it provides some input to the current state
of temporal context. The state changes gradually frompresentation
of one stimulus to the next, with information persisting for some
time. Let us refer to the state of temporal context at time step i as ti.
The nominal stimulus presented at time step i causes a particular
input pattern tINi . Then, the state of temporal context changes from
one list position to the next according to

ti = ρiti−1 + βtINi , (2)

where 0 < β < 1. Inmany formulations, ρi is chosen such that the
Euclidean length of ti is constant at all time steps and is typically
less than 1. From Eq. (2), we can readily see that the similarity of ti
to tj falls off with recency |i − j| (Fig. 2, middle). This is the same
qualitative pattern we would expect for random context models
and STM.

The nature of tIN , though, has a big effect on the behavioral
predictions of the model and results in a qualitative difference

take place, and if that retrieval process exhibits a behavioral contiguity effect, and
if the results of the retrieval process are fed back into the contents of STM during
study, then the contents of STM could exhibit a more subtle contiguity effect, like
that seen for retrieved context models. In this case, however, STM can no longer be
seen as a simple container that holds a set of recently presented items.
between the similarity of the memory representations of a re-
trieved temporal context model from the predictions of either ran-
dom context models or models based on STM. When a nominal
stimulus is repeated, the input to the temporal context vector tIN
caused by that stimulus is not the same as that for the first time
that nominal stimulus was presented. The input that enters into
the memory representation changes, including the state of tempo-
ral context prior to the original presentation of the stimulus. In par-
ticular, when a nominal stimulus is repeated, it can cause a ‘‘jump
back in time’’ inwhich a prior state of context is recovered. Tomake
this more concrete, let us suppose that the stimulus presented at
time step i is later repeated at time step r . Then,

tINr = γ ti−1 + (1 − γ ) tINi . (3)

First, note that, if the delay between i and r is sufficiently long,
then the contribution of ρr tr−1 · ti+j for small j will be negligible
compared to the contribution of βtINr · ti+j.4 Let us consider the
contribution of each of these two terms to the similarity of tr to
the neighbors of ti. First, let us consider the similarity arising from
tINi ·ti+j.We can see that for a randomword list around i this ismax-
imal for j = 0. This item-specific contribution falls off as j increases
fromzero. tINi would not tend to resemble the states of context prior
to time step i. Taken in isolation, the tINi component of Eq. (3) has
the samequalitative pattern as a function of lag aswewould expect
for STM, for analogous reasons.

The other component in Eq. (3), ti−1, reflects the recovery of
the previous state of temporal context availablewhen the stimulus
was originally presented. This ‘‘jump back in time’’ results in a
component that overlaps with states of temporal context both
forward and backward in the sequence from serial position i. This
can be seen by noting that ti · tj = tj · ti. The expectation of ti−1 · ti+j
is maximal at j = −1 and symmetric around this maximum.
Combining these two components, the similarity as a function of
lag will on average be asymmetric, falling off in both the forward
direction and the backward direction (Fig. 2, right).

We are now in a position to address the predictions of stimu-
lus recency in retrieved temporal context models. There are two
reasons that retrieved temporal context models predict an effect
of stimulus recency. First, if ρ is sufficiently close to 1, we may
expect the effect of recency to also be manifest as a function of
stimulus recency (Fig. 2, left) for just the same reasons as random
context models can exhibit a decreasing function of stimulus re-
cency. Above and beyond this effect, note that Eq. (3) describes a
change in the input caused by a nominal stimulus across multiple
presentations. Considerwhatwould happen if the stimulus is again
repeated. There is a strong analogy to Eq. (2). There, the temporal
context changes from one moment to the next driven by the input
from the current nominal stimulus. In Eq. (3), the input caused by a
nominal stimulus changes gradually from one presentation of that
stimulus to the next, driven by the temporal context in which it
was presented. Assuming for clarity that the contexts are uncorre-
lated because the repetitions of the nominal stimulus are widely
separated in a list with no other repetitions, this process gives rise
to something like an autoregressive process. Note, however, that
this autoregressive process is distinctly different from the autore-
gressive process in Eq. (2) in twoways. First, the process in Eq. (3) is
over presentations of the nominal stimulus itself, and is thus rela-
tively resistant to large gaps between presentations of the nominal
stimulus. In this regard, the stimulus recency effect predicted by
retrieved temporal context models differs from stimulus recency
in SST, whichwas assumed to depend only on the spacing between
presentations of the nominal stimulus. Second, the rate at which

4 To the extent that it is not negligible, the tendency is for a recency gradient like
that obtained for the random context model in the right column of Fig. 2.
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the input pattern changes – the rate constant in Eq. (3), if you will
– is largely decoupled from the rate constant in Eq. (2).

