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Abstract

The temporal context model (TCM) [Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal context. Journal of

Mathematical Psychology, 46(3), 269–299] was proposed to describe recency and associative effects observed in episodic recall. Episodic

recall depends on an intact medial temporal lobe, a region of the brain that also supports a place code. Howard, Fotedar, Datey, and Hasselmo

[Howard, M. W., Fotedar, M. S., Datey, A. V., & Hasselmo, M. E. (2005). The temporal context model in spatial navigation and relational

learning: Toward a common explanation of medial temporal lobe function across domains. Psychological Review, 112(1), 75–116]

demonstrated that the leaky integrator that supports a gradually changing representation of temporal context in TCM is sufficient to describe

properties of cells observed in ventromedial entorhinal cortex during spatial navigation if it is provided with input about the animal’s current

velocity. This representation of temporal context generates noisy place cells in the open field, unlike the clearly defined place cells observed

in the hippocampus. Here we demonstrate that a reasonably accurate spatial representation can be extracted from temporal context with as

few as eight cells, suggesting that the spatial precision observed in the place code in the hippocampus is not inconsistent with the input from a

representation of temporal–spatial context in entorhinal cortex.

q 2005 Elsevier Ltd. All rights reserved.
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It has long been believed that the medial temporal lobe

(MTL), including the hippocampus and parahippocampal

cortical regions, is involved in episodic recall–memory for

specific instances from ones’ life (e.g. Nadel & Moscovitch,

1997). It has also been clear from neurophysiological results

that the MTL is involved in maintaining a representation of

position within an open environment (e.g. Fyhn, Molden,

Witter, Moser, & Moser, 2004; O’Keefe & Dostrovsky,

1971; O’Keefe & Nadel, 1978; Quirk, Muller, Kubie, &

Ranck, 1992; Wilson & McNaughton, 1993). It is of

considerable theoretical interest to know if these two

functions—episodic memory and a current representation

of position—correspond to a single computational function

(e.g. Eichenbaum, Dudchenko, Wood, Shapiro, & Tanila,

1999; O’Keefe & Nadel, 1978). Recently Howard, Fotedar,

Datey, and Hasselmo (2005) proposed that the temporal

context model (TCM, Howard & Kahana, 2002) could
0893-6080/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2005.08.002

* Corresponding author. Tel.: C1 315 443 1864; fax: C1 315 443 4085.

E-mail address: marc@memory.syr.edu (M.W. Howard).
provide a framework to describe aspects of both episodic

recall and the construction and maintenance of a place code.

We will review this work briefly here before presenting new

results on the reconstruction of spatial position from a

representation of temporal context.

TCM in episodic recall. TCM (Howard et al., 2005;

Howard & Kahana, 2002; Howard, Wingfield, & Kahana, in

press) provides a set of equations that describe a distributed

representation of temporal context as a vector in a high-

dimensional space. This model was developed to describe

performance in situations in which lists of words are

presented for a memory test. In TCM, the state of context at

time step i, ti, is updated according to

ti Z ritiK1 CbtIN
i ; ri : jjtijj Z 1; (1)

where b is a free parameter that controls the rate of change

of temporal context. The value of the scalar ri is chosen at

each time step to keep the context vector of unit length. The

context vector is formed from the context vector from the

previous time step, tiK1 and an input vector tIN
i . We assume

throughout that the length of tIN
i is less than or equal to one.

The input vector is caused by the currently presented
Neural Networks 18 (2005) 1150–1162
www.elsevier.com/locate/neunet

http://www.elsevier.com/locate/neunet


M.W. Howard, V.S. Natu / Neural Networks 18 (2005) 1150–1162 1151
stimulus. The properties of tIN
i will be described extensively

below.

It may help to attempt to visualize the process of

contextual evolution described by Eq. (1). The pattern of

activity ti may be thought of as a pattern of sustained firing

across cells in extra-hippocampal MTL regions (Egorov,

Hamam, Fransén, Hasselmo, & Alonso, 2002; Howard

et al., 2005). The constraint that the length of ti is always

equal to 1 means that ti lives on the surface of a hypersphere

in a high-dimensional space. At each time step, the input

pattern pushes tiK1 in a particular direction. Then ri is

chosen to bring the resulting vector sum back to the surface

of the sphere, resulting in ti. If we assume, as we typically

have in modeling random lists of words each presented

once, that the input patterns tIN
i are orthonormal to each

other, then Eq. (1) describes a random walk and the

similarity of context vectors falls off exponentially with the

number of presentations between them

ti$tj Z r
jiKjj; (2)

where r without the subscript is the asymptotic value of ri

when presented with an infinitely long list of orthonormal

inputs, r :Z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kb2

p
.

In TCM, the current state of the context vector is used to

probe recall of a set of vectors corresponding to the items

that are to be recalled, typically words from episodic recall

tasks. This is accomplished by means of an outer product

matrix MTF, which is updated by

MTF
i Z MTF

iK1 C f it
0
i; (3)

where fi is the pattern corresponding to the item vector

presented at time step i and the prime denotes the transpose.

Although a mapping hypothesis between TCM as a formal

model and the structure of the MTL will be developed more

fully later (see also Howard et al., 2005), it is noted here that

the entries in the matrix MTF may be roughly interpreted as

the strength of the set of synapses connecting extrahippo-

campal MTL regions, especially entorhinal cortex, to

neocortical association areas. When MTF is multiplied

from the right with a particular state of context tj, this yields

a superposition of item vectors, each weighted by the inner

product of the probe context to that of the item’s encoding

context(s):

MFTtj Z
X

i

f iðti$tjÞ: (4)

Each item is cued by a particular context cue to the extent

that context cue overlaps with the study context of that item.

