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Abstract

Dual-process theory hypothesizes that recognition memory depends on two
distinguishable memory signals. Recollection reflects conscious recovery of
detailed information about the learning episode. Familiarity reflects a mem-
ory signal that is not accompanied by a vivid conscious experience but
nonetheless enables participants to distinguish recently-experienced probe
items from novel ones. This dual-process explanation of recognition mem-
ory has gained wide acceptance among cognitive neuroscientists and some
cognitive psychologists. Nonetheless, its difficulty in providing a quanti-
tatively satisfactory description of performance in item recognition experi-
ments has precluded a consensus not only about the theoretical structure
of recognition memory but also about how to best measure recognition ac-
curacy. In two experiments we show that neither the standard formulation
of dual-process signal detection theory (DPSD) nor a widely-used single-
process model (UVSD) provides a satisfactory explanation of recognition
memory across different types of study materials (words and travel scenes).
In the variable recollection dual-process model (VRDP), recollection fails
for some old probe items, as in standard formulations of dual process sig-
nal detection theory, but gives rise to a continuous distribution of memory
strengths when it succeeds. The VRDP can approximate both the DPSD
and the UVSD. In both experiments it provides a consistently superior fit
across materials to the superset of the DPSD and UVSD. The VRDP offers a
simple explanation of the form of conjoint item-source judgments, something
neither the DPSD nor the UVSD can accomplish. The success of the VRDP
supports the core assumptions of dual-process theory by providing an ex-
cellent quantitative description of recognition performance across materials,
response criteria and type of response.
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Recognition memory is an essential human cognitive ability that enables one to iden-
tify stimuli—people, places and objects—as having been previously experienced. Much of
recent theory on the subject of recognition memory centers on what is known as two-process
theory, which hypothesizes that recognition relies on two separable memory signals, referred
to as recollection and familiarity. A common example should suffice to illustrate the distinc-
tion between these two components. All of us have had the experience of a chance encounter
with a person who seems like someone we have met, but who we cannot place. After a mo-
ment’s search of memory, we may succeed in recovering a detailed memory of the person
next to you at the checkout counter and remember, say, that she was the mother of one of
the guests at your daughter’s recent birthday party. The flood of specific, vivid, episodic
memories of the birthday party are referred to as recollection. The feeling of knowing that
this person is someone you’ve previously encountered, in the absence of detailed memories
for a specific event, is referred to as familiarity. Notably, we have all had the experience
that the memory search fails, i.e., familiarity without recollection. This illustrates a key
property that is central to theorizing about recollection—that it does not succeed for all
probes of memory.

Recognition memory is studied in the laboratory by presenting participants with
a list of to-be-remembered stimuli and then presenting them with a test list of probes.
Performance is expressed as a hit rate—the proportion of targets successfully identified as
part of the list—and false alarm rate—the proportion of lures incorrectly identified as part
of the list. Taken in isolation, neither hit rate nor false alarm rate tell us anything about
accuracy. Ideally, our measurement of discriminability should not change with changes
in the response bias. Any attempt to measure recognition discriminability, let alone the
separate contributions of recollection and familiarity is dependent on some model of the
relationship between hit rate and false alarm rate across multiple levels of response bias.

Recognition accuracy is often measured across levels of response bias using multiple
confidence ratings. Rather than making a binary response to a problem, the participant
expresses confidence that a probe item was on the list using, for instance, a seven-point
scale. The experimenter can then calculate hit rates and false alarm rates for six different
criteria. For instance, at the most stringent criterion we would count only responses of “7”
as yes ratings and calculate a hit rate and a false alarm rate. One then repeats the analysis
counting “6” or “7” responses as yes ratings and obtains a new hit rate and false alarm
rate. Continuing this process across all possible criteria results in six pairs of hit rates
and false alarm rates. Plotting the hit rates as a function of the false alarm rates yields a
receiver operating characteristic (ROC) curve. The debate about the form of ROC curves
has been extremely active, and sometimes heated, in recent years. The discussion has also
had implications for memory theory, in particular the question of whether recognition is
really subserved by recollection and familiarity or whether it is best described as a single
process.
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This debate has broad implications. Two process theory has captured the imagination
of much of the cognitive neuroscience community studying memory. Results implicating
two distinct physical sources for recognition include studies using scalp EEG (e.g. Duzel,
Yonelinas, Mangun, Heinze, & Tulving, 1997; Paller, Hutson, Miller, & Boehm, 2003; Rugg
& Curran, 2007), fMRI (e.g. Uncapher & Rugg, 2005; Yovel & Paller, 2004), human
neuropsychology studies (e.g. Aggleton et al., 2005; Holdstock et al., 2002; Verfaillie &
Treadwell, 1993; Yonelinas et al., 2002), as well as studies of recognition memory in non-
human species (Fortin, Wright, & Eichenbaum, 2004; Good, Barnes, Staal, McGregor, &
Honey, 2007). Yonelinas (1994, 2002) has developed a specification of dual-process theory,
which we will refer to as dual-process signal detection theory (DPSD) that makes predictions
about the shape of ROC curves. This work has been the subject (both pro and con) of several
high-impact publications in recent years (e.g. Fortin et al., 2004; Sauvage, Fortin, Owens,
Yonelinas, & Eichenbaum, 2008; Wais, Wixted, Hopkins, & Squire, 2006; Yonelinas, Otten,
Shaw, & Rugg, 2005). However, the DPSD has typically provided a worse quantitative
description of empirically-observed ROC curves than the unequal variance signal detection
model (UVSD), a competitor model that has typically been identified with single process
theory (but see Wixted, 2007a). In this paper we show that neither the DPSD nor the
UVSD provide a satisfactory account of the results across different stimulus materials. We
reject each of them as a general description of recognition accuracy across different levels
of response bias. We show that the variable recollection dual process model (VRDP), a
slightly different quantitative implementation of dual-process theory, provides a superior
account of the data to the superset of the DPSD and UVSD. Before describing the VRDP,
we describe the UVSD and the DPSD in some detail.

Two-parameter signal detection models

The UVSD and DPSD both inherit the basic assumption of signal detection theory.
Each memory probe generates a continuous decision variable, which we can think of as the
strength of evidence that the item was on the list. This strength is compared to a criterion
to determine whether to respond “yes” or “no” to the probe. An ROC is generated by
assuming that there are multiple criteria used to select the response. The UVSD and DPSD
differ in their assumptions about the properties of the distribution of strength induced by
old probes.

Figure 1, top row, illustrates typical response distributions, ROC curves and z-
transformed ROC curves (zROC) for the UVSD. The UVSD presumes that the distributions
of strengths for both old and new items are described by normal distributions. Two pa-
rameters control these distributions. The distance between the old and new distributions,
in units of the standard deviation of the new item distribution, is described by d′F . The
standard deviation of the old item distribution is controlled by another parameter, σF .
This second parameter enables the UVSD to generate ROCs that are asymmetric around
the diagonal. The UVSD generates the hit rate for the kth criterion using the following
equation,

P (‘yes’ ≤ k | old) = Φ
(
ck,−d′F /2, σF

)
, (1)

where ck is the response criterion for rating k and Φ (c, µ, σ) is the integral of the cumulative
probability density function of a normal distribution with mean µ and standard deviation
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Unequal-Variance Signal-Detection Model

Memory Strength

-4 -2 0 2 4 6 8

P
D

F

0.0

0.1

0.2

0.3

0.4

0.5

far

0.0 0.2 0.4 0.6 0.8 1.0

hr

0.0

0.2

0.4

0.6

0.8

1.0

z(far)

-4 -2 0 2 4

z(
hr

)

-4

-2

0

2

4

BA C

Dual-Process Signal-Detection Model
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Figure 1. Probability density functions (PDF) and receiver operating characteristics (ROC) and
z-transformed ROC (zROC) curves generated from the unequal-variance signal detection model
(UVSD, top) and the dual-process signal detection model (DPSD, bottom). A,D. Model PDFs.
B,E. ROC curve generated by the models. C,F. zROCs.

σ over the range from −∞ to c.1 In the UVSD, the false alarm rate for the kth criterion is
given by:

P (‘yes’ ≤ k |new) = Φ
(
ck, d

′
F /2, 1

)
. (2)

Note that the sign of the mean has changed relative to the old item distribution and that
the standard deviation of the new item distribution is one rather than σF .

The major difference between the UVSD and the DPSD is that the latter describes
the variability in the old item distribution as arising from the fact that a subset of the old
items are recollected whereas recollection fails to provide any useful information for the
remainder of the old items. The DPSD assumes that familiarity is an equal-variance signal
detection process that contributes to the discriminability of non-recollected items. Figure 1,
bottom row, illustrates typical response distributions, ROCs and zROCs for the DPSD.

In the DPSD, the hit rate is given by

P (‘yes’ ≤ k | old) = R + (1−R) Φ
(
ck,−d′F /2, 1

)
(3)

1Note that increasingly stringent criteria would be ordered from left to right in Figure 1, but increasingly
stringent criteria are given by decreasing numbers in the Equation 1. This accounts for the somewhat
counterintuitive negative mean for the old item distribution and positive mean for the new item distribution.
This is done here to be consistent with prior treatments of the models and the standard definition of Φ().



SOME-OR-NONE RECOLLECTION 5

while the equation for the false alarm rate is:

P (‘yes’ ≤ k |new) = Φ
(
ck, d

′
F /2, 1

)
(4)

Comparing the equation for the false alarm rate in the DPSD (Eq. 4) to that for the UVSD
(Eq. 2), we see that they are identical. However, the DPSD’s equation for the hit rate has
at least two important differences from the analogous equation for the UVSD. First, the
DPSD fixes σF at one. Second, this degree of freedom is replaced by the parameter R that
describes the proportion of recollected items. Note that in Eq. 3, recollected items receive
a yes response that is independent of the response criterion. That is, according to Eq. 3,
recollected items recover a strength of evidence that exceeds every response threshold,
resulting in a highest-confidence response for every old probe that is recollected. Items
that are not recollected (which happens with probability 1 − R) get no advantage from
recollection. This all-or-none property of Eq. 3 is not a necessary theoretical claim of the
DPSD (see e.g., Yonelinas, Dobbins, Szymanski, Dhaliwal, & King, 1996; Parks & Yonelinas,
2007a). It is nonetheless the case that previous Eq. 3 has been widely used in applications
of the DPSD and exhibits all-or-none recollection for old items. To anticipate, the VRDP
differs from the DPSD solely by relaxing the all-or-none property of Eq. 3. This more
detailed description of recollection is consistent with dual process theory more broadly,
as well as neurocomputational models of recollection (Elfman, Parks, & Yonelinas, 2008;
Norman & O’Reilly, 2003).

As can be seen from the middle column of Figure 1, the UVSD and DPSD produce
very similar ROC curves. However, the shape of the ROC curves that the two models
induce are not identical, which can be seen more clearly when examining their zROC curves.
The UVSD produces linear zROC curves with intercept d′F and slope 1/σO. In contrast,
the DPSD generates non-linear zROCs. The asymptotic slope of the DPSD’s zROC at
extremely liberal criteria (to the right) is unity, due to the fact that the DPSD does not
allow the standard deviation of the familiarity distribution to vary. The asymptotic slope
of the DPSD’s zROC at extremely conservative criteria (to the left of the figure) is zero.
This is a consequence of the property of Eq. 3 that recollected items always receive a yes
response no matter how stringent the response criterion. In the DPSD, the parameter d′F
controls the intercept of the liberal asymptote. The parameter R controls how far to the
left the zROC deviates from the liberal asymptote.

