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Abstract

Semantic memory refers to our knowledge of facts and relationships between con-
cepts. A successful semantic memory depends on inferring relationships between
items that are not explicitly taught. Recent mathematical modeling of episodic
memory argues that episodic recall relies on retrieval of a gradually-changing rep-
resentation of temporal context. We show that retrieved context enables the de-
velopment of a global memory space that reflects relationships between all items
that have been previously learned. When newly-learned information is integrated
into this structure, it is placed in some relationship to all other items, even if that
relationship has not been explicitly learned. We demonstrate this effect for global
semantic structures shaped topologically as a ring, and as a two-dimensional sheet.
We also examined the utility of this learning algorithm for learning a more realistic
semantic space by training it on a large pool of synonym pairs. Retrieved context
enabled the model to “infer” relationships between synonym pairs that had not yet
been presented.

1 Introduction

Semantic memory refers to our ability to learn and retrieve facts and relationships about concepts
without reference to a specific learning episode. For example, when answering a question such as
“what is the capital of France?” it is not necessary to remember details about the event when this fact
was first learned in order to correctly retrieve this information. An appropriate semantic memory for
a set of stimuli as complex as, say, words in the English language, requires learning the relationships
between tens of thousands of stimuli. Moreover, the relationships between these items may describe
a network of non-trivial topology [14]. Given that we can only simultaneously perceive a very small
number of these stimuli, in order to be able to place all stimuli in the proper relation to each other
the combinatorics of the problem require us to be able to generalize beyond explicit instruction. Put
another way, semantic memory needs to not only be able to retrieve information in the absence of
a memory for the details of the learning event, but also retrieve information for which there is no
learning event at all.

Computational models for automatic extraction of semantic content from naturally-occurring text,
such as latent semantic analysis [10], and probabilistic topic models [1, 6], exploit the temporal
co-occurrence structure of naturally-occurring text to estimate a semantic representation of words.
Their success relies to some degree on their ability to not only learn relationships between words
that occur in the same context, but also to infer relationships between words that occur in similar
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contexts. However, these models operate on an entire corpus of text, such that they do not describe
the process of learningper se.

Here we show that the temporal context model (TCM), developed as a quantitative model of human
performance in episodic memory tasks, can provide an on-line learning algorithm that learns appro-
priate semantic relationships from incomplete information. The capacity for this model of episodic
memory to also construct semantic knowledge spaces of multiple distinct topologies, suggests a
relatively subtle relationship between episodic and semantic memory.

2 The temporal context model

Episodic memory is defined as the vivid conscious recollection of information from a specific in-
stance from one’s life [16]. Many authors describe episodic memory as the result of the recovery
of some type of a contextual representation that is distinct from the items themselves. If a cue item
can recover this “pointer” to an episode, this enables recovery of other items that were bound to the
contextual representation without committing to lasting interitem connections between items whose
occurrence may not be reliably correlated [15].

Laboratory episodic memory tasks can provide an important clue to the nature of the contextual
representation that could underlie episodic memory. For instance, in the free recall task, subjects
are presented with a series of words to be remembered and then instructed to recall all the words
they can remember in any order they come to mind. If episodic recall of an item is a consequence
of recovering a state of context, then the transitions between recalls may tell us something about
the ability of a particular state of context to cue recall of other items. Episodic memory tasks show
a contiguity effect—a tendency to make transitions to items presented close together in time, but
not simultaneously, with the just-recalled word. The contiguity effect shows an apparently universal
form across multiple episodic recall tasks, with a characteristic asymmetry favoring forward recall
transitions [9] (see Figure 1a).