In modeling episodic recall tasks, we have used a non-linear

competitive recall rule to map this superposition of item

vectors onto a probability of recall for each item.

The recency effect. In the free recall task, the subject is

presented with a list of items one at a time. At recall, the

subjects’ task is to recall as many items as possible without

regard to order. Subjects can initiate recall after a delay (e.g.
Glanzer & Cunitz, 1966), or even from specific prior lists

(Shiffrin, 1970; Ward & Tan, 2004), so that recall cannot be

initiated by using item representations available in short-

term memory. Accordingly, models of free recall have

typically assumed that subjects maintain some represen-

tation of the list context to use as the cue in free recall (e.g.

Anderson & Bower, 1972; Hasselmo & Wyble, 1997;

Raaijmakers & Shiffrin, 1980). TCM builds on this tradition

by assuming that the current state of temporal context is the

cue used to initiate recall in the free recall task. Because ti

changes gradually over time (Eqs. (1) and (2)), and items are

cued to the extent that their study context overlaps with the

probe context, this naturally leads to a recency effect; items

presented at the end of the list should be more strongly

activated, and hence more likely to be recalled than items

from earlier in the list.

This explanation of the recency effect contrasts to some

extent with accounts of recency that depend on the presence

of items in a limited capacity short-term store (Atkinson &

Shiffrin, 1968; Davelaar, Goshen-Gottstein, Ashkenazi, &

Usher, 2005; Raaijmakers & Shiffrin, 1980). On the one

hand, ti is a record of recent experience, like notions of

short-term store. On the other, ti changes gradually over

time, rather than in a discrete fashion like buffer models

(Atkinson & Shiffrin, 1968; Raaijmakers & Shiffrin, 1980).

This gradual decay, coupled with a competitive retrieval

rule, enabled TCM to provide an explanation of the long-

term recency effect (Bjork & Whitten, 1974; Glenberg,

Bradley, Stevenson, Kraus, Tkachuk and Gretz, 1980;

Howard & Kahana, 1999) observed in continuous-distractor

free recall.

Associative effects. Traditional accounts of interitem

associations describe associations between, say, members of

a pair as some form of direct connection between item

representations (e.g. Murdock, 1982; Raaijmakers &

Shiffrin, 1980). In TCM, associations between list items

are mediated by the effect those items have on context.

When A is used as a probe item, there is no direct

connection between A and B to support an association.

Rather, A causes a change in the state of context, which then

overlaps with the context that B was presented in, resulting

in a behaviourally observed association. Items have their

effect on context by determining the input patterns tIN
i in Eq.

(1). Suppose we present an item A at some time Ai and then

repeat it at some later time AiC1. The input pattern that A

evokes when it is repeated is given by:

tIN
AiC1

Z aOtIN
Ai

CaNtAi
: (5)

The pattern tAi
is the state of temporal context from when A

was presented previously. The pattern tIN
Ai

is the input pattern

caused by A when it was presented previously. This input

pattern tIN
Ai

is also governed by Eq. (5), meaning that it, in

turn, will also include prior states of context, tAiK1
in this

case. The coefficients aO and aN are chosen such that the

length of the input pattern when A is repeated, tIN
AiC1

, is unity.
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A free parameter g is used to control the relative

contribution of tIN
Ai

and tAi
in constructing the retrieved

context pattern.

The repetition of an item results in an input to the

current state of context that includes prior components of

contextual states. Because these two components overlap

with the encoding contexts of other items, the current state

of context after an item repetition serves as an effective

retrieval cue for items that were presented near in time to

the previous presentation of the repeated item. This

provides a basis for explaining temporally defined

associations (Howard & Kahana, 1999; Kahana, 1996). In

particular, tIN
Ai

is part of the contextual states that followed

the previous presentation of A, but not those that preceded

it (see Eq. (1)), so that the combination of tIN
Ai

and tAi

together provide an asymmetric retrieval cue that mimics

the form of temporally defined associations measured from

episodic recall tasks (Howard et al., 2005, in press; Howard

& Kahana, 2002).

A mapping hypothesis onto the MTL. Performance in

episodic recall tasks depends on an intact MTL (e.g. Graf,

Squire, & Mandler, 1984). If TCM is a realistic model of

episodic recall tasks, then it should be possible to map the

components of TCM onto MTL structures and use this

mapping to explain neurophysiological and neuropsycholo-

gical results. One possiblity would be to put ti in the

hippocampus. Hasselmo and Wyble (1997) placed context in

the hippocampus proper in a previous model of free recall. In

that model, free recall proceeded by using hippocampal

context as a probe for cortical items; in item recognition,

cortical items were used as a probe to try and recover

hippocampal context (see also Dennis & Humphreys, 2001;

Schwartz, Howard, Jing, & Kahana, in press). Similarly, a

model of sequence learning that has been applied to a number

of learning tasks (Levy, 1996; Shon, Wu, Sullivan, & Levy,

2002; Wu & Levy, 1998, 2001) argues that one function of

the hippocampus is to support local context states that

depend on the item presented and the temporal context it is

presented in. These local context neurons bridge across

temporally proximate item presentations, providing a

possible explanation of the temporally defined associations

described by TCM (Howard & Kahana, 1999; Kahana,

1996). In contrast to these prior approaches, various

considerations led Howard et al. (2005) to hypothesize that

ti resides in the entorhinal cortex, and perhaps other

parahippocampal cortical areas as well, rather than in the

hippocampus proper. The hippocampus proper was hypoth-

esized to support new item-to-context learning, i.e. Howard

et al. (2005) hypothesized that the hippocampus was

responsible for maintaining a non-zero value of aN in Eq.