Despite the intuitive appeal of dual-process theory, the verdict from quantitative
analyses and examination of the shape of empirically observed zROCs has most often favored
the UVSD, although the evidence is somewhat mixed (see below). Dozens of studies have
described zROCs as linear with a slope of slightly less than unity (Diana, Reder, Arndt, &
Park, 2006; Glanzer, Adams, Iverson, & Kim, 1993; Glanzer, Kim, Hilford, & Adams, 1999;
Healy, Light, & Chung, 2005; Heathcote, 2003; Ratcliff, Sheu, & Gronlund, 1992; Rotello,
Macmillan, & Reeder, 2004; Slotnick & Dodson, 2005; see Wixted, 2007a for a recent review
of the empirical evidence in favor of the UVSD over the DPSD).

In addition to the findings from item recognition, which have tended to support the
UVSD, another line of research that has been used to criticize the the DPSD comes from
conjoint item-source ratings. In source recognition experiments, participants respond on
the basis of the detailed quality of their memory for a probe. For instance, the participant
may be presented with a list of words, half of which are presented in a female voice and
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half of which are presented in a male voice. A source judgment at test would require
participants to select the voice in which a particular probe item was presented. In conjoint
item-source ratings (Yonelinas, 1999; Slotnick & Dodson, 2005) participants first give an
old-new item rating to each probe, followed by a source rating. The key finding that raises
potential problems for the DPSD is the finding that the source ROC calculated for items
that have received a highest-confidence rating is curvilinear and closely approximates an
equal-variance signal detection model. This is discrepant from the linear ROC one would
expect from an all-or-none recollective signal. Although Parks and Yonelinas (2007a) argue
that the key data can be addressed within the DPSD by assuming that both recollection and
familiarity can support source judgments, they have not published predictions of conjoint
item-source ratings illustrating that this assumption is sufficient to provide a satsifactory
account of the data. We show that dual-process theory can easily account for these data if
the all-or-none property exhibited by Eq. 3 is relaxed.

Most authors have taken the evidence against the DPSD as contradicting the as-
sumption that there are two distinct processes, rather than one variable process, underlying
recognition memory (e.g., Glanzer et al., 1999; Heathcote, 2003; Slotnick & Dodson, 2005).
Recently, however, Wixted (2007a) argued that two-process theory can be described by
the UVSD model if there is some degree of recollection for every item and recollection and
familiarity combine in an additive fashion. If familiarity and recollection are both described
as normal distributions, then their sum is also a normal distribution, with the standard
deviation of the distribution of the sum equal to the sum of the standard deviations of the
underlying distributions. Because recollection only succeeds for old items, the result is a
normal old item distribution with a greater variance than the new item distribution. This
dual-process interpretation of the UVSD radically alters how recollection is conceived by
assuming that all old items receive some boost from recollection.

Of course this reinterpretation of dual-process theory is unnecessary if it turns out
that the UVSD fails to provide a satisfactory description of the empirical data. While the
majority of the zROC curves that have been reported are described as linear, a number
of studies have reported zROCs with significant deviations from linearity, consistent with
the predictions of the DPSD model (Fortin et al., 2004; Howard, Bessette-Symons, Zhang,
& Hoyer, 2006; Sherman, Atri, Hasselmo, Stern, & Howard, 2003; Yonelinas, 1999). This
discrepancy may be attributable to study materials; findings that report linear zROCs have
almost exclusively used words as stimuli, whereas studies that find curvilinear zROCs have
usually used other kinds of materials (Howard et al., 2006 and Sherman et al., 2003 used
travel scenes; Fortin et al., 2004 used odors).2

There is evidence to suggest that in some instances both the UVSD model and the
DPSD model fall short of adequately characterizing recognition accuracy. In order to fit sub-
tle deviations from linearity in zROC curves from item recognition studies, DeCarlo (2002)
proposed a mixture signal detection model (see also DeCarlo, 2003a; Hilford, Glanzer, Kim,
& DeCarlo, 2002). DeCarlo (2002) explained the mixture of the old item distributions as
a consequence of discrete modulation of attention during encoding, such that old items are
either encoded into a high-attention state or a low-attention state. The discontinuity in
encoding results in a model in which the old item distribution is described as two distinct

2Unpublished secondary analyses of the travel scene recognition data in Schwartz et al., (2005) also show
non-linear zROC curves.
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normal distributions. Similarly, Sherman et al. (2003) found that neither the UVSD nor the
DPSD could adequately describe the performance of participants administered the cholin-
ergic antagonist scopolamine. The zROC curve for patients administered scopolamine was
nonlinear, but inconsistent with that predicted by the DPSD, with a pronounced “kink” in
the middle. To accommodate this result, Sherman et al. (2003) implemented a variant of
the DSPD model that included a graded recollection component. A similar some-or-none
model has been proposed for associative recognition (Kelley & Wixted, 2001; Macho, 2004,
see Yonelinas & Parks, 2007 for a recent review).

The VRDP: a model of some-or-none recollection

Here we argue that a some-or-none dual process model, which we will refer to as the
variable-recollection dual-process model (VRDP), provides a more general solution to de-
scribing recognition accuracy than either the UVSD or the DPSD. The VRDP model builds
upon the dual-process framework of Yonelinas (1994). However, unlike Eq. 3, when an old
item is recollected, it does not necessarily receive a highest-confidence response. Instead,
recollected items give rise to a distribution of strengths of evidence which are then com-
pared to the response criteria. When considering item recognition in isolation, the VRDP
model is mathematically equivalent to mixture signal detection (DeCarlo, 2002). However,
unlike the explanation of DeCarlo (2002), which is relatively noncommittal about the psy-
chological source of the two old item distributions, the VRDP makes the strong prediction
that two old item distributions being mixed correspond to familiarity and recollection, with
correspondingly different qualitative properties. These properties lead to strong predictions
when one considers conjoint item-source ratings (this is discussed in detail below).

The VRDP has three key parameters: d′F , d′R, and R (plus, of course, criteria). The
familiarity distribution is characterized by d′F (the distance from the lure distribution in the
units of the common standard deviation), with a standard deviation of 1. The probability
that an old probe is recollected is given by R. The center of the recollective distribution
in relation to the familiarity distribution is indexed by d′R. The equation for the hit rate is
given by:

P (‘yes’ ≤ k | old) = R Φ
(
ck,−d′F /2− d′R, 1

)
+ (1−R) Φ

(
ck,−d′F /2, 1

)
(5)

while the equation for the false alarm rate is:

P (‘yes’ ≤ k |new) = Φ(ck, d
′
F /2, 1) (6)

Comparing these to the Equations for the DPSD (Eqs. 3 and 4) we see that the sole
difference is that the first term in the hit rate equation includes a distribution, weighted by
R, that must be compared to the criterion. That is, rather than recollected items receiving
a highest confidence rating, recollected items generate a continuous strength of evidence
drawn from a normal distribution. This value is then compared to the response criteria.
As a consequence, recollected items are compared to the response criteria and give rise to a
range of responses rather than simply receiving a highest-confidence response as in Eq. 3.

The VRDP model can closely approximate both the UVSD and the DPSD for ap-
propriate choices of parameters (Figure 2). When d′R is small, the old recollective and
familiarity distributions overlap considerably (Figure 2A). The ROC generated as a result
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Figure 2. The variable recollection dual-process (VRDP) model can approximate the properties
of both the unequal variance signal detection model (UVSD) and the dual-process signal detection
model (DPSD). Probability density functions (PDF) and receiver operating characteristics (ROC)
and zROCs generated from the VRDP. Parameters were chosen such that the VRDP approximates
the unequal-variance signal detection model (UVSD) in the upper panels (d′

F = 0.75, d′
R = 1.50,

and R = 0.40) and the dual-process signal detection model (DPSD) in the lower panels (d′
F = 0.75,

d′
R = 4.00, and R = 0.40). A,D. Model PDFs. Dotted lines indicate the location of the underlying

target distributions. B,E. ROC curve generated by the model. C,F. zROCs.

is curvilinear and asymmetric (Figure 2B); the zROC closely approximates a straight line
with a slope of less than one (Figure 2C). On the other hand, when d′R is large, the recol-
lective and the familiarity distributions are quite distinct (Figure 2D). The resulting ROC
is curvilinear and asymmetric, intersecting with the hits axis close to the value of R (Fig-
ure 2E). The corresponding zROC curve has a noticeable ‘upward’ bend, consistent with
the predictions of the DPSD model (Figure 2F). In the limit as d′R grows without bound, all
recollected items exceed the (finite) highest-confidence bound and Eq. 3 is recovered. That
is, as d′R goes to infinity, the VRDP becomes identical to the DPSD.

Although the VRDP is clearly more flexible than either the UVSD or the DPSD, it
cannot take on an infinite range of values. Figure 3 illustrates the family of zROC curves
generated by the VRDP. The VRDP is limited to asymptotic slopes of one in both the liberal
and stringent directions (assuming that d′R 6= ∞). The value of d′F controls the intercept of
the liberal asymptote. The value of d′R controls the difference between the intercepts of the
liberal and conservative asymptotes and the value of R controls where the transition takes
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Figure 3. The effect of R and d′
R on zROC curves generated by the VRDP model. A: R was

increased from 0 to 1 in increments of 0.2 (setting d′
F = 1.5 and d′

R = 2.5). For R = 0 and R = 1,
the z-ROC curve is a straight line with a slope of unity. For intermediate values of R, the z-ROC
curve shifts from the straight line corresponding to the familiarity distribution to the straight line
corresponding to the recollective distribution, with the value of R controlling the location and the
steepness of the transition. B: d′

R was increased from zero to 3.75 in increments of 0.75 (fixing
R = 0.35 and d′

F = 1.5). The value of d′
R controls the intercept of the bottom straight line.

place. Notably, the VRDP can generate “kinked” zROC curves that resemble neither those
predicted by the UVSD nor the DPSD (Sherman et al., 2003; DeCarlo, 2007, 2002).

Although the ability to fit item recognition zROCs is an important property of any
model of recognition accuracy, item recognition zROCs alone will not be sufficient to resolve
all of the debate. It is probably possible to write down a variant of the UVSD that includes
a parameter for skew that would be able to generate nonlinear zROCs comparable to those
predicted by the DPSD. Even if one accepts that the equations supporting the VRDP
provide the best description of item recognition ROC curves, it is still possible that the
psychology behind the model is incorrect. For instance, one could imagine a single-process
model that happens to give rise to bimodal old item distributions. The mixture model of
DeCarlo (2002) is usually understood in this sense, although his work can also be read more
broadly. The dual-process interpretation of the VRDP predicts that the recollected probes
should elicit conscious recovery of at least some details about the study episode whereas
probes that are not recollected should not provide any details about the study episode.
Unlike single-process interpretations of a bimodal old-item distribution, the VRDP makes
specific predictions regarding the conjoint item-source recognition. In particular, the VRDP
predicts that old items recognized on the basis of familiarity should not give rise to source
discriminability whereas old items recognized on the basis of some recollection should give
rise to source discriminability.

These considerations lead to a two-dimensional variable-recollection model of conjoint
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item and source judgments (Figure 4a). In conjoint item recognition, a probe is first judged
as old or new, followed by a source discrimination decision. To set a criterion for an item
decision, we would draw a horizontal line through the response distributions projected
onto the item axis (the y-axis in Figure 4a). Conservative item criteria correspond to the
top of the figure. Source judgments correspond to setting a vertical criterion through the
distribution. The parameter d′S describes the discriminability of the recollected items on
the source dimension.