The temporal contiguity effect observed in episodic recall can be simply reconciled with the hypoth-
esis that episodic recall is the result of recovery of a contextual representation if one assumes that
the contextual representation changes gradually over time. The temporal context model (TCM) de-
scribes a set of rules for a gradually-changing representation of temporal context and how items can
be bound to and recover states of temporal context. TCM has been applied to a number of problems
in episodic recall [8]. Here we describe the model, incorporating several changes that enable TCM
to describe the learning of stable semantic relationships (detailed in Section 3).1

TCM builds on distributed memory models which have been developed to provide detailed descrip-
tions of performance in human memory tasks [12]. In TCM, a gradually-changing state of temporal
context mediates associations between items and is responsible for recency effects and contiguity
effects. The state of the temporal context vector at time stepi is denoted asti and changes from
moment-to-moment according to

ti = ρiti−1 + βtIN
i , (1)

whereβ is a free parameter,tIN
i is the input caused by the item presented at time stepi, assumed to

be of unit length, andρi is chosen to ensure thatti is of unit length. Items, represented as unchanging
orthonormal vectorsf , are encoded in their study contexts by means of a simple outer-product matrix
connecting thet layer to thef layer,MTF , which is updated according to:

∆MTF
i = fit′i−1, (2)

where the prime denotes the transpose and the subscripts here reflect time steps. Items are probed
for recall by multiplyingMTF from the right with the current state oft as a cue. This means that
whentj is presented as a cue, each item is activated to the extent that the probe context overlaps
with its encoding contexts.

The space over whicht evolves is obviously determined by thetINs. We will decomposetIN into
cIN , a component that does not change over the course of study of this paper, andhIN , a component

1Previous published treatments of TCM have focused on episodic tasks in which items were presented only
once. Although the model described here differs from previously published versions in notation and its behavior
over multiple item repetitions, it is identical to previously-published results described for single presentations
of items.
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Figure 1: Temporal recovery in episodic memory.a. Temporal contiguity effect in episodic recall.
Given that an item from a series has just been recalled, the y-axis gives the probability that the next
item recalled came from each serial position relative the just-recalled item. This figure is averaged
across a dozen separate studies [9].b. Visualization of the model. Temporal context vectorsti

are hypothesized to reside in extra-hippocampal MTL regions. When an itemfi is presented, it
evokes two inputs tot—a slowly-changing direct cortical inputcIN

i and a more rapidly varying
hippocampal inputhIN

i . When an item is repeated, the hippocampal component retrieves the context
in which the item was presented.c. While the cortical component serves as a temporally-asymmetric
cue when an item is repeated, the hippocampal component provides a symmetric cue. Combining
these in the right proportion enables TCM to describe temporal contiguity effects.

that changes rapidly to retrieve the contexts in which an item was presented. Denoting the time steps
at which a particular itemA was presented asAi, we have

tIN
Ai+1

∝ γĥIN
Ai+1

+ (1− γ) cIN
A . (3)

where the proportionality reflects the fact thattIN is always normalized before being used to update
ti as in Eq. 1 and the hat on thehIN term refers to the normalization ofhIN . We assume that the
cINs corresponding to the items presented in any particular experiment start and remain orthonormal
to each other. In contrast,hIN starts as zero for each item and then changes according to:

hIN
Ai+1

= hIN
Ai

+ tAi−1. (4)

It has been hypothesized thatti reflects the pattern of activity at extra-hippocampal medial temporal
lobe (MTL) regions, in particular the entorhinal cortex [7]. The notationcIN andhIN reflects
the hypothesis that the consistent and rapidly-changing parts oftIN reflect inputs to the entorhinal
cortex from cortical and hippocampal sources, respectively (Figure 1b).

According to TCM, associations between items are not formed directly, but rather are mediated by
the effect that items have on the state of context which is then used to probe for recall of other items.
When an item is repeated as a probe, this induces a correlation between thetIN of the probe context
and the study context of items that were neighbors of the probe item when it was initially presented.
The consistent part oftIN is an effective cue for items that followed the initial presentation of
the probe item (open symbols, Figure 1c). In contrast, recovery of the state of context that was
present before the probe item was initially presented is a symmetric cue (filled symbols, Figure 1).
Combining these two components in the proper proportions provides an excellent description of
contiguity effects in episodic memory [7].