(5). This mapping has been shown to provide an explanation

of neuropsychological and neurophysiological findings from

relational memory tasks (Bunsey & Eichenbaum, 1996;

Higuchi & Miyashita, 1996) and neurophysiological findings

from spatial navigation tasks (Frank, Brown, & Wilson,
2000; Quirk et al., 1992). We briefly review these findings

and their explanations within TCM.

The hippocampus and transitive association. In TCM,

repetition of an item A results in two components of

contextual input (Eq. (5)). One component, tAi
, is the state of

context present when the item was last presented. The other

component, tIN
Ai

, is the input that the item caused when it was

last presented. Consider for a moment what would happen if

only one of those components was available. If aNZ1 and

aOZ0, meaning that only tAi
contributed, then this would

constitute a symmetric retrieval cue for items presented near

in time to A (see Eq. (2)). In contrast, if aNZ0 and aOZ1,

meaning that only tIN
Ai

contributed, then this would constitute

an asymmetric retrieval cue. In particular, if aNZ0, then this

would result in robust forward associations, but no

temporally defined backward associations. Bunsey and

Eichenbaum (1996) observed that hippocampal lesions

impaired the development of backward associations, while

leaving forward associations intact. This finding led Howard

et al. (2005) to hypothesize that the hippocampus functions to

enable items to reconstruct the temporal contexts in which

they are presented, resulting in a non-zero value of aN.

This hypothesis about the function of the hippocampus in

reconstructing temporal context states also provides an

explanation of transitive associations. If a subject is trained

on a pair of items A–B, and then learns the pair B–C at some

other time, a transitive association results if A is associated

to C, despite the fact that A and C were never presented

together. Bunsey and Eichenbaum (1996) observed that

although hippocampal lesions had no effect on learning the

forward pairwise associations A–B and B–C, they selec-

tively disrupted transitive associations between A and C.

Howard et al. (2005) showed that setting aNZ0, simulating

a disruption in the ability for items to reconstruct the

temporal contexts in which they were presented, selectively

disrupted transitive associations. In TCM, reconstruction of

temporal contexts gives rise to transitive associations

because these temporal context states are caused by inputs

from the items themselves, i.e. when B is presented with C,

B recovers the temporal context associated with its

presentation with A. The state of context in which C is

encoded is therefore similar to the state of contextual input

that will be caused by A as a probe. Howard et al. (2005)

showed that reconstruction of temporal context states

enables the development of a cortical stimulus represen-

tation that reflects the higher-order temporal relationships

among the stimuli; TCM can be seen as a quantitative

implementation of ideas about the role of the hippocampus

and entorhinal cortex in sequence encoding and relational

memory (e.g. Eichenbaum, 2004).

A pseudo-integrator in entorhinal cortex. What compu-

tations might give rise to a representation of position like

that observed in the hippocampus? One possibility is a

representation derived from landmark information. The

hippocampal place code persists unchanged in the dark

(Quirk, Muller, & Kubie, 1990) and even in blind rats
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(Save, Cressant, Thinus-Blanc, & Poucet, 1998), suggesting

that the hippocampal place code does not depend critically

on visual input. One way to construct a representation of

position is to use a dead reckoning strategy. The first

integral of velocity is position. If provided with information

about the current velocity, a computation that integrates its

inputs would result in a representation of position.

The temporal context vector ti resembles an integrator.

Eq. (1) states that ti includes tiK1. In turn, tiK1 includes tIN
iK1

and tiK2:

ti Z ritiK1 CbtIN
i Z ririK1tiK2 CbðtIN

i Crit
IN
iK1Þ

Z bðtIN
i Crit

IN
iK1 CririK1tIN

iK2 C/Þ (6)

By ‘unwinding’ in this way, it is seen that ti is the result of

something like an integration of the tINs. This expression

also shows that ti is not the result of a perfect integration;

rather the factors of ri cause a decay of information over

time. The temporal context vector is the result of a leaky

integration of a series of input patterns.

Howard et al. (2005) examined the properties of the place

code that would result from combining the leaky integrator

implemented by Eq. (1) with inputs that consist of velocity

vectors:

tIN
i Z vi (7)

First, it is noted that this assumption could be implemented

with known properties of the entorhinal cortex. Most

notably, cells in layer V of the entorhinal cortex show

stable graded firing when stimulated (Egorov et al., 2002).

The presence of persistent stable firing is essential to

implement Eq. (1). To see this clearly, set tIN
i Z0 in Eq. (1).

This results in riZ1 and we find that tiZtiK1; to implement

Eq. (1), cells must persist in their firing rates in the absence

of input. Remarkably, this property is met by principal cells

in layer V in vitro (Egorov et al., 2002). Moreover, to

implement Eq. (1), cells must be able to assume a new stable

firing rate when presented with a depolarizing input—they

must be able to integrate. This property is also met by layer

V cells, even in the absence of recurrent synaptic inputs

(Egorov et al., 2002). In summary, it appears that cells in

layer V have precisely the cellular properties necessary to

implement Eq. (1). The mechanisms that give rise to these

properties at the cellular level are of considerable interest.

Several proposals have been made (e.g. Fransen, Egorov,

Hasselmo, & Alonso, 2003; Loewenstein & Sompolinsky,

2003).

