
A Simple Biophysically Plausible Model for Long Time
Constants in Single Neurons

Zoran Tiganj,* Michael E. Hasselmo, and Marc W. Howard

ABSTRACT: Recent work in computational neuroscience and cogni-
tive psychology suggests that a set of cells that decay exponentially
could be used to support memory for the time at which events took
place. Analytically and through simulations on a biophysical model of
an individual neuron, we demonstrate that exponentially decaying firing
with a range of time constants up to minutes could be implemented
using a simple combination of well-known neural mechanisms. In par-
ticular, we consider firing supported by calcium-controlled cation cur-
rent. When the amount of calcium leaving the cell during an interspike
interval is larger than the calcium influx during a spike, the overall
decay in calcium concentration can be exponential, resulting in expo-
nential decay of the firing rate. The time constant of the decay can be
several orders of magnitude larger than the time constant of calcium
clearance, and it could be controlled externally via a variety of biologi-
cally plausible ways. The ability to flexibly and rapidly control time
constants could enable working memory of temporal history to be gen-
eralized to other variables in computing spatial and ordinal representa-
tions. VC 2014 Wiley Periodicals, Inc.
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INTRODUCTION

It has been widely accepted that memory of recent events [working
memory (Goldman-Rakic, 1995)] is represented through the mainte-
nance of action potential firing rather than through anatomical changes
such as synaptic modifications. If that is the case, then neurons that
respond to stimulus presentation and then continue to fire after the pre-
sentation has ended could be essential for representation of the recent
history (Hasselmo and Stern, 2006).

Neurons that continue to fire after the stimulus during the delay
period of a memory task have been reported in multiple in vivo studies

(Miyashita and Chang, 1988; Funahashi et al., 1989;
Miller et al., 1993; Goldman-Rakic, 1996; Miller
et al., 1996; Romo et al., 2002). An extensive litera-
ture implicates recurrent connections, especially in
prefrontal cortex, in sustained firing (Hebb, 1949;
Goldman-Rakic, 1995; Compte et al., 2000; Wang,
2001; Wang et al., 2012). However, in vitro work
suggests that persistent activity could also be caused
by processes intrinsic to single neurons. Persistent fir-
ing has been found in slice preparations in a number
of brain regions including Layers 2, 3, and 5 of ento-
rhinal cortex (Klink and Alonso, 1997; Egorov et al.,
2002; Tahvildari et al., 2007; Jochems et al., 2013),
Layer 5 of prefrontal cortex (Haj-Dahmane and
Andrade, 1996), lateral amygdala (Egorov et al.,
2006), postsubiculum (Yoshida and Hasselmo, 2009),
the CA1 region in hippocampus (Knauer et al., 2013)
and perirhinal cortex (Navaroli et al., 2011). All of
these studies used synaptic blockers to demonstrate
that persistent firing can be sustained by individual
neurons and does not depend on recurrent
connections.

Experimental and theoretical work has been primar-
ily focused on persistent firing with a stable firing fre-
quency. Indeed, neurons can retain the information
that a stimulus was presented by maintaining a stable
elevated firing rate after the stimulus has ended. How-
ever, stable persistent firing cannot carry information
about when the stimulus was presented. If a neuron
fires at a constant frequency following a stimulus,
then one cannot deduce anything about the time
when the stimulus occurred or about the duration of
the stimulus from its firing rate. Imagine a cognitive
experiment in which the same stimulus is repeated to
the subject but with different time lags, for example:
“TABLE (5s lag) TABLE (5s lag) TABLE (1s lag)
TABLE.” One ought to be able to recognize that the
delay after the third presentation of the stimulus was
shorter than the other two. Humans and other ani-
mals are able to judge the time at which stimuli were
presented over a range of intervals (e.g., Yntema and
Trask, 1963; Gibbon, 1977; Roberts et al., 1989;
Lejeune and Wearden, 2006; Wearden and Lejeune,
2008; Lewis and Miall, 2009). Stable persistent firing
cannot account for this ability.

To account for the memory that can store approxi-
mate representation of recent stimulus history, we
focus here on neural firing caused by a stimulus that
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then slowly decays. Here, “slowly” is defined with respect to
timescale characteristic for intrinsic dynamics of neural mecha-
nisms, much longer than a few hundred milliseconds. Slowly
decaying firing has been found in many in vitro studies (see
Fig. 1, Schwindt et al., 1988; Haj-Dahmane and Andrade,
1996; Klink and Alonso, 1997; Tahvildari et al., 2007; Wino-
grad et al., 2008; Frans�en et al., 2006; Kulkarni et al., 2011;
Hyde and Strowbridge, 2012; Yoshida and Hasselmo 2009).