2.3. Lag and stimulus recency analyses discriminate among models of
memory

SST (Estes, 1950) introduced the idea of a memory repre-
sentation separate from the nominal stimulus. Estes (1955a,b)
demonstrated the crucial importance of allowing thememory rep-
resentation to change gradually over time. All three of the classes
of successors to SST we have examined share the property that
the memory representation should change gradually as successive
stimuli are presented, decreasing in similarity as a function of re-
cency (Fig. 2,middle). However, these three classes ofmodelsmake
very different assumptions about the causes of the change in their
gradually changing representations. These different causes result
in qualitatively different predictions about how the memory rep-
resentation should change as a function of lag (Fig. 2, right) and
stimulus recency (Fig. 2, left).

The lag analysis clearly distinguishes the models from one an-
other. Randomcontextmodels, because the context representation
is independent of the stimuli presented, predict that there should
be no systematic effect of lag above and beyond any residual con-
found with recency. Because the gradually changing representa-
tion depends on the identity of the nominal stimulus presented,
both STM and retrieved temporal context models predict system-
atic and robust lag effects. However, there is also a qualitative
property to the shape of the lag curve that is unique to retrieved
temporal contextmodels. In particular, the recovery of a prior state
of temporal context by a repeated stimulus causes a curve that
falls off in both the forward direction and the backward direction
around zero. Finding a decrease in the backward direction above
and beyond that attributable to recency is a unique prediction of
this class of models.

The Estes (1955a,b) version of SST assumed that the condition-
ing elements available when a CS was presented change gradually
across multiple presentations of that nominal stimulus. The suc-
cessors of SST are also distinguished by the degree to which they
incorporate this property. Random context models and STM can
both describe stimulus recency only to the extent that it is con-
founded with recency. Suppose that there is a large gap between
repetitions of a nominal stimulus. Then, for both random context
models and STM, the rate at which the representation changes as
a function of recency also determines the rate at which the rep-
resentation changes as a function of stimulus recency. For a fixed
rate of change as a function of recency, as the time between repe-
titions of a nominal stimulus grows larger, the effect of stimulus
recency becomes vanishingly small. For instance, as long as the
contents of STM from one presentation of a nominal stimulus have
been emptied before the next presentation of that stimulus, there
is no reason to expect any effect of stimulus recency on thememory
representation. If one needed to describe an effect of stimulus re-
cency on the representation using STM, one could assume that STM
has a much larger capacity. Then, however, recency would also be
affected. Retrieved temporal context models have a robust mecha-
nism to describe a stimulus recency effect that is only weakly sen-
sitive to the spacing between repetitions of a nominal stimulus and
is decoupled from the effect of recency.

Moreover, retrieved temporal context models make a specific
hypothesis about the source of the variability in the input caused
by repetition of a nominal stimulus, which leads to a further pre-
diction. In retrieved temporal context models, the input caused
by a nominal stimulus does not change randomly, as in SST, but
rather in response to the particular temporal contexts in which
it is experienced (Eq. (3)). Stimuli that are presented in similar
temporal contexts will tend to develop similar input patterns. This
prediction forms a point of contact with computational models
of semantic learning, which estimate the meaning of words by
observing their cooccurrence statistics in natural text; see Den-
nis (2005), Griffiths, Steyvers, and Tenenbaum (2007), Howard,
Shankar, and Jagadisan (2011), Jones and Mewhort (2007), Lan-
dauer and Dumais (1997), and Shankar, Jagadisan, and Howard
(2009).