Having cells that are capable of implementing the

integration property of Eq. (1) is necessary but not sufficient

to implement a place code using a leaky integrator. Two

other mechanisms are necessary—a way to normalize the

length of ti and a way to provide velocity vectors as inputs to

the set of integrator cells. Chance, Abbott, and Reyes (2002)

showed that cultured cortical neurons exhibited a gain

that decreased as the simulated background activity of
the network increased. If the intrinsic currents that give rise

to persistent firing are subject to this type of gain control,

then a set of integrator cells should eventually find a level of

stable overall firing rate, implementing something like the

normalization represented by ri in Eq. (1). To provide

velocity vectors as input (Eq. (1)), we need information

about heading and speed. Heading is provided by head

direction cells (Taube, 1998); it is known that cells in layer

V of the entorhinal cortex receive input from regions

containing head direction cells (Haeften, Wouterlood, &

Witter, 2000). The only other requirement is a way to

represent speed on these inputs. There are a couple of ways

to implement this. Here we note that average firing rate in

hippocampal pyramidal cells is strictly proportional to

running speed (Fig. 8, Zhang, Ginzburg, McNaughton, &

Sejnowski, 1998) suggesting that the MTL manages to find

a solution to this problem.

Having motivated the proposal that the place code in

entorhinal cortex implements ti with velocity vectors as

inputs, Howard et al. (2005) examined the correlates of cells

that compose ti when presented with paths from actual rats

during navigation tasks. We first examined place fields

generated by simulated neurons during navigation around

an open field. Fig. 1a and b shows representative place fields

from the open field simulation. The cells showed reliable but

noisy modulation by location. The location of the place

fields was consistent across different environments. Both

these properties have been observed for entorhinal cells

during exploration of the open field (Quirk et al., 1992; but

see Fyhn et al., 2004). The simulated cells showed place

fields located towards the preferred direction of the head

direction cell that projected to that place cell. For instance,

the cell in Fig. 1a had a preferred direction that pointed

toward the east.

Although the simulated cells showed positional modu-

lation in the open field similar to that observed for cells in

the entorhinal cortex, it is something of a misnomer to refer

to these as place cells. The integrator described in Eq. (6) is

leaky, meaning that more recent movements are more

strongly represented than movements that took place a

longer time ago. Rather than a place code, ti is more

accurately described as a weighted sum over recent

movements. Rather than being a shortcoming, this property

turns out to be essential for describing properties of the

enorhinal ‘place code’ when the animal is navigating around

the W-maze. Frank et al. (2000) had animals move around a

three-armed maze (Fig. 1c) from arm to arm. The animals

were trained to visit a food well at the bottom of the center

arm, then one at the bottom of the left arm, then return to the

center arm, then the right arm, back to the center and so

forth. Frank et al. (2000) observed cells in entorhinal cortex

and the hippocampus proper that responded to specific

sequences of movements rather than locations. A trajectory

coding cell would, for instance, respond on the bar of the

maze when the animal was making left-center or center-

right journeys, but not when in the same location on other
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trips. The simulation of Eq. (1) on the W-maze showed huge

numbers of trajectory coding cells with properties like this.

Frank et al. (2000) also observed cells that showed

retrospective coding. A unique property of the W-maze is

that it allows one to compare trips down the center arm

according to which arm the animal is coming from (Fig. 1c).

On these trips, the animals position, heading and behavioral

goal (the chocolate milk at the end of the arm) are the same.

However, a group of cells that code for the sequence of

recent movements (Eq. (6)) would be expected to show

differential firing according to where the animal is coming

from. Frank et al. (2000) observed retrospective coding cells

in the entorhinal cortex, including both deep and superficial

layers, as well as the CA1 field of the hippocampus. The

simulation showed cells with this property (Fig. 1d). These

cells were activated when the animal assumed the cell’s

preferred direction on the bar of the maze. Because firing

persists over a macroscopic period of time, the same

property that enabled us to describe the recency effect in

free recall, the cell does not turn off right away, but shows

firing that persists along the center arm of the maze. One

aspect of the Frank et al. (2000) results that the model did

not capture robustly was the phenomenon of prospective

coding, in which cells fire differentially according to

movements the animal is about to make (see also
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Ferbinteanu & Shapiro, 2003; Wood, Dudchenko, Robitsek,

& Eichenbaum, 2000, for more evidence of retrospective

and prospective coding in the hippocampus).

Could the hippocampal place code come from ti?

Howard et al. (2005) demonstrated that ti, when provided

with velocity vectors as inputs, can describe spatial

correlates of cells from ventromedial entorhinal cortex

(Frank et al., 2000; Quirk et al., 1992, see also Fyhn et al.,

2004 for recent findings on the dorsolateral entorhinal

cortex). Does the entorhinal cortex function like ti during

the spatial navigation? The fact that ti is not really a spatial

code at all seems at first glance like a serious obstacle to

accepting this point of view. As discussed above, ti, when

provided with velocity vectors as inputs, is better interpreted

as a weighted sum over recent movements than as a

positional code. This seems inconsistent with what we know

about the hippocampus in the open field.