With slowly decaying firing, if the rate of the decay is known,
one can reconstruct the time when the stimulus was presented
from the firing rate. Many neural models of timing exploit firing
rates that change in a lawful way over relatively long periods of
time to support behavior (e.g., Gavornik and Shouval, 2011;
Simen et al., 2011; Shouval and Gavornik, 2011). However, a
single neuron is not able to code the entire stimulus history. In
other words, it is not possible to represent a function such as
stimulus history with a single scalar value such as firing rate of a
neuron. Consider the case in which TABLE is presented multiple
times with different delays in between. After the first presentation
of TABLE, the firing rate increases to some level and then
decreases gradually over time. During the delay between the first
and second presentation of TABLE, the firing rate can provide
information about how far in the past TABLE was presented.

But now what happens when TABLE is repeated? If the cell is
unaffected by the second presentation, but continues to decay,
then the second presentation has had no effect and cannot be
coded by the neuron. If the neuron responds to the second pre-
sentation by going to the same firing rate as immediately after
the first presentation and then decays, information about the first
presentation is lost. Even if the neuron responds to both presen-
tations in an additive fashion, this is still not sufficient to code
for the history. Consider the interval after presentation of the first
stimulus. Let us denote the firing rate after 2.5 s have passed as x.
After the second stimulus, the firing rate increases to some value
higher than immediately after the first presentation of TABLE
(due to the additive effects of the two stimulus presentations). If
the firing rate eventually decays to zero, it must at some point
pass through x; if the decay function is smooth and monotonic,
this must happen some time more than 2.5 s after the second
presentation of TABLE. But this illustrates the problem of having
a single neuron code for a function of stimulus history: the same
value x must code for two histories, one history with a single pre-
sentation 2.5 s in the past, and another history with two stimulus
presentations separated by 5 s in the past.

Shankar and Howard (2012) pointed out that, in principle,
complete information about the history of stimulus presentations

FIGURE 1. Examples of slowly decaying firing rate in slice
recordings. (a) Cat Layer 5 Sensorimotor Cortex after application
of muscarine-a nonselective agonist of the muscarinic acetylcholine
receptor (Schwindt et al., 1988). (b) Acetylcholine-induced depola-
rization of Layer 5 pyramidal neurons of prefrontal cortex (Haj-
Dahmane and Andrade, 1996). The arrow indicates the time of
acetylcholine application. (c) Layer 3 of lateral entorhinal cortex

in the presence of muscarinic receptor activation (Tahvildari et al.,
2007): membrane potential trace on the top, current stimulation
trace in the middle and firing rate histogram on the bottom plot.
(d) Anterodorsal thalamus (area with a high percentage of head
direction cells) after hyperpolarizing stimulus (current trace at the
bottom), (Kulkarni et al., 2011). [Color figure can be viewed in
the online issue, which is available at wileyonlinelibrary.com.]
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can be encoded by a set of exponentially decaying neurons with
different time constants. The basic idea is that whereas a single
neuron cannot maintain a representation of a stimulus history, a
set of many neurons with different time constants can. (This
claim can be verified by noting that a set of integrators with dif-
ferent time constants encode the Laplace transform, with real
coefficients, of the history leading up to the present moment.
Because the Laplace transform is invertible, complete informa-
tion about the history is still available in the pattern of firing rates
across the neurons [see Shankar and Howard, 2012, for details].)
This mechanism requires the existence of a set of neurons
indexed by s whose firing rates F(s, t) decay exponentially follow-
ing the stimulus presentations f(t) across time t:

dF ðs; tÞ
dt

5aðtÞ 2sF ðs; tÞ1f ðtÞ½ �: (1)

The variable a(t) is a modulatory input to the set of integra-
tors, changing their time constants together as a function of
time. Shankar and Howard (2012) provided a description of
how this set of leaky integrators, with aðtÞ51, can be used to
construct a scale-invariant representation of the history of f
leading up to the present. (Briefly, the mechanism for extract-
ing the stimulus history from Eq. (1) is essentially a lateral
inhibition.) The extracted estimate of history can be used to
describe a number of behavioral findings (Shankar and
Howard, 2012; Howard and Eichenbaum, 2013; Howard
et al., in press). By choosing a(t) judiciously, one can code for
functions of variables other than time, including spatial loca-
tion and ordinal position (Howard et al., 2014). The resulting
representation has correlates that resemble those of a variety of
neurons in the hippocampus and related regions, including
time cells (Pastalkova et al., 2008; MacDonald et al., 2011),
boundary vector cells (Lever et al., 2009), place cells (Burgess
and O’Keefe, 1996; Mankin et al., 2012), “splitter cells”
(Wood et al., 2000), trajectory coding cells, and retrospective
coding cells (Frank et al., 2000).