3. Neural similarity analyses

Wementioned at the outset that the research program ofmath-
ematical learning theory – to write down a set of precise equations
that described mechanisms detailed enough to account for behav-
ior – was audacious, given what was known about neurobiology in
the 1950s. Constructing a correct processmodel ofmemory uncon-
strained by neurobiology is an almost impossible task. While it is
still not an easy task to compare models to neurobiological data,
recent decades have seen tremendous progress in our ability to
measure brain processes in humans and in animal models. Hu-
man neuroimaging studies can resolve hemodynamic response on
the scale of a fewmillimeters. Intracranial recordings from human
epileptic patients combine spatial resolution of local field poten-
tials on the order of about a centimeterwith temporal resolution on
the scale of milliseconds. Rodent electrophysiology labs routinely
record extracellularly from a few hundred neurons simultaneously
in parts of the brain believed to be important in learning and
memory.

All of these technologies generate multivariate responses. To
the extent that we have a hypothesis about how the memory
representation changes across conditions, as in Fig. 2, we can eval-
uate whether these similarity relationships are respected in mul-
tivariate brain responses. In the case of fMRI, we can compare the
distributed activity across voxels at one time to the pattern of activ-
ity across voxels at another time (Norman, Polyn, Detre, & Haxby,
2006; Polyn, Natu, Cohen, & Norman, 2005). In the case of intracra-
nial recordings, we can construct vectors of principal components
that vary over time (Manning, Polyn, Litt, Baltuch, & Kahana, 2011).
Whenwe havemany neurons, we can compare population vectors
to one another. One can construct a population vector over a cer-
tain interval by estimating the firing rate for each neuron. If one
has recorded from n neurons, one can construct an n-dimensional
population vector. The similarity of these vectors to one another
can be compared using standardmethods (e.g., inner product, stan-
dard correlation methods, Euclidean distance, Mahalanobis dis-
tance, etc.).

Recent years have seen the development of three themes of
research that place constraints on memory representations across
time and, thus, place constraints on mathematical process models
of memory. One theme is the finding that memory representations
change gradually over long periods of time, ranging up to at
least thousands of seconds. A second theme is recent evidence
suggesting that, in episodic memory tasks, remembered items can
cause the signature of a ‘‘jump back in time’’. Finally, nominal
stimuli that are experienced close together in time develop similar
stimulus representations.

3.1. Memory representations change over long periods of time

Many models have suggested that the change in the memory
representation across presentations of different nominal stimuli
(Fig. 2, middle) could account for the behavioral recency effect.
The recency effect refers to the finding that recently presented
items from the end of a list are better remembered than less re-
cent items from the middle of the list. If this is the case, then
the time scale over which behavioral recency effects are observed
should be reflected in neural recency effects. Although some au-
thors have assumed that the recency effect extends only over short
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time scales associated with the capacity of STM, behavioral evi-
dence shows that in free recall the recency effect is observed over
time scales ranging from a hundred milliseconds (Neath & Crow-
der, 1996), to seconds (see, e.g., Murdock, 1962), to tens of seconds
(see, e.g., Bjork & Whitten, 1974; Glenberg et al., 1980; Howard
& Kahana, 1999), to hundreds of seconds (Glenberg et al., 1980;
Howard, Youker, & Venkatadass, 2008), and perhaps even to days
and weeks (Baddeley & Hitch, 1977; da Costa Pinto & Baddeley,
1991; Moreton & Ward, 2010). If changes in memory represen-
tations are responsible for these recency effects, they should also
change over similarly long time scales. We briefly review three
studies that suggest that neural ensembles change gradually over
perhaps hours.

Manns, Howard, and Eichenbaum (2007) presented rats with
lists of odors for a judgment of recency task. They measured
population vectors across simultaneously recorded neurons from
the hippocampus for a four-second period around each odor
sampling event. Restricting their attention to events within the
same list, they found that population vectors from different events
changed reliably as a function of the recency relating the two
events. More surprisingly, they also found that population vectors
changed gradually across lists. That is, the population vectors from
two events from different lists became reliably less similar to one
another as the number of intervening lists of odors increased.
Lists were separated by about a minute, indicating that there were
reliable changes continuing even after several hundred seconds.