Hippocampal place fields in the open field are omni-

directional (Muller, Bostock, Taube, & Kubie, 1994),

suggesting an accurate representation of position. Record-

ing from over a hundred cells, Wilson and McNaughton

(1993) observed reconstruction errors of as small as 7 cm in

a familiar 62!62 cm open-field environment using a

template-matching method. This discrepancy between

actual and reconstructed position was of the order of
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the 5 cm tracking error intrinsic to their set-up. It is possible

to obtain even more precise reconstruction when the motion

is constrained, as in a linear track (Jensen & Lisman, 2000)

or a figure eight maze (Zhang et al., 1998). If the

hippocampal place code results from processing ti driven

by velocity vectors, then there must be a way to extract

accurate positional information from a weighted sum over

recent movements. If it proves impossible to reconstruct

position to the precision possible with hippocampal cells

(Jensen & Lisman, 2000; Wilson & McNaughton, 1993;

Zhang et al., 1998) using ti, then this rules out ti as an

explanation of entorhinal activity, at least in spatial

applications. To address these questions, we will attempt

to perform spatial reconstruction on the output of the

cellular implementation of ti driven by velocity vectors in

the open field.
1. Simulation

1.1. Methods

We studied the ability to reconstruct position from the

output of a cellular simulation implementing ti with velocity

vectors as inputs. The methods of the cellular implemen-

tation of ti follow those used in Howard et al. (2005). The

cellular implementation of ti was driven by velocity vectors

from simulated movements. Reconstruction was performed

on the output of the cellular implementation. To the extent

that we can reconstruct position, we can conclude that a

brain region, presumably the hippocampus, receiving input
ϕi 

p  (s), ϕ   (s)

ti    (s)

ti  (s)

ρ  (s)

H
ea

d 
D

ire
ct

io
n

S
ys

te
m

 
E

xt
er

na
l I

np
ut

Le
ak

y 
In

te
gr

at
or

IN

Fig. 2. Schematic diagram of the cellular simulation. The input vector tIN is constru

has a preferred direction that determines its activation. This input projects to a set

cells is constrained by divisive inhibition r(s).
from ti driven by velocity vectors could in principle

construct an accurate place code in the open field.
1.2. Cellular simulation

Following Howard et al. (2005), we implemented ti with

a set of simulated cells. This is illustrated schematically in

Fig. 2. The activity of cell i at time step s was computed

using

tiðsÞ Z rðsÞ½tiðsK1ÞCbtIN
i ðsÞ�; (8)

where b is a free parameter, r(s) implements cortical gain

control and tIN
i ðsÞ is cell i’s input from the head direction

system implementing Eq. (7). Notice that the notation used

here differs from that used previously for the vectors.

Whereas the subscript in the vector ti refers to the time step,

the subscript, i, in Eq. (8) refers to the cell number with the

time step, s, provided as the argument. Eq. (8) differs from

Eq. (1) substantively in that the factor of r multiplies the

input term as well as the previous state of context term. For

sufficiently small time steps, this is unlikely to be an

important difference.

Cortical gain control (Chance & Abbott, 2000; Chance

et al., 2002) was implemented according to

rðsÞ Z
X

i

½tiðsK1Þ�2

( )K1=2

: (9)

This form of r(s) has the effect of normalizing t after each

time step (see Eq. (8)). To construct the velocity input
1/length

cted from a set of units that receive input from head direction cells. Each unit

of integrator cells. These maintain their firing. The activity of the integrator
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(Eq. (7)), we first simulated the output of a head direction

system (e.g. Taube, 1998). Each cell had a preferred

direction fi. These were spaced evenly around the circle

starting with f1Z0. At each time step s, we compute

fdiff
i ðsÞ, the absolute difference between each cells preferred

direction and the animal’s actual head direction f(s):

fdiff
i ðsÞ :Z

jfðsÞKfij; jfðsÞKfij!p

2pKjfðsÞKfij; jfðsÞKfijRp
:

(
(10)

Then the input to each cell at time step s is computed using

tIN
i ðsÞ Z spðs C1ÞKpðsÞs

1

s
ffiffiffiffiffiffi
2p

p exp
K½fdiff

i ðsÞ�2

2s2
; (11)

where p(s) is the position at time step s and kp(sC1)Kp(s)k

is just the animal’s speed at time s. The parameter s is the

width of the tuning curve of the head direction cells. To be

roughly consistent with the observed values (Taube, 1998),

we fixed s to p/6 for the simulations in this paper.

1.2.1. Simulated paths

Simulated paths were constructed using an algorithm

introduced by Brunel and Trullier (1998). At each time step,

the animal moved one unit of distance. The direction of

movement q changed from time-step to time-step using

Eq. (12)

tq
_q ZKq C q̂ Csq

ffiffiffiffiffi
tq

p
hðtÞ; (12)

where the dot denotes differentiation with respect to time, q̂

is the direction to the target, tq is a time constant that

controls the animal’s turning radius, h(t) is a white noise

source and sq controls the magnitude of the noise.

In the open field simulations (Fig. 4), the animal moved

around an 80!80 cm simulated environment, with tqZ2

and sqZ0.5. To simulate random foraging, a set of 10 ‘food

locations’ was chosen from a uniform distribution. The

closest location to the animal’s current position was chosen

as the first goal location. After the animal navigated to

within a radius of 1 cm to the goal location, the location was

removed from the list of available food locations and the

closest remaining food location to the animal’s current

position was chosen as the new goal location. When all 10

food locations had been visited, a new set of 10 locations

was chosen.

1.3. Reconstruction

Several existing techniques for estimating position from

the activity of cells in the hippocampus would be ineffective

for estimating position from the cellular simulation

described here. Methods, like the template-matching

methods used by Wilson and McNaughton (1993), that

depend on estimating the mean firing rate of each cell as a

function of position are unlikely to succeed given the highly

variable nature of the simulated cells in the open field (see

Fig. 1). This is because ti is really responding to the set of
recent movements and a position may be reached from

numerous different trajectories. This means that a particular

position may be associated with a wide variety of states of

context. The activity of any individual cell is a poor

predictor of position taken alone. Bayesian methods of

reconstruction (Jensen & Lisman, 2000; Zhang et al., 1998)

are poorly suited for this model because the firing rate of the

cells are highly dependent on each other. This means that

the probability of a particular vector state must be calculated

from the observed joint probability at each positional bin.