If it could be implemented in neural circuits, Eq. (1) could pro-
vide the centerpiece of a model that integrates many aspects of
behavior and systems level firing properties of neurons. However,
Eq. (1) presents two major challenges for a biological circuit:

1. In order for the model to describe neural firing and behav-
ioral effects up to long time scales, there should be neurons
with time constants on the order of that time scale. The
time constant of each unit in Eq. (1) is 1/s.

2. Rapid external control of the time constants of the exponen-
tial decay is necessary for an external signal a(t) to modulate
Eq. (1).

The primary purpose of this article is to develop a biologi-
cally plausible hypothesis for how these two properties could
be implemented. Although it is possible that these properties
could result from recurrent network connections (see Brody
et al., 2003; Major and Tank, 2004, for reviews), we focus
here on the possibility that intrinsic currents could be used to
implement these two properties.

OVERVIEW

The calcium-activated nonspecific (CAN) cationic current
has been demonstrated to be crucial for persistent firing in
some in vitro preparations. When CAN current was blocked,
or in the absence of calcium, persistent firing did not occur
(Egorov et al., 2002; Tahvildari et al., 2008; Yoshida and Has-
selmo, 2009; Zhang et al., 2011; Navaroli et al., 2011). More-
over, activation of muscarinic acetylcholine receptors, which
leads to CAN current activation, has been shown as necessary
for induction of persistent firing in some cases (Egorov et al.,
2002; Navaroli et al., 2011; Yoshida et al., 2012). Computa-
tional modeling studies have been successful in proposing
detailed mechanisms based on the interplay between CAN cur-
rent and intracellular calcium concentration that could account
for stable firing (Frans�en et al., 2002; Frans�en et al., 2006), lin-
early growing firing (Durstewitz, 2003), and firing during an
interval of learned duration (Shouval and Gavornik, 2011).

Here, we propose a simple model for exponentially decaying
after-discharge firing that depends on CAN current. Graded per-
sistent firing (Egorov et al., 2002; Frans�en et al., 2006) reflects a
perfect integrator with an infinite time constant; the basic idea of
this article is to use a similar approach to generate leaky integra-
tors with a range of finite time constants. We show that for a real-
istic choice of the parameters the firing rate decays approximately
exponentially. The time constant of the decay is defined by a set
of parameters several of which could be externally tuned, either
through synaptic inputs or neuromodulation.

Figure 2 illustrates the proposed feedback loop. After the
stimulus presentation, relatively high calcium concentration
decays, but also drives the CAN current which depolarizes the
cell causing a spike that brings more calcium in the cell effec-
tively prolonging the calcium decay. The rate of the decay is
mediated through several mechanisms (Fig. 2a).

Stage 1: Stimulus causes calcium accumulation. We start from
the moment when the stimulus that will trigger the exponentially
decaying firing is presented (Number 1 in Fig. 2). We assume that
the neuron fires in response to the stimulus, leading to an increase
of the intracellular calcium level, since during the stimulus calcium
enters the cell through voltage-gated calcium channels.

Stage 2: While calcium decays, the CAN current slowly
depolarizes the cell causing a spike. After the stimulus presenta-
tion has ended the CAN current, which depends on calcium
concentration, is relatively strong as calcium concentration is
high (Fig. 2b at time t0 5 0). The CAN current depolarizes the
cell (Number 2 in Fig. 2) eventually reaching the threshold
level so an action potential is fired. During the interspike inter-
val intracellular calcium concentration decays due to the activ-
ity of generally present calcium clearance mechanisms, which
pump calcium out of the cell or into internal calcium buffers.

Stage 3: During the spike calcium enters the cell. During
the action potential voltage-gated calcium channels open again
allowing additional calcium influx (Number 3 in Fig. 2) kCa,

which is constant per spike. If this influx is smaller than the
amount of calcium pumped out of the cell during the
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interspike interval, then the amplitude of the CAN current will
be smaller than at the moment when the stimulus presentation
has ended at the beginning of the decay (see Fig. 2b).

The CAN current will now continue again to depolarize the
cell, but as its new starting amplitude is lower than at the start of
the previous depolarization it will take more time for the cell to
reach the threshold level, which will result in an increase of the
interspike interval. This process will continue iteratively while
the CAN current is strong enough to depolarize the cell to the
threshold level. Each successive interspike interval will be longer
than previous, meaning a firing rate will decay. In the following
section, we will analytically show that for a range of parameters,
decay of the firing rate is approximately exponential.