When projected onto the source dimension, this two-dimensional VRDP model is
mathematically identical to the mixture signal detection description of source recognition
proposed by DeCarlo (2003a, see also Hilford et al., 2002). DeCarlo (2002, 2003a) proposed
a mixture signal detection model of the old item distributions in both item recognition
(DeCarlo, 2002) and source discrimination (DeCarlo, 2003a; Hilford et al., 2002) tasks. In
both cases, the explanation for the mixture was a discrete attentional process. If one makes
the identification that the item mixture and the source mixture are the same mixture, then
the two-dimensional VRDP results. This identification does not necessarily follow from the
attentional encoding account proposed by DeCarlo (2002). Indeed, DeCarlo (2003b) himself
pursued an explanation of conjoint item-source recognition that did not make this identifi-
cation. Moreover, Wixted (2007a) accepted mixture signal detection as an explanation of
source ROCs in the context of discussing conjoint item-source ratings while maintaining that
the UVSD describes the marginal item recognition response distributions. If the identifica-
tion of the two mixtures is made, however, then the implication is that the high-attention
old items retrieve source information in the item recognition task whereas low-attention
old items retrieve item information but not source information. At that point, the differ-
ence between position of DeCarlo (2002, 2003a) and a dual-process theory becomes one of
semantics.

Figure 4a gives a graphical description of the two-dimensional VRDP. The ellipses
refer to multivariate normal distributions viewed from above, with the lines indicating a
point of equal probability for each distribution, analogous to a topographic map. There are
a total of four distributions of evidence, corresponding to new items, old items for which
recollection fails and two distributions for which recollection succeeds, separated by the
source in which the item was encoded. Distributions higher on the plot have more strength
of evidence in an item recognition test. Distributions centered along a vertical line at the
center of the figure, the new item distribution and old item distribution for which recollection
fails, do not generate source discriminability. Recollected items are both higher along the
item axis and more discriminable on the source axis. Old items which fail to generate
recollection are higher on the item axis but not discriminable on the source dimension. To
generate response probabilities, item criteria are generated by drawing a horizontal line on
the graph. Source criteria would be represented as vertical lines at a particular level of
item rating (we allow the source criteria to change across levels of item confidence). The
probability of making a particular pair of item and source ratings is generated by taking
the integral of the distributions over a rectangular region of the two-dimensional space.

The two-dimensional VRDP can be formalized as follows. For an old item presented
as part of the left source, the probability of a response of at least c, where c is a a point
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Figure 4. Two dimensional signal detection models for item and source judgments. A. The variable
recollection dual process signal detection model (VRDP) leads to a natural model of conjoint item-
source accuracy. The horizontal dimension reflects source strength, the vertical axis reflects item
strength. Closed figures represent multivariate test probe distributions viewed from above, as in a
topographic map. Recollected old probes (dark shading) lead to high item strength and also source
discriminability. Old items that are not recollected do not result in source discriminability but do
lead to item discriminability (light shading). New items are shown by the unshaded curve. B. The
two-dimensional signal detection model proposed by DeCarlo (2003). The fact that item and source
discriminability are correlated with one another requires that for very low values of item confidence,
old items should show negative source discriminability as the two distributions cross.

describing an item criterion and a source criterion, respectively is given by

P (response ≤ c | old& left) = R Φ (c,µL,σS) + (1−R) Φ (c,µF , I) , (7)

where Φ now refers to the integral of the multivariate normal distribution, µL describes the
mean of the recollective distribution for items presented on the left, located at the point
(−d′F /2 − d′R,−d′S/2) and σS is a matrix with diagonal elements 1 and σS and zero off-
diagonal terms. That is, we assume that item and source strengths are independent within
the recollected distribution, but allow the standard deviation in the source dimension to
vary. The second term in Eq. 7 describes the old familiarity distribution, which is centered
at µF , which is the point (−d′F /2, 0); the identity matrix I indicates that the item-source
distribution for non-recollected old items is circular. The equation for old items presented
on the right source is identical except that the recollected distribution would be located at
µR = (−d′F /2− d′R, d′S/2).

For the new items, the probability of a response is given by

P (response ≤ c |new) = Φ (c,µN , I) , (8)

where the two-dimensional normal distribution is located at µN = (d′F /2, 0).
Although conjoint item-source ratings have been used to argue against a straightfor-

ward interpretation of the DPSD, the data also argue against a straightforward interpre-
tation of the UVSD. The most straightforward way to implement the UVSD in a conjoint
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item-source task is to assume that there is a two-dimensional distribution of item-source
strength with correlated dimensions. This follows from the dual-process interpretation of
the UVSD proposed by Wixted (2007a) if one makes the identification that recollection
should consistently give rise to source discriminability (see also Mickes, Wais, & Wixted,
2009). That is, in Figure 4b, the old items are characterized by a mixture of three ellip-
tical distributions. In a straightforward two-dimensional UVSD, the default assumption is
that as item strength for a probe from one source increases, source discriminability also
increases. As illustrated in Figure 4b, this assumption leads to two ellipses meeting in a
V-shape (DeCarlo, 2003b).

Uncorrelated item-source distributions (e.g. Banks, 2000; Glanzer, Hilford, & Kim,
2004) are falsified by the finding that source discriminability decreases with the item rating
given to an item (Slotnick, Klein, Dodson, & Shimamura, 2000; Slotnick & Dodson, 2005).
Although the correlated multi-dimensional UVSD (DeCarlo, 2003b) can fit some aspects of
the conjoint item-source rating, detailed predictions were not published until quite recently
(Hautus, Macmillan, & Rotello, 2008).3 The correlation between item and source infor-
mation predicts that with continuing decreases in item ratings, the V-shaped distributions
cross over so that the model predicts reversed source discriminability for old items receiving
a low item rating. Put another way, the V-shape observed at a particular probability is
really the upper half of an X-shaped pair of distributions that would be observed at lower
probabilities. Hautus et al. (2008) showed this prediction leads to poor fits to the observed
data and proposed several adjustments to the model to try and reconcile the correlated
UVSD account with the observed pattern of data.

The dual-process assumption of the VRDP implies a qualitative difference in the
amount of source discriminability offered by the recollected items and the familiar old items.
At high levels of item confidence, the VRDP predicts curvilinear ROCs approximating those
predicted by an equal variance signal detection process—imagine taking a horizontal strip
through the two recollected distributions at the top of Figure 4a. As item confidence is
reduced, the horizontal strips describing source discriminability are dominated more and
more by the familiarity distribution. This carries no source information, so the result is
an ROC curve along the diagonal. Although these familiar old probes carry no source
discriminability, they nonetheless are distinguished from the new probe distribution on the
item dimension and can thus support above-chance discriminability in an item recognition
task.

Overview of Experiments

In the experiments that follow we will evaluate the fit of the UVSD, DPSD, and
VRDP models to words and travel scenes. In Experiment 1, we demonstrate that neither
the UVSD nor the DPSD provide a consistently superior description across study materials,
while the VRDP provides an excellent fit to both types of materials. Experiment 2 replicates
these findings in a study that collects conjoint item and source judgments.

3Although Slotnick and Dodson (2005) in some sense fit the UVSD model to their conjoint item-source
data, they did so by estimating a separate d′ and criteria for each level of item rating. While this is useful in
describing the shape of the source ROCs, this does not constitute an internally consistent two-dimensional
account of item and source judgments.
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Our modeling work touches on both item and source memory. With respect to item
recognition, we compare the two parameter models, the UVSD and DPSD to each other
across study materials. We find that neither model provides a satisfactory account across
materials, with the UVSD consistently outperforming the DPSD for word stimuli and the
DPSD consistently outperforming the UVSD for travel scene stimuli. We therefore reject
both the UVSD and the DPSD as a common model of recognition accuracy across materials.
We then compare the three parameter VRDP to two other three parameter models. One
model is a superset of the UVSD and DPSD. That is, d′F , σF and R are allowed to vary
(with d′R = ∞). This superset model is extremely flexible, with the ability to attain any
zROC curve that either the UVSD or the DPSD can attain, and an additional set that
neither the UVSD nor the DPSD, nor indeed the VRDP, can reach. The other three-
parameter model we compare to the VRDP is a variant of the UVSD with encoding failure
that was suggested by (Wixted, 2007b) to account for curvilinear zROC curves observed
with pictorial materials.

In the source memory realm, we show that the VRDP provides an excellent description
of conjoint item and source data. In particular, the VRDP is able to provide a good
description of source accuracy at different levels of item confidence, a major source of
criticism for previous dual-process models of item recognition (Slotnick & Dodson, 2005;
Wixted, 2007a). This demonstration also provides support for a key qualitative prediction
of the VRDP—source discriminability is restricted to the old items that receive high item
confidence ratings, while for a large number of old probes item recognition is above chance
even though source discriminability is completely absent.

Experiment 1: Item Recognition of Words and Travel Scenes

In order to resolve the extensive debate about whether the UVSD or the DPSD is a
superior model of item recognition, we conducted a test of item recognition with multiple
levels of confidence. Because prior results arguing for the superiority of the UVSD relied
almost exclusively on data using words as stimuli, type of study material, words or travel
scenes, was a between-subjects variable. We evaluated the results at the subject level
by fitting the UVSD, DPSD, and VRDP models to the individual participants’ response
distributions, and at the group level by fitting the models to group zROC curves.

Method

Participants. A total of 267 Syracuse University undergraduates participated in the
experiment for course credit. Participants were tested individually. All participants were
native speakers of English. The participants studied either words or travel scenes. Par-
ticipants’ data were not analyzed further if they did not follow the task directions as in-
structed or had item recognition accuracy below a d′ of 0.5 as estimated from the intercept
of the best-fitting straight line fit to the zROC. Twenty-seven participants were excluded
from the word condition and twenty were excluded from the travel scene condition, leaving
n = 116 for words and n = 104 for travel scenes. Although this exclusion criterion may
seem somewhat stringent in that a relatively large number of participants are excluded, it
is particularly important given the goals of this paper that we exclude participants with
poor performance. All of the models under consideration are perfectly able to account for



SOME-OR-NONE RECOLLECTION 14

no discriminability between old and new items; the models make differentiable predictions
only for participants who demonstrate robust discriminability.

Materials. Stimuli were presented on Dell desktops with 19-inch flat-screen monitors.
The word pool was constructed from the MRC Psycholinguistic Database (Coltheart, 1981).
The stimuli were all nouns 5-8 letters in length (mean 6.69), with an average frequency of
3.84, presented in capital letters in the center of the screen. Travel scenes came from the
pool previously used in Howard et al. (2006). They included a variety of scenes from around
the world depicting various natural, urban, and community landscapes, cultural events, and
flora and fauna. Images that were obviously emotionally salient to a large proportion of
viewers (e.g., the World Trade Center in New York City) were eliminated from the pool. Any
images with writing were also excluded. Travel scenes were presented as digital pixmaps
with a resolution of 350 x 232 pixels.

Procedure. Each participant studied six lists of 64 items (words or travel scenes).
Presentation order was assembled randomly and independently for each participant. Stimuli
remained on the screen for 1000 ms, followed by a 500 ms blank screen. After each list
presentation, participants were given 128 probes, 64 new and 64 old, randomly intermixed.
In response to each probe, participants rated the confidence of their memory on a scale from
1 (absolutely certain new) to 8 (absolutely certain old). They were instructed to use all
eight buttons and cautioned against using extreme ratings exclusively. After each response,
the program automatically advanced to the next test item. Prior to the experiment, the
participants were familiarized with the procedure and completed a brief practice task. They
were encouraged to take short rest breaks after each study-test block. Each participant
contributed a total of 786 responses over six lists (384 old test items and 384 new test
probes).