Typically joint probabilities are estimated by treating the

firing of the cells as independent variables (e.g. Jensen &

Lisman, 2000). The need to directly estimate joint

probability becomes combinatorically very costly. In order

to reconstruct position, we need to have some insight into

how the high-dimensional ti vectors project onto two-

dimensional space.

The following thought experiment will motivate the

reconstruction method we used. Consider the situation in

which we have four cells fed by head direction cells with

preferred directions pointing in the cardinal directions

(ENWS). Now assume that the animal moves around a

one-dimensional square track clockwise with constant

speed. After a sufficient number of circuits, it should be

possible to reconstruct position precisely because each

position along the linear track is reached by only one

trajectory. As the animal moves to the East, along the

southern edge of the track, the firing rate of ‘easterly’ cell,

tE will gradually increase, much like the voltage of a

charging capacitor. As the animal turns left and begins to

head North, tE will decay exponentially and tN will begin

to increase. Each cell’s firing rate will increase as the

animal moves along the corresponding edge of the track,

then decay exponentially as it starts moving in a different

direction. As long as the time constant of the increase is

not too short, we should be able to read off the animal’s

position simply by looking at the appropriate cell and the

appropriate neighbor. For instance, tE assumes a particular

intermediate value while the animal is moving to the east

and the cell is ‘charging’ and when the animal is moving

to the north while tE is decaying. Examination of tN and tS
is necessary to disambiguate these two possibilities. Now

consider the case in which the animal moves along the

east–west line. In this case, tE should increase its firing as

the animal moves to the east and decay as the animal

moves to the west. It is necessary to examine both tE and

tW, the firing rate of the westerly cell, to determine

position along the east–west axis, but each east–west

position corresponds to one (tE,tW) pair. What happens if

the animal suddenly stops moving east–west and starts

moving north–south? tE and tW will both start decaying

exponentially. Although both tE and tW are changing, their

ratio remains unchanged as the animal moves north–south.

We can apply similar logic to construct and maintain

position information using arbitrary sequences of move-

ments along a grid.
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Fig. 3 illustrates the validity of this idea. We constructed

paths between corners of a box. This sequence of paths is

more complex than a one-dimensional path but captures the

essential complexities of the open-field problem. We

simulated ti with four cells given the sequence of

movements.1 We then looked at the two-dimensional

‘shadow’ of the four-dimensional ti when we projected it

onto (log tE/tW, log tN/tS) space. As can be seen by comparing

corresponding panels in Fig. 3, the projection of the four-

dimensional ti onto this two-dimensional space corresponds

roughly to the topology of the actual paths.

The correspondence shown in Fig. 3 motivated us to

undertake a more elaborate reconstruction. We generated

simulated paths with 100,000 movements, then generated a

series of tis for each movement with a variety of values of b.

We estimated reconstructed x and y coordinates using

xr Z a
XN

iZ1

cos fi logðtiÞ (13)

yr Z a
XN

iZ1

sin fi logðtiÞ; (14)

where N is the number of cells (set to 8 here to cover the

circle) and fi is the preferred direction of cell i. The

preferred direction of the first cell f1Z0. The preferred

directions were evenly spaced over the circle. The slope a

was estimated from the data. This was done by picking

10,000 time steps randomly (excluding the first 1000 points
1 Because the diagonal movements corresponded to a region where the

tuning curves for both of the adjacent cells were low, we renormalized

the input vector, such that the length of tiIN was one at each time step for the

purposes of this illustration.
to avoid edge effects), calculating the sums on the rhs of

Eqs. (13) and (14), concatenating these values, and doing a

simple linear regression to the observed x and y coordinates

from the sampled points. Our estimate of a was simply the

slope of this regression. The intercept of the regression was

typically approximately zero. Because by symmetry the

intercept should be precisely zero we fixed it at zero and

omitted it from reconstruction.

This reconstruction method is just a population vector

decoding. It differs slightly from traditional population

decoding approaches (e.g. Abbott, 1994) in that the basis

vectors are not derived from a tuning curve relating firing to

position, but rather the preferred direction of the head

direction signal each cell receives. Also, taking the natural

log of the firing rate linearizes the exponential character of

the firing rates.
1.4. Results

After finding a from a sample of the points, the

reconstructed position was calculated for all the points in

the sample. Fig. 4 displays the results of the reconstruction.

On the left is the average distance between the reconstructed

position and the actual position as a function of b. With b as

low as .01, the reconstruction error is about 7 cm. With b at

.001, the reconstruction error decreased to about 2.2 cm.2

The right side of the figure shows representative paths of

actual and reconstructed positions taken from successive

500 time-step segments of the reconstructed path.
2 With even lower values of b, e.g. 10K4, the observed error began to

increase again. This was probably due to either rounding errors and/or a

very slow change from the initial state leading to an edge effect.
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Qualitatively, the reconstructed paths show an excellent

correspondence with the observed data.
2. General discussion

We started with the question of whether an entorhinal

place code derived from ti, a representation of temporal

context from a model of episodic recall, retains sufficient

information about position to support the hippocampal place

code. We used a simple population vector reconstruction

scheme in which each cell was voted for its preferred

direction with the natural log of its firing rate. Using this

method, we showed that ti implemented with as few as eight

cells was able to provide excellent positional reconstruction.