Similar results have been found in two recent studies conducted
while rats foraged in an open environment. It is well known that
‘‘place cells’’ in the rat hippocampus discriminate location within
a small environment such as a one-meter-square enclosure (see,
e.g., Wilson &McNaughton, 1993). That is, one place cell might fire
when the animal’s physical location is in one circumscribed part
of the environment relatively independently of other time-varying
variables. Another place cell would fire only when the animal is in
some other circumscribed part of the environment. An ensemble of
such place cells would have the ability to reconstruct the animal’s
location within the environment. Hyman, Ma, Balaguer-Ballester,
Durstewitz, and Seamans (2012) recorded from ensembles of
neurons from the rodent hippocampus and medial prefrontal
cortex while rats randomly foraged in one of two environments.
As the rats foraged randomly, they would revisit the same location
at different times. The authors constructed population vectors for
these different visits to the same location and measured similarity
as a function of the time between the visits. Population vectors in
both regions changed gradually over several hundreds of seconds.

Similarly, Mankin et al. (2012) recorded place cells from the
rodent hippocampus while the animal explored an enclosure at
various times throughout the day for consecutive days. They found
that the population vectors at a particular location within the
environment continued to change reliably after several hours had
passed. Critically, ensemble similarity remained at a low level at a
delay of 24 h, ruling out an account based on time of day.

A memory representation that changes gradually over time is a
key feature that can be used to account for the behavioral recency
effect. While there is undoubtedly much work that would have to
be done to clarify the relationship between the behavioral recency
effect and these neural ensembles, it is clear that neurons in the
hippocampus change their firing gradually over periods of time
sufficiently long to account for the recency effect.

3.2. Memory representations may jump back in time

The preceding discussion reveals very strong evidence for
gradual changes in neural representations over time scales of at
least a few hours. This effect of recency does not discriminate
among models specifying the memory representation (see the
middle column of Fig. 2). Comparing the memory representation
after a repeated item to the neighbors of its original presentation
provides a way to distinguish different models specifying different
causal relationships between nominal stimuli and the changes
in the memory representation (Fig. 2, right column). We review
recent studies that have a bearing on the question of whether the
brain manages to ‘‘jump back in time’’.

Two recent studies are consistent with a neural contiguity
effect. First, Manning et al. (2011) recorded intracranially from
epileptic patients who performed a free-recall task. They observed
a reliable effect of recency on the pattern of oscillatory compo-
nents present at the electrodes. Comparing the interval just before
a word was free-recalled with the interval surrounding the words’
presentation they found a reliable neural contiguity effect that cor-
related with the behavioral contiguity effect. While suggestive of a
jump back in time, because the sequence of recalls was generated
by the subject, it is possible that their neural contiguity effect re-
flected the fact that the words recalled prior to a word also came
from near the about-to-be-recalled word in the list, rather than a
jump back in time per se. Second, Zeithamova, Dominick, and Pre-
ston (2012) examinedmultivoxel patterns of activity in an fMRI ex-
periment while subjects learned pairs of images. The images were
chosen from categories that can be decoded using fMRI activation.
Subjects studied pairs A–B and later studied B–C . Critically, during
study of the B–C pair, they found that patterns in the hippocam-
pus partially reconstructed the category of A, suggesting that this
prior episode, including the content of the stimuli, was recov-
ered. Because the pairs were presented simultaneously, this study
leaves open the possibility that the brainwould not reconstruct the
temporal context that preceded a repeated item (see Gershman,
Schapiro, Hupbach, & Norman, 2013, for a related fMRI study).

An additional study addresses some of these limitations.
Subjects in the Howard, Viskontas, Shankar, and Fried (2012)
study were epileptic patients who studied lists of pictures in
a continuous recognition study. In each block, the pictures in
the list were presented twice. The first time the picture was
presented, the subject should respond ‘‘new’’; the second time the
picture is presented, the subject should respond ‘‘old’’. While the
patients performed the task, extracellular recordings were taken
from a variety of locations in the MTL, isolating clusters of spikes
from both single neurons and clusters of a few neurons. Howard
et al. (2012)measured a population vector across these clusters av-
eraged over the 3 s following presentation of each stimulus. As we
would expect based on the foregoing evidence for gradually chang-
ing representations, Howard et al. (2012) observed that the neural
ensemble changed gradually bothwithin and across blocks of stim-
uli (Fig. 3a).Within block, the effect of recency persisted over a few
dozen seconds; across block, the effect of recency persisted for a
few minutes.