Analyses. For quantitative analyses the models were fit to each participant’s response
distribution via maximum likelihood estimation (MLE). Models were optimized using Mi-
crosoft Excel’s Solver routine (Microsoft Corporation, 2007) by minimizing −

∑
i Ni log pi,

where Ni is the number of responses in category i and pi is the probability of response i
predicted by the model. The sum runs over all eight response categories for both hits and
false alarms. The models were also fit using SAS proc nlp (SAS Institute, 2005). The results
from SAS fits were virtually identical to the fits produced by MS Excel 2007, hence only
the Excel fits will be reported. For both the SAS fits and the Excel fits, multiple starting
parameter values were used and the best-fitting solution was selected. We constrained the
mean of the recollective old item distribution of the VRDP to be greater than that of the
familiarity old item distribution, d′R > 0. In fitting the VRDP, we also constrain d′F ≥ 0 to
avoid overfitting.

Negative log likelihood calculated across subjects was used to compare models with
the same numbers of parameters. In addition, we report the number of subjects best-fit
by each model. These analyses showed convergent results. An appendix reports comparing
models with different numbers of parameters.

To assess the ability of the models to describe the qualitative properties of the partic-
ipants’ item recognition performance, we fit the models to the group zROC curves by using
a box-constrained quasi-Newton method (R function optim with method “L-BFGS-G”) to
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Figure 5. Item recognition ROC curves for Experiments 1, and 2 (upper panels), with zROCs
averaged across individuals (lower panels). The zROC panels show the fit of the VRDP model to
words (solid line) and travel scenes (dashed line). The dotted line is the best fitting linear regression
to the word data.

minimize the squared distance between the model zROC points and the points of the group
zROC curve, weighted inversely by the square of the standard error of the mean.

Results and Discussion

Qualitative fits to group zROC curves.
In order to characterize the zROCs from the two types of materials, we plotted average

zROC curves by calculating each participant’s zROC curve, then averaging each point.
Figure 5 shows the results of this analysis, along with the fit to the group curve from the
VRDP. For words, we observed a nearly-linear zROC curve (filled symbols) whereas the
zROC we observed for travel scenes (open symbols) showed a reliable non-linearity similar
to that predicted by the DPSD. To ensure that the VRDP model was able to describe
the qualitative properties of recognition accuracy across materials, we fit the VRDP model
to the group zROC data. As can be seen from Figure 5, the VRDP model provided a
qualitatively satisfactory fit to group zROC curves for both words and travel scenes. The
best-fitting parameters for the fit to the word data were d′F = .40, d′R = 1.84, and R = .47.
The best-fitting parameters for the fit to travel scenes were d′F = .45, d′R = 2.48, and
R = .44. The pattern in the fitted parameters paralleled the findings from the fits to
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Negative log-likelihood Number best-fit
n UVSD DPSD UVSD DPSD

Exp. 1 words 104 133,019 133,077 63 41
travel scenes 116 141,150 141,008 44 72

Exp. 2 words 75 70,143 70,241 44 31
travel scenes 75 69,517 69,444 26 49

Table 1: Significant differences between models are denoted by the use of bold symbols to denote the
best-fitting model. Note: n = number of participants; UVSD = Unequal-Variance signal detection
model; DPSD = Dual-Process signal detection model;

the individual response distributions that we will report shortly. Examination of Figure 5
demonstrates that the VRDP model captured both the nearly-linear nature of the word
zROCs and the apparent curvature of the travel scene zROCs. Neither the UVSD nor
the DPSD can capture both of these types of zROC curves. As might be expected from
Figure 5, the UVSD provided a better fit to the group zROC for the word condition than
did the DPSD; the converse was true for the group zROC for the travel scene condition.

Fitting individual response distributions.
In order to determine if the deviation from the qualitative patterns of zROC data

predicted by the UVSD and DPSD were statistically reliable, we first compare the fits of
the UVSD and the DPSD to performance across materials (see Table 1). For words, the
negative log-likelihood was lower for the UVSD than the DPSD model, indicating that the
UVSD model produced a better fit to the ensemble of participants. Conversely, for travel
scenes, the DPSD model produced a better fit to the ensemble of participants than the fit
of the UVSD. One can use the negative log-likelihoods of the two models to calculate the
conditional that one model is correct given that one of the two is correct. This calculation is
closely analogous to Akaike weights (Wagenmakers & Farrell, 2004), although the models do
not differ in number of parameters. According to the conditional probability, the difference
in likelihoods between the models is hugely significant. The conditional probability that
the DPSD is correct for words (given that one of the two models is correct) is less than
10−25; the conditional probability that the UVSD is correct for travel scenes is < 10−61.
The difference in the models’ abilities to describe the data produced by different types of
materials was not due to anomalous results from a small number of participants. Table 1
also reports the numbers of participants best-fit by the UVSD and DPSD. At the individual
participant level, the UVSD fit better than the DPSD for 63 out of 104 participants, p < .02,
whereas for travel scenes the DPSD fit better than the UVSD for 72 out of 116 participants,
p < .01. The proportion of participants best-fit by each model was significantly different
across materials, χ2(1) = 10.37, p < .001.

The foregoing analyses suggest that neither of the two-parameter models widely in
use in the recognition memory literature provides a satisfactory account of recognition
accuracy across materials. Therefore we reject each of them as an account of the results of
Experiment 1. We next compared the VRDP to two three-parameter models suggested by
the literature. One is the superset of the UVSD and the DPSD, each of which is widely-
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Negative log-likelihood Number best-fit
VRDP Superset VRDP Superset

Exp. 1 words 132,883 132,928 73 31
travel scenes 140,821 140,870 74 42
combined 273,704 273,798 147 73

Exp. 2 words 70,060 70,069 40 35
travel scenes 69,351 69,365 42 33
combined 139,411 139,434 82 68

Table 2: Comparison of the VRDP to a three parameter model that is a superset of the UVSD and
DPSD.

used in the recognition memory literature. The other is the UVSD with encoding failure
for a subset of items. This model was suggested to account for nonlinear zROCs in item
recognition of travel scene data by Wixted (2007b)

It would not make sense to accept either of the two-parameter models over the other
because we have strong evidence that type of study material interacts with the preferred
model. This suggests the possibility that there is not a common model of recognition
performance. Perhaps when people recognize words they use the UVSD, but when they
recognize travel scenes they utilize the DPSD. Perhaps a proportion of participants use the
UVSD and another proportion use the DPSD. Perhaps participants can switch back and
forth across materials, or even across lists. Because the understanding of recollection is so
different in the two frameworks (Wixted, 2007a; Parks & Yonelinas, 2007a), this possibility
is theoretically extremely unappealing. Fortunately, it can be directly tested.

We fit a three-parameter model with d′F , σF and R allowed to vary (with d′R = ∞).
This model is the superset of the UVSD and DPSD. It can generate any data that either the
UVSD or DPSD can. In addition, it can also exhibit phenomena that neither the UVSD
nor the DPSD are capable of exhibiting. For example, the superset model can generate
non-linear zROC curves with an asymptotic slope different from one for liberal criteria
and an asymptotic slope of zero for stringent criteria. It should be noted that the VRDP
cannot exhibit precisely linear zROC curves with slope different from one nor zROCs with
asymptotic slopes different from one in the liberal criteria. That is, the set of zROCs the
superset model can exhibit is larger than the superset of the zROCs the UVSD and the
DPSD can generate, and disjoint in at least two ways from the set of zROCs that the VRDP
can generate.

Table 2 illustrates the results of comparing the VRDP to the superset of the UVSD
and DPSD. As can be seen from Table 2, the VRDP was more likely than the superset
model for both words, conditional p < 10−19, and travel scenes, conditional p < 10−21

in Experiment 1. In addition, the proportion of participants better fit by the VRDP was
significantly greater for both words, p < .001 and travel scenes, p < .002.

Wixted (2007b) attempted to reconcile the finding that there appear to be non-linear
zROCs, as suggested by the DPSD, for travel scene data with the UVSD. He suggested the
possibility that in situations where the presentation rate is relatively fast not all items may
be encoded (see also DeCarlo, 2002). To address whether this possibility provides a superior
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Negative log-likelihood Number best-fit
VRDP UVSD-EF VRDP UVSD-EF

Exp. 1 words 132,883 132,928 69 35
travel scenes 140,821 140,951 87 29
combined 273,704 273,879 156 57

Exp. 2 words 70,060 70,103 52 23
travel scenes 69,351 69,462 67 8
combined 139,411 139,565 119 31

Table 3: Comparison of the variable recollection dual process model (VRDP) to the unequal variance
signal detection model with encoding failure (UVSD-EF).

account of the data than the VRDP, we compared the VRDP model with a 3-parameter
variant of the UVSD which allowed for encoding failure. To fit this model we added a
parameter to the UVSD controlling mixing with a distribution of old items identical to
the new item distribution.4 The UVSD with encoding failure has sufficient flexibility to
generate non-linear zROCs as well as linear zROCs with arbitrary slope.

Table 3 shows that for Experiment 1, the VRDP provided a much-superior fit to that
data compared to that of the UVSD with encoding failure. The UVSD with encoding failure
provided a worse fit than did the VRDP for both words, conditional p < 10−19, and travel
scenes, conditional p < 10−56. This difference was not due to a few anomalous participants.
The VRDP fit better for 69 out of 104 participants for words, p < .001, and 87 out of 116
participants for travel scenes, p < .001. This finding suggests that our results cannot be
accommodated within the framework of the UVSD by including encoding failure.

Estimates of parameter values derived from fitting the VRDP model to the item
response distributions from Experiment 1 are shown in Table 4. There were no differences
between the mean estimates of d′F or R across materials. There was, however a reliable
difference between the estimates of d′R, t(218) = 3.70, p < .001. For comparison purposes,
parameter estimates for the fits of the UVSD and the DPSD models are also presented in
Table 4, but caution should be exercised in interpreting these values as neither UVSD nor
DPSD provide an acceptable fit to the response distributions across materials. However, it is
certainly the case that the conclusions about the separate effects of material on recollection
and familiarity depend dramatically on which model one uses to measure accuracy and the
interpretation of those parameters.

4In general there are five parameters that can be fit in a one-dimensional mixture model in addition to
the criteria. In addition to the parameters of the VRDP, R, d′

F , and d′
R, one can also imagine σF , from

the UVSD, and σR being allowed to vary. The UVSD, DPSD and VRDP all reside within this general
framework. For instance, the DPSD is achieved with σF = 1, d′

R = ∞ and R and d′
F allowed to vary. In

this framework, the UVSD can be achieved in two ways, either with R = 0 and d′
F and σF allowed to vary

or with R = 1 and d′
R and σR allowed to vary. To model the UVSD with encoding failure, we started from

the second realization, fixed d′
F = 0 and allowed R to vary.
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VRDP Model UVSD Model DPSD Model
words travel scenes words travel scenes words travel scenes

Experiment 1
d′F .30 (.03) .35 (.03) d′F 1.38 (.07) 1.59 (.08) d′F .68 (.03) .57 (.03)
R .51 (.02) .49 (.02) σF 1.49 (.04) 1.67 (.04) R .29 (.02) .38 (.02)
d′R 2.55 (.12) 3.17 (.11)

Experiment 2
d′F .51 (.05) .62 (.04) d′F 2.06 (.12) 1.96 (.10) d′F .97 (.04) .87 (.05)
R .59 (.02) .51 (.02) σF 1.64 (.04) 1.71 (.05) R .39 (.02) .41 (.02)
d′R 2.92 (.15) 3.60 (.16)

Table 4: Parameter values obtained by fitting the VRDP, DPSD, and UVSD models to individual
response distributions. Numbers in parentheses are standard errors. Parameter estimates from the
UVSD and DPSD models should be interpreted with caution, as in most cases they do not provide
optimal fit to data. Bold face is given for parameters significant (p < .05) for the comparison between
words and travel scenes.