Reconstruction error was a function of b, which controls the

rate of forgetting in the network. Good reconstruction was

observed with small values of b. This makes sense in that

small values of b correspond to a slower rate of forgetting,

which enables movements from farther in the past to

contribute to the estimate of position. These findings suggests

that it is possible that the excellent spatial precision observed

in the hippocampus in the open field (Wilson & McNaugh-

ton, 1993) could be the consequence of an appropriate

calculation performed on an entorhinal representation

described by ti provided with velocity vectors as input.

There are a number of potential limitations of the

applicability of the present theoretical exercise. The simple

linear reconstruction method used here will not work well for

larger numbers of cells; more sophisticated regression

methods that take into account the correlational structure
1
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provide adequate reconstruction if more cells were used. It is

also possible that the simulated movements did not capture

some important property of the actual movements a rat might

take in the open field. For instance, actual paths could foil

attempts at reconstruction if they are sufficiently pathologi-

cal. If for some reason the rat decided to run in one of several

small circular paths for extremely long periods of time, this

method would be able to reconstruct position along each

path, but not distinguish the location of the circular paths

themselves. This is because the information that discrimi-

nates a circular path in, say, the northwest quadrant of an

environment from one in the southeast would be

the movements prior to initiation of the circular path. As

the animal runs on the circle, this information would recede

into the distance. This property of the model is perhaps not

disadvantageous. When an animal in the open field starts a

sequence of stereotyped movements, the firing of hippocam-

pal place fields changes (Markus, Qin, Leonard et al., 1995).

Further, if the movement of a rat is constrained to quadrants

of an environment by means of barriers, the firing of

hippocampal place cells is similar across the different

quadrants (Lever, Wills, Cacucci, Burgess, & O’Keefe,

2002). Finally we note that the population vector method

used here relies on an accurate measurement of low firing

rates. Although integrator cells (Egorov et al., 2002) can

maintain stable firing rates over a wide variety of values, their
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constrain the positional accuracy that can be maintained
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Variation in the speed of movement was not included in

the simulations used here. To illustrate the dependence of

reconstruction on running speed, we will briefly derive an

expression for the change in our log measure in a simplified

case. Consider a situation in which the animal moves to the

east with speed v(s) units per time step at time step s. Let us

assume that we have four cells with preferred directions in

the cardinal directions and sufficiently small tuning curves

that we can neglect the input activation of the cells other than

the one with the preferred direction pointing East. Let us

consider the change in the activity of the ‘East’ cell, tE and the

‘West’ cell, tW as a result of a movement of v(s) units to the

east. Using Eq. (8), the activities of these cells at time step sC
1 is given by:

tEðs C1Þ Z rðsÞ½tEðsÞCbvðsÞ�; tWðs C1Þ Z rðsÞtWðsÞ:

We are interested in the dependence of the change in log(tE/

tW) on the speed of the movement at time step s, v(s). We start

by deriving the change in log(tE)

Dlog tEðsÞ Z logfrðsÞ½tEðsÞCbvðsÞ�gKlog½tEðsÞ�

Z log rðsÞC
rðsÞbvðsÞ

tEðsÞ

� �

Z log rðsÞC log 1 C
bvðsÞ

tEðsÞ

� 	
:

Following similar logic, the change in log(tW) is given by:

Dlog tWðsÞ Z log½rðsÞtWðsÞ�Klog½tWðsÞ� Z log rðsÞ:

Using these two expressions, we find

Dlog½tEðsÞ=tWðsÞ� Z log 1 C
bvðsÞ

tEðsÞ

� �
(15)

Of course log(1Cx)zx when x is sufficiently small. When

b/tE(s) is sufficiently small, log(tE/tW) responds almost

linearly to changes in running speed. Insofar as this is the

case, log(tE/tW) transforms exactly as one would desire from

a measure of position. The requirement that b/tE(s) be small

for this reconstruction scheme to work also provides insight

into the regime over which this reconstruction scheme will

work. Setting b to a small value not only enables ti to retain

information from a longer time, but also facilitates the

constraint that b/tE(s) be small. The dependence of this factor

on tE(s) is somewhat unsettling, as this value will change over

time as, say, the animal continues to move to the east. This

variability undoubtedly accounts for some if not all of the

residual error observed in the simulations reported here.

However, when b is small, the values of the components of ti

are restricted to a relatively narrow dynamic range. Under

those conditions, if the variability in v(s) is large with respect

to the variability in tE(s), then an appropriate sensitivity to

speed of movement will be preserved.
2.1. The diversity of spatial firing properties in entorhinal

cortex

The model of the entorhinal place code examined here

(Howard et al., 2005) predicts the properties of trajectory

and retrospective coding on the W-maze, consistent with

observations from the lateral entorhinal cortex (Frank et al.,

2000). The present model makes a number of predictions for

the activity of entorhinal cells in the open field. First, these

cells should show some directionality. If the preferred

directions can be accurately estimated from a population of

principal cells (probably a difficult problem in practice), the

reconstruction method used here could in principle

reconstruct position in the open field from the activity of

noisy EC cells like those observed by Quirk et al. (1992). A

stronger prediction of the model is that the ensemble firing

at a given time should depend on the sequence of events that

led up to that time, even in the open field.

In the open field, the model predicts noisy place fields

that are consistent across environments, consistent with

observations from the entorhinal cortex (Quirk et al., 1992).