MODEL

For analytic tractability, we use a simple integrate and fire
model. During interspike intervals, membrane potential as a
function of time vm(t) is modeled as:

Cm
dvmðtÞ

dt
52iCANðtÞ: (2)

Note that in this extremely simple model iCAN is the only
current; there are neither other inputs nor a leak current.

When the membrane potential reaches the threshold level vt,
an action potential is fired and the membrane potential is reset
to the reset potential vr, which is equal to the initial value of
the membrane potential vm(0). Here, Cm is the membrane
capacitance, defined by geometric properties of the cell and the
specific capacitance of the cell membrane.

Because calcium controls the CAN current, changes of the
membrane potential are determined by calcium dynamics. The
calcium concentration is assumed to be affected by two mecha-
nisms. (1) Calcium clearance that constantly drives calcium out
of the cell with time constant sp. (2) A voltage-gated calcium
current which contributes meaningfully only during spikes.
Calcium clearance is present all the time and calcium influx is
present only when the cell is firing an action potential.

We model the change of calcium at each moment as a clear-
ance process that only depends on the instantaneous intracellu-
lar calcium concentration CaðtÞ:

dCaðtÞ
dt

5
2CaðtÞ

sp
) CaðtÞ5Cað0Þe2t=sp : (3)

this results in exponential decay of the intracellular calcium
concentration with the time constant sp. As mentioned earlier,
we assume that Cað0Þ � 0 due to some external stimulus pre-
sentation prior to time zero. For the calcium influx, we assume
that each spike causes the same change in calcium

FIGURE 2. Illustration of calcium and CAN current-based
mechanism for decaying firing. (a) Feedback loop that accounts
for decaying firing. Stimulus causes initial accumulation of cal-
cium which then drives the CAN current, which depolarizes the
cell and causes a spike. Time needed for the depolarization can be
mediated through several mechanisms: time constant of calcium
clearance sp maximal conductivity of CAN current channels �g CAN
and charge needed to cause each spike Q. The resulting spike
causes calcium influx, with the amount defined by kCa, which
closes the loop. (b) Illustration of how calcium influx slows down
the overall calcium decay. iCANðtÞ is approximately proportional to
calcium concentration. When the cell is not firing, calcium con-

centration decays, but iCANðtÞ still slowly depolarizes the cell (bot-
tom plot) and after it brings enough charge into the cell (Q1) an
action potential is fired (top plot). During the action potential,
inward calcium currents cause an increase in calcium concentra-
tion. The process repeats. Calcium influx is the same for each
spike and is set to be small enough so it does not exceed the value
of calcium during the previous spike (i.e., Caðt0Þ>Caðt1Þ>Caðt2Þ).
We show analytically that the calcium decay is, under the right
circumstances, approximately exponential with a time constant
much longer than sp. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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concentration, thus each time when the neuron fires we
increase calcium concentration by a fixed amount: kCa.

Finally, let us describe the relationship between calcium con-
centration and the CAN current. It will turn out that under
certain assumptions the CAN current is approximately propor-
tional to calcium concentration, and depends on the membrane
potential vm. In the form of standard Hodgkin–Huxley model,
we can express the CAN current as follows:

iCANðtÞ5�g CANm vm tð Þ2ECAN½ � (4)

Here, �g CAN is the maximal value of the ion conductance
measured in mho=cm2, ECAN is the reversal potential of the
CAN current ion channels and m is a dimensionless quantity
between 0 and 1 that is associated with activation of the CAN
current ion channels. Following previous computational work
(Traub et al., 1991; Frans�en et al., 2002), we let the value of
m change from moment to moment according to

dm

dt
5a CaðtÞ 12m½ �2bm: (5)

where a and b are free parameters. From Eq. (5), we can see
that in general the value of m at a particular moment is a func-
tion of both time per se as well as the history of calcium
concentration.

In the next section, we will show analytically that under
appropriate circumstances, the calcium concentration and firing
rate decay approximately exponentially. We will derive an
expression for this time constant of this exponential decay. In
the following section, we will verify the approximation using a
computer simulation of the same model.

Analytical Approach

The analytic solution, which results in calcium concentration
that decays exponentially, requires that three conditions hold.
First, in order for calcium concentration to decay over time, it
is essential that the amount of calcium that enters the cell dur-
ing spikes is smaller than the amount of calcium that clears the
cell during an interspike interval. Second, the ratio between an
interspike interval and sp has to be much lower than one.
Third, the CAN current should be proportional to the calcium
concentration: iCAN / Ca. This third condition is met when a
CaðtÞ � b and 1

aCaðtÞ1b� sp. This last condition requires a lit-
tle bit of discussion.