Experiment 2: Conjoint Item and Source Recognition

Experiment 1 demonstrated that the VRDP provides a good description of item
recognition accuracy across criteria and for different materials. However, Experiment 1
did not directly evaluate the VRDP’s dual-process interpretation of mixture signal detec-
tion. One could imagine a psychological motivation for mixture signal detection other than
dual-process theory that would have yielded an identical description of the item recognition
data (e.g. DeCarlo, 2002). The dual-process interpretation of the VRDP implies a quali-
tative difference in the type of information available for recollected and non-recollected old
items. The dual-process framework predicts that there will be no source information asso-
ciated with familiarity-based retrieval and that only recollected items can support source
judgments.

The present experiment used both item and source judgments on each recognition
probe. This experiment had two goals. First, we wanted to replicate the findings of Ex-
periment 1 by fitting the VRDP to the marginal item recognition data. Second, we wanted
to evaluate the dual-process interpretation by simultaneously fitting item and source judg-
ments. If the dual-process interpretation is correct, then there should be a large number of
old items with no source discriminability, but reliable item discriminability.

Method

Participants.
Data from one hundred fifty Syracuse University undergraduates who participated in

the study for course credit were used in the analyses. Participants were tested individually.
Half of them were randomly assigned to study lists of words; half to study sets of travel
scenes. Participants were replaced if they did not follow the task directions as instructed
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(typically using only extreme response keys) or had item recognition accuracy below a d′ of
0.5 as estimated from the intercept of the best-fitting straight line fit to the zROC. Eighteen
participants were replaced in the word condition; nine in the travel scene condition.

Materials. The stimuli and the apparatus were the same as those used in Experi-
ment 1. However, pilot testing showed that there was a dramatic difference in the source
accuracy of visually-presented words and travel scenes. In an attempt to boost item and
source accuracy for the words they were presented both visually and auditorially in Exper-
iment 2. Words were digitized for auditory presentation in a male and a female voice.

Procedure. The study phase was the same as in Experiment 1, with the following
exceptions. Each participant studied six lists of 50 items (words or travel scenes). Three
untested items were added before and after each study set. Each stimulus was shown for
2 seconds; between presentations, a 500-ms fixation cross appeared in the center of the
screen. Within each set, half of the items were presented on the left and half on the right
side of the screen. To improve retention, stimuli were encased in a frame of a specific color
(red or green) and words were also spoken in a male or a female voice. The pairings for
each participant were consistent throughout the entire experiment. Pictures of travel scenes
were only presented visually. The participants were instructed to form associations between
studied items and the source features.

For each test probe (old and new), the participants first rated their memory for the
item on a scale of 1 to 9 (i.e., 1 = very sure new; 9 = very sure old), and then rated their
memory for the location of the item, also on a 9-point scale (1 = very sure left; 9 = very sure
right). All participants were informed that location was redundant with the color of the
frame. Participants in the word condition were informed that location was also redundant
with the gender of the voice speaking the word. Participants were advised that one reason
they may not remember the location of a probe was because the probe was not presented
during the study phase. The same set of computer keys was used to make the item and the
source judgments. To visually separate the item scale from the source scale, the item scale
disappeared once a response was made; immediately after, the source scale appeared on the
screen slightly below where the item scale had been. Each participant contributed a total of
600 responses on the item recognition test (300 responses were made to the items presented
at study, and 300 to new, never-presented probes) and a total of 600 source responses. Of
these, 150 were old items from the left or the right sources each and 300 were in response
to new items.

Analyses.
Analyses on the marginal response distributions for the item judgments were con-

ducted using the same methods as Experiment 1. Hautus et al. (2008) demonstrated that a
straightforward two-dimensional implementation of the UVSD provides a poor qualitative
fit to conjoint item-source data. In addition, several authors have argued that the form of
conjoint item-source ratings argue against the DPSD out of hand (e.g., Slotnick & Dodson,
2005; Slotnick et al., 2000; Wixted, 2007a, but see Parks & Yonelinas, 2007a). For these
reasons, our interest was not in competitive model-fitting, but rather demonstrating that
the dual-process VRDP was able to account for the qualitative pattern of results describing
source discriminability across different levels of item ratings while also accounting for the
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shape of the item ROC.
The two-dimensional VRDP source model was fit to the conjoint item-source response

matrix comprised of group data, by maximizing the negative log-likelihood of the probability
of response in each cell given the model predictions. The decision to do the fits at the
group level was largely motivated by the dramatic sparsity of large regions of the response
matrices, which was even more pronounced at the individual participant level. The fits
were calculated using Microsoft Excel’s Solver routine. As illustrated in Figure 2a, the free
parameters of the VRDP model consisted of d′F , dR, R, plus the source discriminability dS

and standard deviation σS . In addition, we estimated 8 item criteria and 72 source criteria
(i.e., 8 source criteria for each of the nine levels of item confidence).

Results and Discussion

Item recognition: Qualitative fits to group zROC curves. Figure 5 shows ROC curves
and zROC curves for the item judgments in Experiment 2. As in Experiment 1, the travel
scene data showed non-linear zROCs compared to the more-linear zROCs for word data. In
contrast to Experiment 1, the difference between materials in overall accuracy was atten-
uated, presumably due to auditory and visual presentation of word stimuli. As in Exper-
iment 1, the VRDP model provided an excellent qualitative fit to the group zROC curves
(Figure 5, bottom right). The best-fitting parameters for the fit to the word data were
dF = .64, dR = 2.20 and R = .61. The best-fitting parameters for the fit to travel scenes
were dF = .73, dR = 2.72 and R = .51. The model was able to capture the nearly linear
zROC curve from the word data as well as the curvilinear zROC curve from the travel scene
data.

Item recognition: Individual response distributions.
We first compared the ability of the UVSD and DPSD models to describe item recog-

nition across materials using the marginal item recognition response distributions. The
results are shown in Table 1. As in Experiment 1, the UVSD model resulted in a smaller
negative log-likelihood than the DPSD for words, whereas the opposite was true for travel
scenes. The UVSD provided a better fit for 44 out of 75 participants in the word condition,
p = .08. In contrast, the DPSD fit better for 49 out of 75 participants in the travel scene
condition, p < .001. These proportion of participants best-fit by each model differed across
materials χ2(1) = 7.74, p < .01.

As in Experiment 1, neither the UVSD nor the DPSD provided a superior fit across
materials. Rather, the model that provided the best fit changed systematically across
study materials. Unlike in Experiment 1, there was not an overall advantage in accuracy
for travel scenes in Experiment 2, and the encoding conditions were quite distinct. Despite
these procedural differences and a moderation of the difference in the overall accuracy across
materials, we confirmed the theoretically unsatisfying result that neither the UVSD nor the
DPSD provides a general description of the data.

As in Experiment 1, the VRDP provided a superior fit to the two three-parameter
models we considered. Table 2 shows that the VRDP vastly outperformed the three-
parameter model that is a superset of the UVSD and DPSD. The conditional probabil-
ity of the superset model was less than .0002 for words, less than 10−6 for travel scenes
and less than 10−9 for words and travel scenes taken together. As in Experiment 1, the
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number of participants best-fit by the VRDP was greater than the number best-fit by the
superset model for both words or travel scenes, although this number was not significantly
greater than what would be expected by binomial variability. Table 3 shows the results
of comparing the VRDP to the variant of the UVSD with encoding failure suggested by
Wixted (2007b). The conditional probability of the UVSD with encoding failure was less
than 10−18 for words, less than 10−48 for travel scenes and less than 10−110 for the data
across materials. The VRDP outperformed the UVSD with encoding failure for 52 out of
75 participants for words, p < .001, and for 67 out of 75 participants for travel scenes,
p < .001. Combined with the results from Experiment 1, these findings strongly suggest
that the VRDP provides a better description of the item recognition data than the superset
of the UVSD and the DPSD and that encoding failure within the framework of the UVSD
is not sufficient to account for our observation of non-linear zROCs in the travel scene data.

Best-fitting parameter values for the VRDP can be found in Table 4. In Experiment 2
both R, t(148) = 2.70, p < .01, and dR, t(148) = 3.07, p < .01, differed reliably between
words and travel scenes.

Despite a smaller difference in overall item recognition performance across materials
than found in Experiment 1, and other differences in the methods, modeling of individual
participants’ marginal response distributions replicated the critical aspects of the modeling
in Experiment 1. Considering the UVSD and the DPSD, neither model provided a con-
sistently superior fit across materials. The VRDP model also provided a superior fit to a
three-parameter variant of the UVSD with encoding failure and even to the superset of the
UVSD and DPSD.

Conjoint item and source recognition.
For the data from the word condition, the fits settled on dF = .78, dR = 2.48, R = .44,

dS = 3.13, and σS = 1.09. For the data from the travel scenes condition, the fits settled on
dF = .65, dR = 2.42, R = .47, dS = 2.29, and σS = .93. A graphical representation of the
parameters, along with the values of the criteria can be seen in Figure 6. It is interesting
to note that the best-fitting values of σS did not differ dramatically from unity, suggesting
that circular distributions may be sufficient. It is also interesting to note that the source
criteria are decidedly not constant across levels of item confidence. That is, the value of
a particular source criterion at one level of item confidence is not the same as the value
of that source criterion at another level of item confidence. This can be seen clearly from
examination of Figure 6B, which illustrates the best-fitting parameters for the travel scene
condition. The source criteria start closely placed near the center of the distributions at
high level of item confidence (at the top of the figure), then spread out for lower-confidence
ratings. This reflects the property that most new items received very low-confidence source
ratings (i.e., ratings near 5). Hautus et al. (2008) noted that curvilinear source criteria could
result from using decision bounds calculated from fixed likelihood ratios. The comparison
between the present model the the models explored in Hautus et al. (2008) will be explored
more extensively in the general discussion.

The best-fitting ROC curves for the conjoint VRDP model are shown in Figure 7.
The VRDP model provided an excellent qualitative fit to the source response matrix con-
ditionalized on the level of item confidence. According to the VRDP, old items that receive
a high item confidence rating will be almost exclusively recollected. Under these circum-
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Figure 6. Graphical representation of the best-fitting parameters from the conjoint item-source
ratings in Experiment 2. Item criteria are shown as horizontal lines that extend across the entire
figure. Shading illustrates regions with the same source rating. That is, source criteria appear as
vertical line segments separating regions with different shading. A. Words. B. Travel scenes.

stances, the some-or-none assumption means that the model generates source ROCs that
approximate the equal-variance signal detection model. An all-or-none model would predict
that the ROCs should be linear. As the item ratings decrease, the model passes through
a mixture of the recollection and familiarity distributions, settling on a source ROC with
chance discriminability for items that that do not receive a high-confidence item rating.