Recently, Fyhn et al. (2004) showed that the entorhinal

cortex contains cells with a broad range of spatial firing

properties in the open field. They recorded from a range of

locations in entorhinal cortex along a dorsolateral-to-

ventromedial axis, corresponding to regions of EC that

project to the hippocampus proper along its dorsal to ventral

extent, respectively. They found that cells in the most

ventromedial parts of EC showed no little or no spatial

modulation. Cells in the intermediate range showed weak

spatial modulation, like those observed previously (Quirk

et al., 1992), and like the model discussed here predicts

(Fig. 1, see also Howard et al., 2005). Surprisingly, in the

most dorsolateral parts of the entorhinal cortex, Fyhn et al.

(2004) observed cells with well-defined consistent omnidir-

ectional place fields in the open field. These cells typically

showed multiple fields within an environment. Remarkably,

this allocentric spatial representation was maintained even

in animals with lesions to the hippocampus, suggesting that

the locus of the precise allocentric representation in the

MTL is upstream from the hippocampus proper.

The findings of Fyhn et al. (2004) are extremely

important for a number of reasons, not least of which is

that the dorsolateral entorhinal cortex provides input to the

dorsal hippocampus, which has provided the vast majority

of studies of hippocampal place cells (but see Jung, Wiener,

& McNaughton, 1994). These findings should provoke a

thorough reworking of our views on the role of the

hippocampus in constructing a spatial representation. They

also point out the importance of systematically mapping out

the firing properties of hippocampal cells along the

septotemporal axis. The finding of entorhinal cells with

well-defined omnidirectional place fields in dorsolateral

entorhinal cortex presents a theoretical challenge for

the view that the entorhinal cortex supports a general

representation of temporal–spatial context. Although
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the present model of the place code apparently does a

reasonable job in describing the activity of cells in the

intermediate zone, more dorsolateral regions of entorhinal

cortex behave differently. It is possible that ti is one of

several computations that the entorhinal cortex computes.

Perhaps ventromedial entorhinal regions, where Fyhn et al.

(2004) did not observe spatial modulation of firing,

implement ti, but do not receive velocity inputs derived

from self-motion information, instead receiving non-spatial

inputs. The omnidirectional place fields in dorsolateral

entorhinal cortex could result from inputs from

the intermediate zone of entorhinal cortex, or some other

upstream region. In any event, it is clear that a systematic

exploration of the spatial, and especially non-spatial, firing

correlates of cells in entorhinal cortex is long overdue and

would shed considerable light on current models of

hippocampal function. The computational function of the

hippocampus cannot be understood without a systematic

study of its inputs and outputs.

2.2. Constructing an accurate spatial representation

The finding that we could reconstruct position from ti

reasonably well using a population vector method suggests

that ti contains sufficient amounts of information about

allocentric position in the open field to construct a place code

like that observed in the hippocampus. The existence of

spatial information does not directly answer the question of

how such a place code could be constructed. It does,

however, provide a couple of hints. First, the population

reconstruction method presented here takes the natural log of

the firing rate. This suggests that downstream neurons should

have an input–output relationship that implements this

property. Further, to get an accurate reading of position in

one direction, it is necessary to not only observe one cell with

a preferred direction pointing along the axis one is interested

in, but also observe cells with a preferred direction pointing

in the opposite direction. This suggests that the downstream

cells that compute the omnidirectional place code in the open

field might take input from a non-random set of cells that

participate in ti, preferentially sampling matching pairs. This

does not necessarily require tuning to pairs of cells that differ

by precisely p in their preferred directions. Perhaps tuning to

anticorrelated pairs of cells would be sufficient.

A set of downstream cells that compute omnidirectional

place fields from input consisting of ti would need to receive

input from a number of cells and construct a conjunctive

representation from them. Existing models of omnidirec-

tional place fields in the hippocampus (e.g. Brunel &

Trullier, 1998; Hartley, Burgess, Lever, Cacucci, &

O’Keefe, 2000; Kali & Dayan, 2000) have also proposed

that the hippocampus computes a conjunctive representation

of its entorhinal inputs. A conjunctive function for the

hippocampus has also been proposed on the basis of

considerations from the performance of non-spatial memory

tasks (e.g. O’Reilly & Rudy, 2001).
Regardless of the nature of the coding in hippocampus,

an assertion of the mapping hypothesis between TCM and

the MTL is that a primary function of the hippocampus in

spatial navigation is to allow reconstruction of states in

entorhinal cortex in response to discrete objects. This view

is very similar to that proposed by Burgess and colleagues

(e.g. Burgess, 2002; Burgess, Maguire, & O’Keefe, 2002).

This position is supported by the suggestion that the

hippocampus apparently plays a time-delimited role in the

establishment of cognitive maps (Rosenbaum, Zielger,

Winocur, Grady, & Moscovitch, 2004; Winocur, Moscov-

itch, Fogel, Rosenbanum, & Sekeres, 2005; but see Clark,

Broadbent, & Squire, 2005), as well as the observed deficit

in stimulus-place associations found in hippocampal-

lesioned animals (Gilbert & Kesner, 2002).
3. Conclusions

We examined the properties of the place code that result

from driving ti from the temporal context model, a formal

model of episodic recall performance, with velocity vectors

during spatial navigation. In particular, we attempted to

reconstruct a veridical representation of position from the

noisy place code that results from driving ti with velocity

vectors during random exploration in the open field. We

found that a simple population coding scheme in which each

cell votes in the preferred direction of the head direction cell

that drives it with the natural logarithm of its firing rate was

successful in providing good spatial reconstruction with as

few as eight cells. We conclude that it is possible that the

accurate representation of place observed in the hippo-

campus could, in principle at least, be extracted from ti.

Perhaps episodic memory performance and the hippocam-

pal place code both result from a representation of

temporal–spatial context.
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