3 Constructing global semantic information from local events

In each of the following simulations, we specify a to-be-learned semantic structure by imagining
items as the nodes of a graph with some topology. We generated training sequences by randomly
sampling edges from the graph.2 Each edge only contains a limited amount of information about

2The pairs are chosen randomly, so that any across-pair learning would be uninformative with respect to
the overall structure of the graph. To further ensure that learning across pairs from simple contiguity could not
contribute to our results, we setβ in Eq. 1 to one when the first member of each pair was presented. This means
that the temporal context when the second item is presented is effectively isolated from the previous pair.
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Figure 2: Learning of a one-dimensional structure using contextual retrieval.a. The graph used to
generate the training pairs.b-c. Associative strength between items after training (higher strength
corresponds to darker cells).b. The model without contextual retrieval (γ = 0). c. The model with
contextual retrieval (γ > 0). d. Two dimensional MDS solution for the log of the data inc. Lines
connect points corresponding to nodes connected by an edge.

the global structure. For the model is to learn the global structure of the graph, it must somehow
integrate the learning events into a coherent whole.

After training we evaluated the ability of the model to capture the topology of the graph by ex-
amining the cue strength between each item. The cue strength from itemA to B is defined as
f ′BMTF tIN

A . This reflects the overlap between thecIN andhIN components ofA and the contexts
in whichB was presented.3

BecausetIN
i is caused by presentation of itemi, we can think of thetINs as a representation of the

set of items. Learning can be thought of as a mixing of thetINs according to the temporal structure
of experience. Because thecINs are fixed, changes in the representation are solely due to changes
in thehINs. Suppose that two items,A andB are presented in sequence. If context is retrieved,
then after presentation of the pair A-BhIN

B includes thetIN
A that obtained whenA was presented.

This includes the current state ofhIN
A as well as the fixed statecIN

A . If at some later timeB is now
presented as part of the sequence B-C , then becausetIN

B is similar totIN
A , itemC is learned in a

context that resemblestIN
A , despite the fact thatA andC were not actually presented close together

in time. After learning A-B and B-C ,tIN
A andtIN

C will resemble each other. This ability to
rate as similar items that were not presented together in the same context, but that were presented in
similar contexts, is a key property of latent models of semantic learning [10].

To isolate the importance of retrieved context for the ability to extract global structure, we will
compare a version of the model withγ = 0 to one withγ > 0.4 With γ = 0, the model functions
as a simple co-occurrence detector in that the cue strength betweenA andB is non-zero only ifcIN

A
was part of the study contexts ofB. In the absence of contextual retrieval, this requires thatB was
preceded byA during study.

Ultimately, thetis andhIN
i s can be expressed as a combination of thecIN vectors. We therefore

treated these as orthonormal basis vectors in the simulations that follow.MTF and thehINs were
initialized as a matrix and vectors of zeros, respectively. The parameterβ for the second member of
a pair was fixed at 0.6.

3.1 1-D: Rings

For this simulation we sampled edges chosen from a ring of ten items (Fig. 2a). We treated the ring
as an undirected graph, in that we sampled an edge A-B equally often as B-A . We presented the
model with 300 pairs chosen randomly from the ring. For example, the training pairs might include
the sub-sequence C-D , A-B , F-E , B-C .

3In this implementation of TCM,hIN
A is identical tof ′AMTF . This need not be the case in general, as one

could alter the learning rate, or even the structure of Eqs. 2 and/or 4 without changing the basic idea of the
model.

4In the simulations reported below, this value is set to 0.6. The precise value does not affect the qualitative
results we report as long as it is not too close to one.
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Figure 3: Reconstruction of a 2-dimensional spatial representation.a. The graph used to construct
sequences.b. 2-dimensional MDS solution constructed from the temporal co-occurrence version
of TCM γ = 0 using the log of the associative strength as the metric. Lines connect stimuli from
adjacent edges.c. Same asb, but for TCM with retrieved context. The model accurately places the
items in the correct topology.