The data show this same pattern of results, with items that receive an item con-
fidence rating of less than seven or eight showing source discriminability that was not
different from chance. This outcome is consistent with the hypothesis that item recognition
is characterized by two qualitatively different processes, familiarity and recollection, and
that recollection fails for a subset of old items. If recollection contributed useful source
information for all old items then there should be some source information for all old items.
This assertion is not supported by the data in Figure 7.5

However, it remains possible that there are not two qualitatively different processes
supporting recognition memory. It is possible that the items that received low item recogni-
tion confidence ratings also failed to show item recognition discriminability as well as failing
to show source discriminability. In this case, the most parsimonious explanation would be
that old probes that received low item confidence ratings were not encoded at all. In order
to assess this, we undertook additional analyses.

Discontinuity between item and source discriminability. To assess the memorability of
items that attracted different levels of item confidence, we constructed item zROC curves
cumulated across different combinations of confidence ratings, separately for words and
travel scenes. The zROCs were constructed for responses 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, and

5It is possible that recollection does contribute some information to all items, but that this information
is ignored for those items that receive an item rating below some threshold. This possibility is discussed
more extensively in the general discussion.
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Figure 7. The VRDP model fit to conjoint item and source ROCs. A: Source memory ROCs
conditional on item recognition. The open symbols are the data. The curves depict the model fit.
Data from the word condition of Experiment 2 is on the left. Data from the travel scene condition
is on the right. B: Fits to the item recognition ROC from the conjoint item-source fit in panel A.
hr = hit rate; far = false alarm rate.

1-3 (Figure 8). As can be seen from the figure, for the lower item confidence ratings, the
item zROC curves were approximately linear with a slope approaching one. Critically, the
intercept for all zROC curves was reliably above zero, indicating that there was reliable
item discriminability for probes that attracted lower levels of item confidence. Note that
above-chance item discriminability was observed even for items given an item rating of “3”
or lower on a nine-point scale.

To illustrate this finding in another way, Figure 9 shows source accuracy (d′), as a
function of item recognition accuracy (intercept of a linear regression to the item zROC).
Source and item accuracy are reported first for all probes (top right of each panel). Each
successive point gives source and item accuracy for probes given a more restricted range of
item ratings. For instance, the next point gives source and item accuracy calculated only
from probes given an item rating from 1-8. Successive points take an increasingly restricted
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Figure 9. Source discrimination as a function of item recognition accuracy for words (left) and
travel scenes (right) in Experiment 2. On the x-axis, an estimate of item discrimination (defined
as the intercept of the zROC) is plotted across the cumulated item ratings along with the 95%
confidence intervals. On the y-axis, source accuracy, expressed as d′ is given. The rightmost point
in each panel reflects item and source accuracy for all responses (i.e., item recognition confidence
ratings 1 through 9). The second point from the right corresponds to estimates of item and source
accuracy calculated only for probes assigned item ratings 1 through 8, and so on, with the leftmost
point in each panel corresponding to probes assigned ratings 1 through 3.
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range of ratings down to probes given item ratings 1-3 for the point in the lower-left of each
panel. While item recognition accuracy at each level of confidence was significantly greater
than chance (all ps < .01, note that the error bars in Figure 9 are 95% confidence inter-
vals), source accuracy, on the other hand, was at above-chance levels only for ROC curves
constructed from ratings 1 through 9 and 1 through 8 for both words and travel scenes and
ratings 1 through 7 for words only. Notably, the function relating source discriminability
to item discriminability shows that at lower confidence levels, the values cluster around a
point on the source discriminability axis, but reliably away from zero on the item discrim-
inability axis. If recollection leads to source discriminability, this result is not what one
would expect if all items were recollected, which would predict all old items should have
some source discriminability. It is also not consistent with the hypothesis that a subset of
studied items were not encoded at all, which would predict that item discriminability for
these items would also be zero.

General Discussion

The results of the experiments and model-fitting described above provide strong sup-
port for a dual-process, variable-recollection description of recognition accuracy. Model
fits to individual response distributions revealed that the unequal-variance signal-detection
model (UVSD) provided a better fit to the word recognition data than the dual-process
signal-detection model (DPSD). However, the reverse was true for the travel scenes (Ta-
ble 1). The cause of this difference in the ability of the models to account for the data across
materials is almost certainly the existence of zROC curves that diverge from the qualititive
predictions of each model (compare Figure 1 with Figure 5). This discrepancy indicates
that neither the UVSD model nor the DPSD model provides a satisfactory description of
recognition accuracy across materials.

A some-or-none dual-process model (VRDP) provided an excellent qualitative de-
scription of the zROCs across materials (Figure 5). As a consequence, it fit the item
recognition data better than the superset of the UVSD and DPSD across both types of
materials (Table 2). The VRDP also provided a superior fit across materials to the UVSD
with encoding failure (Table 3), a model proposed by (Wixted, 2007b) to account for non-
linear zROCs observed with pictorial stimuli (Sherman et al., 2003; Howard et al., 2006).
The VRDP, like the DPSD, assumes that recollection can fail. However, when recollec-
tion succeeds variability in the amount of recollected information can lead participants to
select a variety of confidence ratings. With appropriate choice of parameters, the VRDP
can approximate both the UVSD and the DPSD, generating zROCs that are nearly linear
or zROCs with a pronounced curvature (Figures 2, 5). The dual-process interpretation of
mixture signal detection (DeCarlo, 2002) that the VRDP makes leads to strong predictions
about the nature of conjoint item/source recognition (Figure 4a). The VRDP provided an
excellent qualitative description of empirically-observed conjoint item and source accuracy
(Figure 7). In particular, the VRDP predicted that old probes that are not recollected have
no source discriminability but have reliable item accuracy on the basis of familiarity. We
saw just this result for old items that received lower levels of item confidence (Figures 8, 9).
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Figure 10. Distribution of parameter values for the superset model (A) and the VRDP (B). Values
are shown from Experiment 1. Each subject in the word condition is shown in red; each subject
from the travel scene condition is shown in blue. The superset model organized subjects into two
clusters—UVSD-like participants and DPSD-like participants (see especially the middle plot in the
right column of R as a function of σF . In contrast, the VRDP provides a continuous description of
variability across participants.

Neither the UVSD, nor the DPSD, nor the UVSD and the DPSD describe the data

We compared the VRDP to a model that is a superset of the UVSD and DPSD.
This superset model, which has the same number of parameters as the VRDP, can take
on a wide variety of states that the the VRDP cannot. Nonetheless, the VRDP provided
a fit superior to that of the superset model across both experiments (Table 2). This is
presumably due to the VRDP’s ability to generate zROC curves with a kink (Sherman et
al., 2003; DeCarlo, 2007), a property not shared with the superset model. However, even if
the superset model had provided a numerically superior fit to the VRDP, it would still be
theoretically unsatisfactory.

Figure 10 shows the best-fitting parameter values for each subject in Experiment 1
for the superset model (Figure 10A) and the VRDP (Figure 10B). The superset model
describes participants as falling into one of two distinct clusters. The superset includes one
cluster of UVSD-like participants with R ' 0, σF > 1 and relatively large values of d′F . In
addition, there is a cluster of DPSD-like participants with R > 0, σF ' 1 and relatively
smaller values of d′F . Very similar results were observed for Experiment 2. According to the
superset model, participants either behave like the UVSD or the DPSD—no participants
manifest a combination of the two models. That is, no participants showed both a high
degree of recollection R � 0 and unequal variance (σF � 1). Note that because the VRDP
can approximate both the UVSD and the DPSD, these are precisely the parameters that
yield predictions qualitatively different from the VRDP—yet they are never observed.

Although the parameters of the superset model lead one to conclude that participants
must behave like either the UVSD or the DPSD rather than a combination between the
two, the number of participants in each cluster of parameters changes across materials!
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The fact that the allocation of participants changes across conditions implies that at least
a subset of participants must be able to approximate each model. But then why wouldn’t
these participants be able to draw on both sources of information rather than choose one or
the other? In contrast, the VRDP makes the hypothesis that the linear (or nearly-linear)
zROCs with slope less than one observed in some data and the non-linear zROCs observed in
other experiments are a result of the same cause, but with a different parametric value. We
conclude that the superset of the UVSD and DPSD, in addition to showing a numerically
inferior fit to the data (Table 2) is also theoretically much less satisfactory than the VRDP.

Measuring recognition accuracy

One of the goals of descriptive models, like the UVSD, DPSD and VRDP, is to provide
a means to solve the problem of how to measure recognition accuracy. One of the potential
advantages of the VRDP is that it offers the ability to measure separate properties of
recognition. However, there is much work to do before the VRDP can be widely adopted
as a practical means of measuring recognition accuracy. There is no guarantee that a given
ROC curve can be described by a unique set of 3 parameters. When the estimate of R
approaches 0 or 1, the target item distribution becomes unimodal and the model loses
the ability to distinguish between d′F and d′R. A unimodal normal distribution can be fit
reasonably well by a model with a high d′F value and a very small d′R value (i.e., setting
R = 0), or a model with a very small d′F value and a large d′R value (i.e., setting R = 1).6

The above considerations make clear that in the context of the VRDP, the finding of ROCs
consistent with an equal-variance signal detection process is not by itself evidence for an
impairment in either familiarity or recollection.

Another question of practical application concerns one’s ability to estimate the pa-
rameters of the VRDP model by examining the ROC or the response distributions. Unlike
the UVSD, which is guaranteed to provide easily interpreted results for any experiment that
generates a linear zROC curve, for the VRDP there is at present no substitute for directly
fitting the model to the data. It is also possible that the parameters of the model can
trade off with each other in practice, especially when there are not a great many responses
to constrain the data. Work on the sampling statistics of the VRDP analogous to that
undertaken for the UVSD (Macmillan, Rotello, & Miller, 2004) to estimate the effects of
decision error on parameter estimates (e.g. Malmberg & Xu, 2006) would also be a welcome
development.

We should note that the VRDP is almost certainly not sufficiently complex to provide
a truly detailed model of recognition accuracy. Our analyses average over a number of vari-
ables known to affect recognition performance, including list number, test position, serial
position and word frequency. An accurate model would have to also include these sources
of variability, as well as a number of other variables. It is also possible that our results were
affected by the relatively large number of response options we used and the large amount
of data we collected. Nonetheless, at least for these data, the two-parameter models failed.
This is particularly problematic from a measurement perspective. Most researchers typi-
cally only use a one-parameter model to measure recognition accuracy (common measures

6A third possibility would occur when the recollective and the familiarity distributions lie on top of each
other, in which case d′

F = d′
R, and R can take on any value.
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include d′, proportion correct and A′). The investigation of the effects of experimental ma-
nipulations on the two-parameter models have barely begun. If recognition discriminability
is a three-dimensional quantity, as our results strongly suggest, then this means that we
know essentially nothing about the separate effects of experimental manipulations on d′F ,
d′R and R. These distinctions may prove to have important implications for substantive
models of recognition performance.