Fig. 3b shows the results of a neural contiguity analysis on the
same data set, giving neural similarity as a function of lag. The
results were consistent with a ‘‘jump back in time’’, suggesting
that the repeated item caused recovery of gradually changing
information available before presentation of the repeated item.
However, several limitations of this study preclude a definitive
conclusion. First, the design of the continuous recognition study
meant that repetition D2 was not always at a long delay relative
to the initial presentation D1. Rather, repetitions came at a variety
of recencies such that the recency effect between the repeated
stimulus and its predecessors had to be statistically removed. This
additional level of analysis complicates the interpretation. A study-
test design in which a long delay intervened between study of the
list items and the test probes would have avoided this potential
problem. Second, identifying individual spikes from extracellular
recordings with humans is much more error prone than from
extracellular recordings from animal preparations, leading to a
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a b

Fig. 3. Recency and contiguity in the brain. Neural recency and contiguity effects in human MTL neurons. Single units were recorded from epileptic patients while they
performed a continuous recognition task. (a) The inner product between the normalized population vector at each time and at each preceding time was compared as a
function of the number of stimuli between them. Each stimulus presentation takes at least 3 s, so the population changes over at least a few dozen seconds. (b) The recency-
controlled comparison between the population vector caused by a repeated item and the neighbors of its original presentation. After Howard et al. (2012).
Fig. 4. Nominal stimuli repeated in similar temporal contexts. Here, stimuli D and E tend to cooccur with one another across temporal contexts. According to retrieved
temporal context models, they will develop similar representations.
potential source of noise. Third, there was relatively little neural
data available, and behavioral performancewas good, so it was not
possible to establish a correlation between the neural contiguity
effect and either a behavioral contiguity effect (Schwartz, Howard,
Jing, & Kahana, 2005) or even successful memory performance.

While none of these three studies in isolation conclusively
demonstrates that a neural jumpback in time supports episodic re-
trieval, their limitations are complementary. While no behavioral
contiguity effect was observed in the Howard et al. (2012) study,
the Manning et al. (2011) study was able to measure a behavioral
contiguity effect and to demonstrate that itwas correlatedwith the
neural contiguity effect they observed. While one might be con-
cerned about the statistical procedure to remove the recency ef-
fect in the Howard et al. (2012) study, no such artifact was present
in the Manning et al. (2011) study, because it used delayed recall.
While there is a concern about correlation with previous recalled
items in the Manning et al. (2011) study, because the probes were
chosen by the experimenter in the Howard et al. (2012) study, that
concern does not apply there. If one is willing to make the leap
that these studies reflect different neural signatures of the same
phenomenon, then taken together they provide a strong case that
memory depends on the maintenance and recovery of a gradually
changing state of temporal context. It remains to be seen if this
neural contiguity effect extends over longer time scales overwhich
the behavioral contiguity effect is manifest (see, e.g., Howard et al.,
2008).

3.3. Stimulus representations reflect the temporal context in which a
nominal stimulus was experienced

In retrieved temporal context models, the input caused by
a nominal stimulus changes across repetitions of that nominal
stimulus. More than just random fluctuations, the changes come
to reflect the temporal contexts in which the nominal stimulus
is experienced. This can result in the development of functional
stimulus representations that reflect the structure of learning.

A concrete example may help to illustrate this point. Con-
sider the effect of learning on two nominal stimuli, say D and E,
that initially have uncorrelated input patterns and are then pre-
sented close together in time repeatedly (Fig. 4). Initially, the input
patterns tIND1
and tINE1 can only recover contexts from prior to learn-

ing. As a consequence, tIND1
· tINE1 should be no higher on average

than a randomly chosen pair of stimuli. Now, after learning, tIND2

recovers tD1−1 and tINE2 recovers tE1−1. Because these contextual
states are close to one another, this means that tIND2

· tINE2 will be
much higher than the input caused by these two nominal stimuli
before learning. Repeated presentations of the two stimuli close
together in time cause the input patterns of the two stimuli to be-
come more and more similar to one another. There are some sub-
tleties to this argument that depend on the details of the learning
rules employed (Howard, Jing, Rao, Provyn, & Datey, 2009; Rao &
Howard, 2008; Shankar et al., 2009), but this simple illustration is
sufficient for present purposes.