Starting from Eq. (5), it is easy to show that mðtÞ / aCaðtÞ
holds for a wide range of parameters for the model. If CaðtÞ is
changing slowly with respect to m, then the stationary state for
Eq. (5) can be expressed as: m15 aCa

aCa1b. By changing variables to
m0 � m2m1, it is easy to show that the relaxation time to reach
that stationary state is sm51=ðaCa1bÞ. It is evident that for
aCa� b;m1 / Ca. This approximation requires that the effec-
tive time constant of Ca is much slower than the relaxation time
for m. That is, it requires that 1

aCa1b� sp.
Given that the conductance is proportional to Ca, it remains

to be shown that the current is also proportional to Ca. At each

moment, the current will depend not only on the conductance
but also by the difference between the membrane voltage and the
reversal potential of iCAN;ECAN. However, because there is no
leak current, the total charge necessary to cause a spike in a given
interspike interval is always the same. This can be estimated
from the average current, which can be estimated from the aver-
age voltage over the interspike interval �vm. When these condi-
tions hold, the approximation iCAN / Ca emerges from Eq. (4).
Simulations to follow will justify these approximations.

We focus on how change of the CAN current amplitude
affects the firing rate. Obviously, decaying CAN current will
result in decaying firing rate, but we will show that the rela-
tionship between CAN current and firing rate is linear. This
implies that CAN current that decays exponentially slowly over
time will result in exponentially decaying firing rate. To get a
further intuition behind the derivations below, one can think
that exponential decay of calcium is interrupted by calcium
influx every time a spike is generated. Since the time for which
each spike prolongs the calcium decay can be well approxi-
mated as a linear function of time (under the assumption that
new spikes are arriving rapidly with respect to the calcium
clearance time constant), the overall calcium decay turns out to
be approximately exponential. As overall calcium concentration
and the firing rate are coupled, they will decay in a same way.
The time constant of the exponential decay depends on the
calcium time constant on one side (larger time constant makes
the overall decay slower) and strength of CAN current on the
other (larger current makes the overall decay slower).

Let us first consider relationship between the CAN current
and duration of a single interspike interval. Observe that constant
amount of charge, call it Q, is needed to depolarize the cell from
the reset potential vr to the threshold potential vt:
Q5Cm vr2vtð Þ. Because there is no leak current, this amount is
the same for every interspike interval (see Fig. 2b) and satisfies

Q5

ðti1di

ti

iCANðtÞdt (6)

where di is duration of the ith interspike interval.
We consider now two consecutive intervals, such that the

first interval starts at t050. To find the dynamics of the firing
rate, we note that Q is the same for both spikes and

iCANðt0Þ
ðt1

0

e2t=sp dt5iCANðt1Þ
ðt2

t1

e2t=sp dt5Q (7)

where:

iCANðt1Þ5iCANðt0Þe2t1=sp1kCAN (8)

and

kCAN5�g CANa kCa �vm2ECANð Þ: (9)

As we will not focus on separately investigating the roles of
a, �vm, and ECAN, for simplicity we gather them in a single con-
stant c:
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g � a �vm2ECANð Þ (10)

We define d1 � t12t0 and d2 � t22t1. After solving the
integrals in Eq. (7) we have

e2d1=sp215 e2d1=sp1
kCAN

iCANðt0Þ

� �
e2ðd11d2Þ=sp2e2d1=sp

� �
: (11)

Under the assumption di=sp � 1, keeping first-order terms,
we find e2di=sp � 12 di

sp
. From Eq. (6), it follows that

iCANðt0Þ5 Q
d1

. Now we can write the ratio of two consecutive
interspike intervals as follows:

d1

d2
512

d1

sp
1

�g CANkCag

iCANðt0Þ
: (12)

We define firing rate R as a discrete function computed
from the interspike intervals di in a following way:
RðtiÞ � 1=di11;�i � 0.

Rðt0Þ
Rðt1Þ

512d1
1

sp
2

�g CANkCag

Q

� �
(13)

Equation (13) implies that the firing rate changes exponentially,
with a rate constant that can be computed from Eq. (13). In gen-
eral, if the firing rate R changes exponentially with time constant
sR, then for t050 we can write the ratio Rðt0Þ=Rðt1Þ as follows:

Rðt0Þ
Rðt1Þ

5
et0=sR

et1=sR
5e2

d1
sR : (14)

When the interspike interval is small relative to the time
constant of the firing rate, we can use a linear approximation:
e2di=sR � 12 di

sR
, which gives

Rðt0Þ
Rðt1Þ

512
d1

sR
: (15)

Now Eqs. (13) and (15) are easily comparable. For the
regime where the approximations hold