Empirical issues in item recognition

Our conclusions constitute a meaningful departure from the UVSD that has been the
dominant measure of recognition accuracy for the last decade and a half. However, our
empirical data do not differ substantively from what has been reported previously for either
item recognition or source memory. Wixted’s (2007a, 2007b) empirical argument that the
UVSD model provides a superior fit to that of the DPSD in describing item recognition
accuracy was based on the review of studies that have almost exclusively considered words
as stimulus materials. The data from our word condition can be included in this category;
in both experiments, the UVSD model outperformed the DPSD model when fit to the word
data. Our empirical results for travel scenes, and the finding that the DPSD outperforms the
UVSD for travel scene data, are also consistent with what has been reported previously (e.g.,
Howard et al., 2006; Sherman et al., 2003). Our source recognition data are comparable to
other studies as well—for example, the source ROCs separated by item strength (Figure 7)
appear very similar to the ones described by Slotnick and Dodson (2005). The consistency
of our observations with previous reports makes it unlikely that our conclusions stem from
some peculiarity in how the data were collected. Moreover, the size of our sample makes
an explanation based on random variation unlikely: across the two experiments there are
more than 250,000 item recognition responses and an additional 45,000 source responses.

Our results demonstrate that there are reliable differences in the shape of zROC
curves for words and travel scenes. According to the VRDP model, these differences are
largely attributable to a larger d′R for travel scenes than for words. Indeed, analysis of
model parameters showed a reliable difference in the magnitude of d′R across both experi-
ments. In Experiment 2, words were encoded both auditorially and visually. Overall levels
of item recognition (and source) accuracy were comparable for travel scenes and words in
Experiment 2, but there was still a reliably larger d′R for travel scenes than for words. In
Experiment 2, the probability of recollection was greater for words than for travel scenes,
perhaps due to the additional set of source features available for the words, which were pre-
sented both auditorially and visually. It is interesting to speculate why d′R tends to be larger
for the travel scenes. It is possible that the travel scenes possess more unique perceptual
details, resulting in greater discriminability during test if those details are retrieved.

Regardless of the source of the differences between words and travel scenes, the fact
that the DPSD and the UVSD differentially fit across materials suggests that some of the
apparent debate in reconciling other studies with one another may be at least partially
attributable to differences in study materials. Fortin et al. (2004) found that the data from
an odor recognition task performed by rats were fit better by the DPSD than the UVSD
model. Notably, Fortin et al. (2004) found nearly-linear ROCs (and thus highly non-linear
zROCs) for rats presented the odor recognition task at a delay. This finding cannot be
reconciled with the dual-process theory interpretation of the UVSD. In contrast, Wais et al.
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(2006) found ROCs consistent with an equal-variance signal detection model with a delay
in a word recognition task with human adults. These experiments differ radically not only
in their procedure and subjects, but also in the nature of the stimulus materials, which
the present results have shown are sufficient to alter the quality of model fits even under
carefully controlled circumstances.

The VRDP can explain both the linear ROCs observed by Fortin et al. (2004) and the
symmetric curvilinear ROCs observed by Wais et al. (2006) as disruptions of familiarity.
The VRDP can explain the linear ROCs observed with a delay by Fortin et al. (2004)
as resulting from a d′F of zero and a very large value of d′R with a non-zero value of R.
If recollection is a some-or-none process, as postulated by the VRDP, then the Wais et
al. (2006) findings are also perfectly consistent with the gradual decrease of a recollective
process, only with a more modest value of d′R. Notably, we observed relatively modest values
of d′R for words relative to travel scenes even without a delay in the current study. Within
the context of the VRDP, the apparent discrepancy between the Wais et al. (2006) data and
the Fortin et al. (2004) findings disappears. We should caution that while both the findings
of Fortin et al. (2004) and Wais et al. (2006) are consistent with a decrease in the efficacy
of familiarity with a delay, one is not forced into this interpretation by the VRDP. Strictly
speaking, the presence of symmetric ROCs for patients with disruptions to the hippocampus
observed by both Fortin et al. (2004) and Wais et al. (2006) do not by themselves imply
that the hippocampus is essential for recollection in the context of the VRDP. Because the
VRDP is a mixture of two equal-variance signal detection models, a more symmetric ROCs
could, in principle at least, be either the result of depressed recollection (R near zero) or
intact recollection with a high probability of recollection accompanied by a small d′R. The
choice must be made on the basis of considerations external to those provided by the model
as a measurement tool. These considerations lead us to strongly favor the interpretation
that hippocampal damage is causing a disruption of recollection rather than familiarity in
the case of hippocampal damage (see also Farovik, Dupont, Arce, & Eichenbaum, 2008;
Robitsek, Fortin, Koh, Gallagher, & Eichenbaum, 2008; Sauvage et al., 2008).

Alternative theoretical approaches

The question of whether the UVSD or the DPSD provides a better account of recog-
nition memory (Parks & Yonelinas, 2007a, 2007b; Wixted, 2007a, 2007b) appears to have a
clear resolution—they are both insufficient to describe recognition accuracy. This does not
mean, however, that the VRDP is correct. There are undoubtedly alternative approaches
outside the scope of models that have thus far been explored.

Nonlinear zROC curves falsify a key qualitative prediction of the UVSD. There are
a number of ways these might be reconciled. One may appeal to guessing as a means to
introducing nonlinearities to distort an otherwise linear zROC (Ratcliff, McKoon, & Tindall,
1994; Malmberg & Xu, 2006). The challenge to such an approach from the present findings
is why guessing appears to have little to no effect for words but a large effect when studying
travel scenes.

Another approach to account for our item recognition findings comes from the idea
that the distribution of strengths of the evidence supporting an item recognition judgment
is non-normal but unimodal. A particularly promising aspect of this line of research is
that it could be conducted in the context of substantive models of recognition accuracy.
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Although the Shiffrin and Steyvers (1997) REM model can make distributions of evidence
that are nearly normal, it is capable of exhibiting a much wider range of behavior. In
addition, BCDMEM (Dennis & Humphreys, 2001) also generates non-normal strength-of-
evidence distributions. The variety of zROCs generated by these models may be sufficient to
account for the variety of findings observed here. The challenge for models of this class will
be to account for the finding that a large proportion of old item probes generate essentially
no source discriminability but robust item discriminability in a single-process framework
(Figure 9).

One possibility is that study events are described as a series of features, some of which
are relevant for an item decision and some of which are relevant for a source judgment. When
faced with an item judgment, a different set of features is consulted than when presented
with a source discrimination judgment. Heathcote, Raymond, and Dunn (2006) explored
the potential of task-dependent cue matching to explain various phenomena ascribed to
recollection. If features are discretely encoded and/or retrieved, then the presence of a set
of old items with no source discriminability but above-chance item discriminability makes
sense—those are items that failed to encode or retrieve the features relevant for the source
discrimination.

Task-dependent cue matching of discrete features may be usefully contrasted with the
VRDP by examining the predictions made in situations where multiple source dimensions
can be queried (in the current study, there were multiple source dimensions but they were
redundant with each other). According to the VRDP, recollection is a precondition for re-
trieving any conscious details of the experience. Because the evidence induced for recollected
items is continuous, there is no guarantee that all source features are retrieved perfectly,
but there should be strong correlations between success in retrieving one source dimension
and another when taken across items that do and do not succeed in triggering recollec-
tion. Indeed, positive correlations between source dimensions are observed in multifeatural
source studies (Meiser & Bröder, 2002; Meiser, Sattler, & Weisser, 2008; Starns & Hicks,
2005) with some evidence that positive correlations are restricted to items given remember
responses when the remember-know procedure is utilized (Meiser & Bröder, 2002; Meiser et
al., 2008). Although a single-process explanation of our results based on task-dependent cue
matching of discrete features may be possible, the challenge would be provide a principled
account of correlations among source features for some probes without that explanation
amounting to a qualitatively different process.

Another way to attempt to account for the finding that a large population of old items
show no source discriminability but above-chance item discriminability without appealing
to dual-process theory is to alter straightforward multivariate signal detection theory (De-
Carlo, 2003b) to attempt to overcome its counterfactual predictions. Hautus et al. (2008)
demonstrated that a straightforward application of multivariate signal detection theory fails
to describe basic qualitative features of conjoint item-source ratings. As discussed above,
the correlation between item and source information observed at high levels of item confi-
dence induces a reversal in source discriminability at very low levels of item confidence. The
result is source ROCs conditionalized on item ratings that go below chance (see Figure 7
in Hautus et al., 2008). To rectify this problem and provide an increasingly good descrip-
tion of the data, Hautus et al. (2008) incrementally induced three changes to the DeCarlo
(2003b) model: likelihood ratio bounds, the assumption of source guessing for items not
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given a “yes” item response, and the assumption that some old items were sampled from
a third distribution.7 The location of this additional distribution was quite similar to the
old-familiarity distribution used here.

The modeling approach of Hautus et al. (2008) in describing conjoint item-source
ratings includes several potential advances over the methods used here. Rather than fitting
separate source criteria for each level of item confidence, as was done here, likelihood ratios
provide a principled way to generate curved source criteria across levels of item confidence.
Interestingly, although we used a very different approach to generating source criteria, the
results of our fitting result in at least a coarsely similar set of source criteria contours
over the higher item confidence ratings (compare Figure 6 with Figure 8 in Hautus et al.,
2008). However, the other modifications introduced by Hautus et al. (2008) are designed to
overcome a weakness inherent in the multidimensional single-process account that generates
the item-source distributions. This weakness in the multidimensional single-process model
may be the factor that necessitated the guessing modification. We note that this weakness
is not present if one starts from the assumptions of the VRDP about the output of the
memory system.

The idea is that participants know that there are new items included in the probes, so
that when presented with an old item that they have not rated as old, they do not process
the probe for source information—which would result in below-chance source information
if they used the DeCarlo (2003a) model to generate strength—and instead make a guess.
Although Hautus et al. (2008) reached a different conclusion, this account seems to us
to contradict the findings of Starns, Hicks, Brown, and Martin (2008) who observed that
participants gave above-chance source ratings to old probes they rated as new if the response
criterion was very conservative. Why wouldn’t the participants in the Starns et al. (2008)
study also forestall processing for the items they judged “new”? In any event, the guessing
account proposed by Hautus et al. (2008) makes a straightforward prediction—if the item
criteria are adjusted to be sufficiently liberal, the multidimensional item-source distribution
should eventually give rise to below-chance source performance. Because the VRDP does
not predict below-chance source performance under any circumstances, there is no need
for a post-hoc explanation to explain why below-chance performance on the source test is
never observed. If two-dimensional signal detection were a viable model of the output of
the memory system, it should be possible to create a version of the item-source judgment
that would give rise to worse-than-chance performance. This may be possible by changing
the proportion of old items, or by not testing source for new items. Worse than chance
performance on a source test for low item confidence old items would definitively falsify the
VRDP.

The third modification adopted by Hautus et al. (2008) was to allow mixing between
the unimodal multivariate distributions for old probes and an additional distribution the
location and variance of which was allowed to vary freely, which turned out to have little-

7It has been suggested that the way to correct this misprediction of two-dimensional SDT is to simply
assume that participants do not attempt a source rating for items they have already rated as old. This
amounts to a mixture model, with the mixture being done at the stage of retrieval. The present approach
uses a mixture interpreted as a difference in recollection and familiarity, with the benefit that it also provides
the VRDP model with the ability to account for the item recognition data from travel scenes in Experiments 1
and 2 (see also Sherman, et al, 2003; Howard et al., 2006).
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to-no source discriminability but above-chance item discriminability. This is very much like
the approach used here.

Although Hautus et al. (2008) describe their model as “single-process,” and note that
it does not require recollection, they have maintained that degree of parsimony at the cost of
introducing a post-retrieval guessing strategy and adding an additional discrete attentional
process (DeCarlo, 2002, 2003a). The approach used here starts as a dual-process account.
The addition of guessing and discrete encoding used by Hautus et al. (2008) require several
more parameters than the VRDP to describe the distributions. Future work should directly
compare the conjoint item-source distributions of the VRDP with those of the Hautus et
al. (2008) model.