There is ample neural evidence that the representations caused
by nominal stimuli that are experienced close together in time
become similar to one another. For instance, Miyashita (1988)
recorded from neurons in the inferotemporal (IT) cortex of mon-
keys. The stimuli in his experiment were complex visual patterns
assembled randomly into a list that was repeatedly presented in a
fixed order for many days of training. Neurons did not respond to
any identifiable visual property of the stimuli (Miyashita & Chang,
1988). However, after training, neurons that fired persistently in
response to one nominal stimulus from the list also tended to
respond to other stimuli that were close in position within the
list (Miyashita, 1988). This effect was notably absent for a new
set of stimuli that were not trained in order. Later work showed
a number of additional properties of these neurons, including that
this property depends on connections from the medial temporal
lobe (Naya, Yoshida, & Miyashita, 2001). The medial temporal lobe
includes the hippocampus, which, as discussed earlier, contains a
representation that changes gradually over long periods of time.

The connection between the hippocampus and this effect of
learning temporal contexts has been made explicit by recent
neuroimaging work in humans. Schapiro, Kustner, and Turk-
Browne (2012) presented subjects with a series of complex
images in a statistical learning paradigm. Pairs of stimuli that
predicted each other with high probability were embedded in
a sequence of random images. Using similarity of multivoxel
patterns of activation, they found that the entire medial temporal
lobe, including the hippocampus, developed representations such
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that nominal stimuli that were repeatedly paired caused more
similar neural representations than nominal stimuli that were not
reliably paired (see also Schapiro, Rogers, Cordova, Turk-Browne, &
Botvinick, 2013). Neural firing comes to reflect temporal contiguity
over shorter time scales as well (see Li and DiCarlo (2008) and
DiCarlo, Zoccolan, and Rust (2012)), suggesting that temporal
contiguity may be a powerful cue in parsing the visual world (see,
e.g., Becker, 1999; Franzius, Wilbert, & Wiskott, 2011; Wiskott &
Sejnowski, 2002).

4. Discussion

Mathematical psychology has several potential functions. One
function is to develop measurement models that provide a way to
summarize behavioral data in a concise and insightful way. An-
other function is to demonstrate that abstract heuristics, such as
Bayesian inference, could support human behavior. A third func-
tion is to provide concrete mechanistic hypotheses about the com-
putations that could support behavior. Of course, these hypotheses
should generate testable predictions about behavior, but they can
also, in principle at least, be tested literally using neurobiological
findings.5 SST was formulated as a concrete mechanistic hypothe-
sis explaining the development and change inmemories over time.
In the ensuing decades, several distinct hypotheses have been de-
veloped that build on these ideas. It is troubling that so much time
has passedwith essentially contradictorymodels persisting in par-
allel. One reason for this is that the behavioral constraints from
a single task, such as free recall, or paired associate learning, or
item recognition, are ill suited to constrain a general model of how
memory representations are updated andmaintained over time. In
addition, it is quite possible that behavioral results are simply in-
sufficient to constrain a satisfactory mechanistic hypothesis. Neu-
robiological data can provide an additional set of constraints that
speak directly to themechanistic nature ofmathematicalmodels of
memory; mathematical psychologywould benefit tremendously if
it can incorporate these insights into future model development.

4.1. Can we construct a physical theory of memory?

Stimulus sampling theory was an attempt to write down a
set of equations that would provide a veridical description of the
cognitive subprocesses underlyingmemory.Whilemuchwork still
remains to be done, we have learned a great deal about the ways
in which ensembles of neurons in the brain, and in particular the
MTL, change over repeated presentations of a nominal stimulus.
For the moment let us make the leap that neural ensembles in the
medial temporal lobe are the memory representations central to
human behavioral performance in standard memory experiments.
Let us further ignore the caveats and limitations of the foregoing
neuroscientific studies, and consider the constraints these findings
would have onmodels of human behavioralmemory performance.
With these assumptions, the neuroscientific findings described
above imply that we must construct a model subject to the
following constraints.