1. After a depolarizing input that causes spiking the firing rate
decays approximately exponentially

RðtiÞ � e2ti=sR (16)

2. The time constant of the decay, sR satisfies

1

sR
5

1

sp
2

�g CANkCag

Q
: (17)

Equation (17) conveys a great deal of information. If there is no
calcium influx during spikes (if kCa50) the time constant of the
firing rate decay will be equal to the time constant of the calcium
clearance (sR5sp). The last term in Eq. (17),

�g CANkCag

Q can not be
negative, thus the minimum possible value of the time constant

of firing rate decay sR is the value of the time constant of calcium
clearance sp. Increasing the calcium influx (kCa), the CAN cur-
rent maximal conductance (�g CAN) or decreasing the amount of
charge required for spike generation (Q) results in increasing the
time constant of the firing rate decay sR. Figure 3 shows the rate
constant 1=sR for varying sp and �g CAN—similar results would be
obtained for kCa or Q. When the right-hand side of Eq. (17) is
equal to zero the time constant is equal to infinity (this value is
marked with the black line on Fig. 3). This is an important
result; as long as the assumptions used in the derivation hold,
there is no upper limit to the time constant of decay.

The findings above provide a means to implement Eq. (1)
with long time constants. Because there are several parameters
that control the time constant, neurons with different values
for any of the parameters on the right-hand side of Eq. (17)
will have different time constants. To the extent the values of
these parameters can be manipulated rapidly, rapid changes in
the time constant are possible as required to implement a(t) in
Eq. (1). In the following section, we will perform a set of sim-
ulations to confirm that the full model exhibits exponential
decay, with a time constant specified by Eq. (17), for a wide
range of plausible parameters.

Simulations

We performed a set of simulation, using MATLAB (version
R2011a), with the integrate and fire single-compartment model

FIGURE 3. Rate constant of the firing rate (inverse of the
time constant 1

sR
) as a function of 1

sp
(inverse of the calcium clear-

ance time constant) and �g CAN (maximal conductance of the CAN
current ion channels). By controlling any of these two parameters
we can theoretically obtain arbitrarily value of the rate constant of
the firing rate decay. Notice that for some combinations of the
two parameters the firing rate starts to grow—the solid black line
indicates the zero values of the rate constant (time constant equal
to infinity), below which the firing rate grows exponentially. Simi-
lar results would be obtained if �g CAN was substituted by kCa (cal-
cium influx during spikes) or Q (the amount of charge required
for each spike). [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]
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described above. We used the full biophysical model of the
CAN current, as in Eqs. (4) and (5) (Traub et al., 1991;
Frans�en et al., 2002). Through the simulations we will confirm
that the simplifications are reasonable. Additionally, the simula-
tions will allow us to explore the parameter space and closely
observe how changing calcium clearance time constant sp, cal-
cium influx kCa, the CAN current maximal conductance �g CAN,
or the amount of charge required for spike generation Q affect
firing rate time constant sR.

Unless otherwise specified, values of the parameters of the
model were as follows. Discrete time step was set to 0.1 ms (test-
ing with lower time step did not change the results significantly).
Calcium influx during each spike was set to 4% of the initial cal-
cium concentration (presumably corresponding to a calcium

microdomain related with the CAN current, not to the overall
calcium concentration). The calcium clearance time constant sp

was set to 1 s, consistent with previous studies. [See e.g., Romani
et al. (2013); Sidiropoulou and Poirazi (2012) where sp was set
to 1.4 s, Mainen and Sejnowski (1996) where value of 0.2 s was
used or Royeck et al. (2008) where two clearance mechanisms
were used, one with time constant of 0.1 s and the other with
time constant of 1 s.] The value of �g CAN, the maximal value of
the CAN current ion conductance which determines the CAN
current maximal amplitude was set to 1 mho

cm2 . This choice is also
supported by results from other studies (e.g., Sidiropoulou and
Poirazi, 2012). As in Frans�en et al. (2002), parameters a and b
from Eq. (5) were set to 0.02 and 1, respectively. We set the spik-
ing threshold vt5240 mV, the reset potential vr5270 mV,

FIGURE 4. Simulated firing rate decays exponentially with
various time constant for different values of calcium clearance
time constant sp, conductivity of the CAN current channels �g CAN,
calcium influx during spikes kCa and the charge required for spike
generation Q. Top plot on each of the four figures shows firing
rate in linear scale, while bottom plots show firing rate in log
scale. Approximately straight lines in the log-plots confirm that
the overall decays can be well approximated as exponential. For
low firing rates (<1Hz), the decay deviates from exponential due
to increased inaccuracy in the time constant estimation. In each
plot, the parameter manipulated is displayed. The arrow shows the
ordering corresponding to increasing values of the parameter. (a)