Independence and process purity

The VRDP provides strong evidence for the core assumption of dual-process theory—
that recollection fails to contribute to memory for a substantial proportion of previously-
experienced stimuli. A number of recent criticisms of dual-process theory address other
aspects of dual-process theory. For instance, some criticisms of dual process theory are
really criticisms of the all-or-none approximation (see Eq. 3) that is typically adopted in
fitting the model to data (Dunn, 2004; Rotello, Macmillan, Reeder, & Wong, 2005; Wixted
& Stretch, 2004). The VRDP assumes that in item recognition, recollection is continuous
and subject to a signal detection decision, so that criticisms of previous treatments of the
DPSD that rely on the all-or-none property of Eq. 3 do not apply to the VRDP.

Other criticisms of dual-process theory are directed at the assumption that recollec-
tion and familiarity are independent (e.g. Dunn, 2004). In our view, anatomical consider-
ations make strict independence implausible, although not impossible, to support. Famil-
iarity is typically hypothesized to depend on the functioning of extra-hippocampal medial
temporal lobe (MTL) regions, whereas recollection is hypothesized to depend critically on
the hippocampus proper (e.g. Eichenbaum, Yonelinas, & Ranganath, 2007; Norman &
O’Reilly, 2003). Extra-hippocampal MTL regions, in particular the entorhinal cortex, pro-
vide the cortical input to the hippocampus. In turn, the hippocampus sends its output
to these same regions. It seems implausible to us that the integrity of information about
an item in extra-hippocampal regions, which presumably supports familiarity, would not
have some effect on the functioning of the hippocampus. Similarly, it seems implausible
that a strong output from the hippocampus, believed to support recollection, would not
have some effect on the activity observed in extra-hippocampal MTL regions. Finally, we
note that many studies that have purported to show neuropsychological manipulations that
differentially affect recollection or familiarity rely on a specific model of how these putative
processes map onto behavioral observations. If those behavioral models are incorrect, then
the conclusions about recollection and familiarity they engender may need to be reevalu-
ated, especially insofar as the empirical data reveals relatively complex changes in the shape
of the ROC curves (e.g., Sauvage et al., 2008; Bowles et al., 2007).

In addition to the empirical criticisms of the DPSD, Wixted (2007b) also criticized
the process-purity assumption of the DPSD on theoretical grounds. That is, according to
the DPSD, participants respond to a probe on the basis of either recollection or familiarity
rather than on the basis of their sum. If two sources of information are available, why
wouldn’t they be combined in order to make the decision? In addressing this question, we
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first note that it is possible to build an additive model that is mathematically identical
to the VRDP when just the item distributions are considered. If recollection contributed
precisely d′R worth of strength to each recollected old probe, then one would recover precisely
the same equations used here if recollection and familiarity were summed prior to making a
decision. This seems an unsatisfactory solution, however, in that it requires on the one hand
that the contribution of recollection change in magnitude across participants, conditions
and materials, but nonetheless show precisely zero variability for each participant in each
condition.8 The same argument would have to be made along the source dimension to
account for the fact that our fits of conjoint item-source discriminability ended up making
essentially circular two-dimensional distributions for the recollected old probes.

While we are sympathetic to the theoretical concerns expressed by Wixted (2007a), if
one embraces the basic assumptions of signal detection theory, the empirical data seems to
suggest that subject either rely on recollection or familiarity, rather than their sum, to make
a decision. This may tell us something about the processes that give rise to recollection and
familiarity. For instance, it is possible that the act of reconstructing the detailed context
provided by an old item disrupts the familiarity signal such that it can no longer contribute
to the decision. Another, more radical, alternative is that the VRDP does not reflect a
signal detection process. That is, perhaps recollected items do not generate a strength that
is then projected onto a decision access to generate a response. Perhaps recollection is the
result of a multinomial process (Batchelder & Riefer, 1990) that is then mapped onto a
variety of responses (Malmberg, 2002). That is, maybe recollection per se is not variable,
but subjects vary their responses to recollected items randomly among a set of alternative
responses. Viewed from this perspective, the difference in d′R across words and travel scenes
is understood not as recollected travel scenes generating more strength than recollected
words. Rather, this can be understood as participants deciding to assign higher confidence
ratings to recollected travel scenes than words. Perhaps this decision reflects a belief that
a vivid recollection of a trial-unique travel scene is more diagnostic than recollection of a
word that has been experienced many times before. While this approach would seem to fly
in the face of much evidence in favor of signal detection as an explanation of recognition
decisions (Mickes, Wixted, & Wais, in press; Wixted & Stretch, 2004), it would go a long
way toward solving the problem of why the response distributions all appear to be normal
with the same variance in mixture signal detection.

Toward a substantive model of item recognition

None of the signal detection models under consideration here make, in isolation,
concrete predictions about how memory is encoded or retrieved. As such, by themselves
they describe the data more than they explain it (Murdock, 2006). Of course an accurate
description of recognition accuracy across criteria is a prerequisite for a more concrete
model of episodic memory. Widespread acceptance of the VRDP could place meaningful
constraints on the development of substantive models of recognition memory. Dennis and
Humphreys (2001) categorized substantive mathematical models of recognition memory as
item-noise (e.g. Shiffrin & Steyvers, 1997) or context-noise (e.g. Dennis & Humphreys,

8Although the results are not presented here, we have confirmed that the four-parameter model that
consists of the VRDP with additional variability in the recollected distribution fails to fit the data as well
as the VRDP as measured by the AIC and likelihood ratio testing.
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2001) models according to whether they rely on interference from item representations
or context representations (Criss & Shiffrin, 2004, used both to account for recognition
performance). Recollection has been described as the recovery of spatial (Eichenbaum et
al., 2007) or temporal (Schwartz, Howard, Jing, & Kahana, 2005) context. If the VRDP is
correct, item-noise aspects of recognition could be addressed within the familiarity process,
whereas contextual recovery is an excellent candidate for recollection. The fundamental
constraint on substantive models offered by the VRDP is the requirement that recollection
fails completely for a large proportion of old probes. When it succeeds, however, a great
deal of information on which to base an item recognition decision becomes available. The
threshold nature of recollection has been underappreciated by recent substantive models of
item recognition (but see Elfman et al., 2008; Norman & O’Reilly, 2003).

Conclusions

We have proposed and evaluated a model that provides a general framework for
measuring recognition memory performance, the variable-recollection signal detection model
(VRDP). The model postulates that two distinct cognitive mechanisms, recollection and
familiarity, govern item recognition. Familiarity is described as a continuous, normally-
distributed process, whereas recollection is described as a continuous process that fails for
some items. The VRDP model approximates the UVSD and the DPSD model as limiting
cases, although it also provided a superior fit to the superset of the UVSD and DPSD. The
VRDP is consistent with the qualitative properties of conjoint item-source judgments. A
key prediction—that a large population of old probes recovers no source discriminability but
reliable source information—was confirmed for both words and travel scenes. The VRDP
may prove useful as a means to measure recollection and familiarity for applications in
cognitive psychology, cognitive neuroscience and neuropsychology.
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∆ AIC ∆ BIC
UVSD DPSD VRDP UVSD DPSD VRDP

Exp. 1 words 63 180 0 0 117 419
travel scenes 426 141 0 284 0 397
combined 489 321 0 168 0 699

Exp. 2 words 17 213 0 0 196 313
travel scenes 182 36 0 146 0 294
combined 198 248 0 0 50 461

Table 5: AIC: Akaike’s information criterion; BIC: Bayesian information criterion; UVSD: unequal
variance signal detection model; DPSD: dual-process signal detection model; VRDP: variable recol-
lection dual process model.

Appendix: Comparison of models with different numbers of
parameters

The arguments in the body of the paper do not rely on direct comparison between
models with different numbers of free parameters. Here we report comparisons between
models with different numbers of parameters. Table 1 shows the results of calculations
using Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
for the UVSD, DPSD and VRDP to the item recognition response distributions from Ex-
periments 1 and 2. Briefly, the AIC describes the VRDP as providing a vastly superior fit
to the other two models in all conditions of both experiments. The corrected AIC (AICc)
leads one to identical conclusions as the AIC owing to the large number of data points
contributing to the response distribution across participants. The BIC shows contradictory
results, favoring the best-fitting two-parameter model for all conditions. Collapsed across
conditions, the BIC favors the DPSD for Experiment 1 (perhaps due to the fact that there
were more participants in the travel scene condition) and the UVSD for Experiment 2.

The two measures of goodness-of-fit provided discrepant findings for the data in Ta-
ble 1. The DPSD model is nested within the VRDP, hence it is appropriate to use a
likelihood ratio (LR) test to compare these two models, providing an additional means to
compare the two. If the null hypothesis is true, the LR statistic for the comparison between
the two models ought to be distributed as chi-square with degrees of freedom equal to the
number of participants. The results for Experiment 1 indicated that the VRDP model
resulted in a much better fit that the DPSD for words, χ2(104) = 360.5, travel scenes,
χ2(116) = 282.5, and combined across materials, χ2(220) = 643.0, all ps < .001. The re-
sults for Experiment 2 were largely consistent. The VRDP model resulted in a much better
fit that the DPSD for words, χ2(75) = 425.6, p < .001, and combined across materials,
χ2(150) = 496.8, p < .001, although for travel scenes, the models did not differ reliably,
χ2(75) = 71.2, p > .5. Although we have not undertaken a formal model complexity anal-
ysis (Pitt, Myung, & Zhang, 2002), the AIC and LR tests provide strong support for the
VRDP.

While the AIC and LR provide strong support, the BIC provides comparably strong
support in favor of one or the other of the of the two-parameter models. There are a
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couple of potential reasons for this discrepancy. First, however, we note that the results
from the BIC are discrepant not only with the AIC and the LR ratio test, but also with
the comparison of the VRDP with the superset of the UVSD and DPSD reported in the
main body of the text (Table 2). If the BIC results reported in Table 5 are to be taken
at face value, then we would expect that either the UVSD or DPSD is correct for a given
participant, or perhaps a given list. However, the superset of the UVSD and DPSD was
definitively rejected by non-parametric analyses.

One potential reason for the discrepancy between the AIC and the BIC for these data
is that the assumptions used to derive the AIC and BIC do not hold for the VRDP. In
particular, the derivation of both the AIC and BIC assumes that the likelihood of the data
given the model falls off rapidly around the best-fitting parameters (Burnham & Anderson,
2002; Kass & Raftery, 1995). For instance, the BIC attempts to estimate the value of
an integral across parameter space under the assumption that the likelihood of the data
falls off rapidly around the best-fitting set of parameters. The difficulty in calculating this
integral in practice leads to a step in which the value of the likelihood at the best-fitting
point is taken to be the dominant term in the entire integral (e.g., Kass & Raftery, 1995).
There are non-trivial states, in particular those consistent with an equal-variance signal
detection model, for which the VRDP is degenerate. That is, under those circumstances
an infinite range of parameter values generate the same model predictions. If the best-
fitting parameters land in this region of the parameter space, the integral will not fall off
rapidly around the best-fitting point. A similar step is present in the derivation of the
AIC (Burnham & Anderson, 2002). In short, the assumptions used to derive the AIC and
BIC do not hold for the VRDP, suggesting that caution should be exercised in using such
statistics for specific models.