1. Memory representations change gradually over periods of time
much longer than a single list.

2. Persistent changes inmemory representations can be caused by
nominal stimuli.

5 Of course, models of behavior may serve all three functions. For instance,
in the context of drift diffusion models (Ratcliff, 1978), drift rate and bias
are useful summaries of behavior, and drift diffusion in two-choice decisions
can be understood as computation of log-likelihood using sequential sampling.
Neurobiologically, one can directly evaluate the hypothesis that neurons obey a
random walk towards a threshold (Smith & Ratcliff, 2004).
3. Nominal stimuli can cause previous states of the memory
representation to be recovered.

4. Stimulus representations for stimuli presented close together
in time come to resemble one another.

All of the successors we have considered here are consistent with
Constraint 1. Constraints 2–4 argue strongly against random con-
text models as the sole source of temporal variability in neural
representations. Moreover, constraints 3–4 are inconsistent with
a conception of STM as a container of unchanging item representa-
tions. To the extent that the empirical neural data described in con-
straints 1–4 is correct, it is unclear howwork on behavioral models
of memory that violate one or more of those constraints could lead
to a satisfactory mechanistic model of memory in the brain.

While all four constraints are at least roughly consistent with
the predictions of retrieved temporal contextmodels, this does not
in any way imply that those models are correct or constitute a sat-
isfactory mathematical description of the memory representation
underlying performance in any particularmemory task. These neu-
ral constraints are much stronger than the constraints available
in the 1950s, but there is still a huge space of models consistent
with those constraints. It is almost inconceivable that the retrieved
temporal context models published thus far are satisfactory in any
meaningful sense. These constraints should serve to focus atten-
tion on specific directions that are likely to yield progress towards
a satisfactory physical theory of memory.

Any process that enables recovery of a memory representation
is consistent with constraint 3; constraint 3 raises a number of
fundamental psychological questions. For instance, is the ‘‘jump
back in time’’ discrete or continuous? Does the retrieval event have
characteristic retrieval dynamics? What factors (at both encoding
and retrieval) cause this jump back in time to succeed or fail?
Even granting that a ‘‘jump back in time’’ is a general principle
of memory, we thus far do not even have strong hypotheses that
address these basic questions.

Constraint 4 is consistent with a wide variety of learning rules;
the choice of rule should be constrained by broad considerations
and would benefit from behavioral empirical data collected under
controlled conditions. There is good reason to suspect that the de-
velopment of neural representations that reflect temporal statis-
tics is an essential operation in semantic learning and learning
of perceptual representations more generally, so it is extremely
pressing to connect models of memory to learning over scales
longer than a few minutes (Nelson & Shiffrin, 2013).

Any set of equations that describes a vector state that changes
gradually over time and that is causally affected by the nominal
stimuli presented ought to be consistent with constraints 1 and 2.
As such, constraints 1 and 2 together create a relatively weak
physical constraint; additional theoretical concerns are necessary
to move forward. Why does the memory representation in the
MTL change gradually over long periods of time? One particularly
intriguing possibility with potentially far-reaching implications is
that the memory representation codes for the history of stimuli
leading up to the present moment in a scale-invariant manner.
After presentation of ABC , the memory representation includes
information about C being one time step in the past, B two steps
in the past, and A three steps in the past. After presentation of
another stimulus, the representations of A, B, and C are each
pushed back in time, and the new stimulus is placed in the slot
corresponding to one time step in the past. In thisway, thememory
representation would maintain information about which nominal
stimuli were presented while preserving information about their
time of presentation.

Cognitive neuroscientists studying the hippocampus, a region
within the MTL, have long suggested that it plays a special role
in encoding sequences of stimuli, retaining information about
what stimulus was presented and the order of their presentation
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(see, e.g., Eichenbaum, 1999; Hasselmo, 2009, 2012; Jensen &
Lisman, 1996; Levy, 1996; Lisman, 1999; Sohal & Hasselmo, 1998).
MacDonald, Lepage, Eden, and Eichenbaum (2011), recording from
the hippocampus of rodents during the delay of a memory task,
found neurons that fired at a particular time during the delay.
These time cells contained information about how long in the past
the beginning of the delay period was. Critically, a subset of time
cells was selective for the identity of a sample stimulus that was
encoded at the beginning of the delay, meaning that a population
of such neurons would carry information about what nominal
stimuluswas presented how far in the past (see alsoGill,Mizumori,
& Smith, 2011; Kraus, Robinson, White, Eichenbaum, & Hasselmo,
2013; MacDonald, Carrow, Place, & Eichenbaum, 2013; Pastalkova,
Itskov, Amarasingham, & Buzsaki, 2008).