Influence of sp on the firing rate. Following values of sp were
used: [1.4, 1.9, 2.1, 2.2, 2.25, 2.28]s. (b) Influence of �g CAN on the
firing rate. The following values of �g CAN were used:
½1:4; 1:9; 2:1; 2:2; 2:25; 2:28�1024 mho

cm2 . (c) Influence of kCa on the
firing rate. Following values of kCa were used: [0.5, 1.4, 1.9, 2.1,
2.2, 2.25, 2.28]/25. Calcium concentration is given as unitless
such that initial calcium concentration is normalized to value 1.
(d) Influence of Q on the firing rate. To change Q we changed
specific membrane capacitance cm, so it took the following values:
1=½0:5; 1:4; 1:9; 2:1; 2:2; 2:25; 2:28�lF=cm2. [Color figure can be
viewed in the online issue, which is available at wileyonlinelibrary.
com.]
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specific membrane capacitance to a value of 1 lF
cm2, and used a

cylindrical compartment with surface of 1024 cm2. Results to
follow will suggest that choice of these values was not critical—
the approximations used in the derivation are reasonable for a
wide range of parameters.

The four panels of Figure 4 shows the firing rate as a func-
tion of time for different values of four parameters on the
right-hand side of Eq. (17), sp, �g CAN; kCa, and Q. As the ana-
lytical results in the previous section suggest [see Eq. (13)],
when observed on a large time scale the overall calcium decay
can be well approximated with an exponential function. Figure
4 suggests that by changing any of the four parameters from
Eq. (17) (sp, �g CAN; kCa, and Q), we can obtain approximately
exponential decay with a wide range of time constants sR. By
tuning the parameters appropriately, we can achieve a firing
rate with virtually any time constant.

To get a sense of the error in the analytic results resulting
from the various approximations, we directly compared simu-
lated and analytically computed time constants sR for different
values of sp and �g CAN (Fig. 5). Analytical results correspond
well to the values obtained through the simulations, especially
for large time constant sR. When sR is small, its estimation
from the simulations becomes more difficult as only a few
spikes are available. Thus, the red dots which denote simulated
results on Figures 5a,b oscillate around the blue curves which
denote analytical results. This is due primarily to error in the
estimation of the time constant as an additional spike becomes
available before firing terminates entirely.

DISCUSSION

The aim of the proposed study was to demonstrate that
exponentially decaying firing with externally controlled time

constants that range up to several minutes is biologically plausi-
ble. This result is important to illustrate plausibility of a frame-
work for scale-invariant representation of stimulus history
(Shankar and Howard, 2012; Howard et al., 2014). This article
provides a proof of concept, rather than a biophysically
detailed model. A simple combination of well-known neural
mechanisms can account for exponential decay of the firing
rate. Variation across cells of any of the quantities on the right-
hand side of Eq. (17) would result in a variety of time con-
stants across cells. Rapid manipulation of any of the quantities
on the right-hand side of Eq. (17) would enable an external
signal to rapidly modulate the time constant, as required to
implement time varying a(t) in Eq. (1).

Potential Mechanisms for Rapid External
Manipulation of Time Constants

The simplicity of the proposed model allowed us to find an
analytical solution for the time constant of the firing rate decay,
which pointed out mechanisms to control it. The time con-
stant of the decay depends on the time constant of calcium
clearance, the maximum conductivity of the CAN current
channels, the amount of calcium influx during spikes and the
charge needed to cause each spike. Each of these four parame-
ters could be externally controlled, either through synaptic con-
nections or neuromodulators.

A range of experimental data support a potential role of acetyl-
choline in regulating the time constants of exponential decay of
persistent spiking. Maximal conductivity of the CAN current can
be modulated by changing the acetylcholine level (Klink and
Alonso, 1997; Egorov et al., 2002; Frans�en et al., 2002, 2006;
Yoshida and Hasselmo, 2009; Yoshida et al., 2012). Cholinergic
modulation will also influence the amount of charge necessary to
generate a spike by altering potassium conductances including