It is interesting to consider how a representation of the se-
quences of events leading up to the present moment could cause
the representation to change gradually over time. If separate neu-
rons code precisely for the conjunction of time step and nominal
stimulus, this memory representation would not exhibit autocor-
relation. That is, if a neuron fires robustly when B was presented
two time steps in the past but does not fire at all when B was
presented three time steps in the past, this neuron could not be
a source of correlated firing between those two occasions. In con-
trast, if the sequence coding were blurry, such that some neurons
participate in coding for multiple time steps in the past, the rep-
resentation as a whole would show an overlap across those scales.
For instance, if a neuron fired when B was two steps in the past
and also fired when B was three steps in the past, this would lead
to an overlap in the firing pattern at those two times. Now suppose
that the accuracy with which the time of presentation is recorded
blurs out in a scale-invariant manner. That is, the time at which a
stimulus presented 10 s in the past is stored with the same relative
accuracy as that for a stimulus presented 100 s in the past, for in-
stance 10±1 s and 100±10 s. A scale-invariant blur in the accuracy
would make sense of the observation that neural representations
change over hundreds or even thousands of seconds.

Shankar and Howard (2012) presented a mathematical model
that computes a fuzzy representation of sequences based on an
approximation to the inverse Laplace transform. Because the blur
at each point in the history is proportional to the time in the
past being represented, the model gives rise to scale-invariant
autocorrelation. For instance, if a neuron coding for a stimulus 2 s
in the past also fired when the stimulus was 3 s in the past, then
the neuron coding for that stimulus 20 s in the past would also
fire when the stimulus was 30 s in the past. A range of modeling
work has shown that this representation can account for a variety
of behavioral findings from episodic memory, conditioning, and
working memory (Howard, Shankar, Aue, & Criss, 0000; Shankar
& Howard, 2012). This form for a memory representation that
changes gradually over time could be a promising starting point for
the development of a satisfactory mechanistic theory of memory,
an effort that continues the thread of work initiated by SST more
than six decades ago.

5. Conclusion

The lasting effect of stimulus sampling theory can be seen in
work being done today. The agenda set by SST – to describe the
properties of a memory representation that intervenes between
the nominal stimulus and the response – has driven most of the
memorymodelingwork done in the subsequent decades. In partic-
ular, SST’s conjecture about the importance of gradually changing
memory representations has been particularly influential on mod-
els of memory. Recent neuroscientific findings have shown strong
evidence for a gradual change in neural ensembles extending at
least hundreds of seconds. Many subsequent memory models, in-
cluding random context models and short-term memory models,
can be seen as hypotheses about the source of the gradual change
assumed by SST. Random context models assume that the change
is caused by noise that is independent of the presented stimuli.
This hypothesis is inconsistent with the neural data reviewed here.
Short-termmemory is an improvement in that changes in the rep-
resentation are caused by the nominal stimuli presented. However,
STM fails to account for the finding that the set of neurons caused
by a nominal stimulus change to reflect the temporal structure of
experience. Like STM, retrieved temporal context models postu-
late a gradually changing memory representation caused by the
nominal stimuli presented. In addition, retrieved context models
also propose that repetition of a stimulus can cause a ‘‘jump back
in time’’, whereby a previous state of temporal context is recov-
ered; stimuli presented in similar temporal contexts should thus
cause similar patterns of activation after learning. While not yet
definitive, some recent neuroscientific work is supportive of a neu-
ral jump back in time in the MTL.

Due to technological advances in neurobiology, the overarch-
ing goal of SST, namely the construction of a set of equations that
are a veridical description of actual physical processes underlying
behavioral memory performance, while still very far off, is
nonetheless much more realistic now than it was in the 1950s.
Successful work towards this goal will require that mathemati-
cal models incorporate neuroscientific evidence into the empirical
data that constrain them.
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