FIGURE 5. Comparison between simulated and analytically obtained time constants. The
analytic expression approximates well the simulation over a wide range of parameter values.
Inverse of the time constant of the firing rate 1=sR is given as a function of: (a) the inverse of
the time constant of calcium clearance sp and (b) maximal conductance of the CAN current
ion channels �g CAN. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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the leak potassium current and calcium-sensitive potassium cur-
rents (Klink and Alonso, 1997; Frans�en et al., 2002, 2006). This
functional role of acetylcholine is consistent with data showing
that blockade of muscarinic cholinergic receptors causes a reduc-
tion of persistent activity during a working memory task (Schon
et al., 2005; Hasselmo and Stern, 2006) and blockade of musca-
rinic receptors impairs learning of conditioning stimuli that must
be remembered across a trace interval (Bang and Brown, 2009;
Esclassan et al., 2009). The time course of cholinergic modula-
tion depends on how fast the concentration of acetylcholine can
change and on the time course of muscarinic receptor activation.
It has been shown that the levels of acetylcholine measured by
amperometry in cortex can increase and decrease within 1 or 2 s,
so the time constant of the change in acetylcholine concentration
at the receptor could be on the order of hundreds of milliseconds
(e.g., Parikh et al., 2007). It could possibly be faster as the amper-
ometry measurement technique might have time limits. Regard-
ing the time course of muscarinic receptor activation, even
though some earlier work showed that its time course to be of
the order of seconds in vitro (Hasselmo and Fehlau, 2001; Cole
and Nicoll, 1984), in vivo work suggests that it could be faster in
vivo (Linster and Hasselmo, 2000).

Any mechanism that can deliver a constant amount of charge
per spike into the cell will effectively change the amount of
charge necessary to generate a spike. One could imagine a num-
ber of simple circuits that might do this in an externally modu-
lated way. For instance, a circuit where the output of an
exponentially decaying neuron is connected to the input of some
control neuron which fires a burst of spikes each time the expo-
nentially decaying neuron fires a spike and is connected with the
input of the exponentially decaying neuron closing the feedback
loop. This control neuron will deliver charge to the exponentially
decaying neuron each time the exponentially decaying neuron
fires. If the number of spikes within each burst of the control
neuron is modulated by some control signal then the amount of
charge delivered to the exponentially decaying neuron will be
controlled by the same signal, consequently controlling the time
constant of the decay as well.

The slope of the f-I curve is determined by the amount of
charge necessary to generate a spike. Mechanisms that result in
change of the slope might be useful for controlling the time
constant, as long as they do not perturb the exponential decay.
One possible candidate could be dendritic inhibition. This
mechanism is presented in a study which combines slice elec-
trophysiology and computational modeling (Mehaffey et al.,
2005). The study shows that reduction of a depolarizing after-
potential, arising from active dendritic spike backpropagation,
by dendritic inhibition leads to change of the slope of the f-I
curve. If it affects the slope of the f-I curve, dendritic inhibi-
tion could rapidly change the time constant of a neuron under
external control.

Finally, the time constant of calcium clearance sp depends
on the number and rate of the protein mechanisms that con-
tinuously eject calcium ions out of the cell. Selective modula-
tion of either the number or the rate could affect the time
constant of calcium clearance.

Experimental Evidence for Gradually Decaying
Firing

Recordings in vivo and in vitro have already revealed the
existence of persistent firing and slowly decaying firing (see Fig.
1). For slowly decaying firing, the decay is typically fast in the
beginning and slower later, roughly resembling the exponential
function. In previous studies, slowly decaying firing has not
received as much attention as stable persistent firing. While the
proposed model can in principle account for stable persistent
firing [a time constant of infinity when the right-hand side of
Eq. (17)], this is unstable. Previous computational models of
stable persistent spiking have proposed an attractor mechanism,
based on advanced control of calcium dynamics that could
account for this stability (e.g., Durstewitz, 2003; Frans�en et al.,
2006). Stability around the stable firing rate regime has been
obtained using the variance of the intracellular calcium as a
control signal (Durstewitz, 2003) and by creating a neutral
zone insensitive to small calcium variations (Frans�en et al.,
2006). Similar mechanisms could account for stable persistent
firing in this framework as well.

CONCLUSIONS

Neurons with exponentially decaying firing rates with long time
constants that can be externally modulated are computationally very
powerful (Shankar and Howard, 2012; Howard et al., 2014). We
developed a simple computational mechanism based on known
properties that can generate exponentially decaying firing with arbi-
trarily long time constants. This is a necessary condition for imple-
menting a model for representing temporal history extending over
behavioral time scales (Shankar and Howard, 2012). To the extent
that the quantities on the right-hand side of Eq. (17) can be exter-
nally manipulated, the time constant of exponential decay could be
modulated by an external signal. This would allow for the represen-
tation of a number of variables other than time, including spatial
location and ordinal position (Howard et al., 2014). Systematic
experimental investigation of exponential firing in vitro could eluci-
date the effect of cellular-level parameters on time constants of
intrinsic firing. To the extent this computational framework for rep-
resenting temporal histories is important in brain function, such
studies could also inform systems level models of neural function
and even behavior (Howard et al., in press).
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