Figure 2b shows the cue strength between each pair of items as a grey-scale image after training the
model without contextual retrieval (γ = 0). The diagonal is shaded reflecting the fact that an item’s
cue strength to itself is high. In addition, one row on either side of the diagonal is shaded. This
reflects the non-zero cue strength between items that were presented as part of the same training
pair. That is, the model without contextual retrieval has correctly learned the relationships described
by the edges of the graph. However, without contextual retrieval the model has learned nothing
about the relationships between the items that were not presented as part of the same pair (e.g.
the cue strength betweenA andC is zero). Figure 2c shows the cue strength between each pair
of items for the model with contextual retrievalγ > 0. The effect of contextual retrieval is that
pairs that were not presented together have non-zero cue strength and this cue strength falls off with
the number of edges separating the items in the graph. This happens because contextual retrieval
enables similarity to “spread” across the edges of the graph, reaching an equilibrium that reflects
the global structure. Figure 2d shows a two-dimensional MDS (multi-dimensional scaling) solution
conducted on the log of the cue strengths of the model with contextual retrieval. The model appears
to have successfully captured the topology of the graph that generated the pairs. More precisely,
with contextual retrieval, TCM can place the items in a space that captures the topology of the graph
used to generate the training pairs.

On the one hand, the relationships that result from contextual retrieval in this simulation seem in-
tuitive and satisfying. Viewed from another perspective, however, this could be seen as undesirable
behavior. Suppose that the training pairs accurately sample the entire set of relationships that are
actually relevant. Moreover, suppose that one’s task were simply to remember the pairs, or alterna-
tively, to predict the next item that would be presented after presenting the first member of a pair.
Under these circumstances, the co-occurrence model performs better than the model equipped with
contextual retrieval.

It should be noted that people form associations across pairs (e.g. A-C ) after learning lists of paired
associates with a linked temporal structure like the rings shown in Figure 2a [13]. In addition, rats
can also generalize across pairs, but this ability depends on an intact hippocampus [2]. These finding
suggest that the mechanism of contextual retrieval capture an important property of how we learn in
similar circumstance.

3.2 2-D: Spatial navigation

The ring illustrated in Figure 2 demonstrates the basic idea behind contextual retrieval’s ability to
extract semantic spaces, but it is hard to imagine an application where such a simple space would
need to be extracted. In this simulation will illustrate the ability of retrieved context to discover
relationships between stimuli arranged in a two-dimensional sheet. The use of a two-dimensional
sheet has an analog in spatial navigation.

It has long been argued that the medial temporal lobe has a special role in our ability to store and
retrieve information from a spatial map. Eichenbaum [4] has argued that the MTL’s role in spatial
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navigation is merely a special case of more general role in organizing disjointed experiences into
integrated representations. The present model can be seen as a computational mechanism that could
implement this idea.

In our typical experience, spatial information is highly correlated with temporal information. Be-
cause of our tendency to move in continuous paths through our environment, locations that are close
together in space also tend to be experienced close together in time. However, insofar as we travel
in more-or-less straight paths, the combinatorics of the problem place a premium on the ability to
integrate landmarks experienced on different paths into a coherent whole. At the outset we should
emphasize that our extremely simple simulation here does not capture many of the aspects of actual
spatial navigation—the model is not provided with metric spatial information, nor gradually chang-
ing item inputs, nor do we discuss how the model could select an appropriate trajectory to reach a
goal [3].

We constructed a graph arranged as a 5×5 grid with horizontal and vertical edges (Figure 3a). We
presented the model with 600 edges from the graph in a randomly-selected order. One may think
of the items as landmarks in a city with a rectangular street plan. The “traveler” takes trips of one
block at a time (perhaps teleporting out of the city between journeys).5 The problem here is not
only to integrate pairs into rows and columns as in the 1-dimensional case, but to place the rows and
columns into the correct relationship to each other.

Figure 3b shows the two-dimensional MDS solution calculated on the log of the cue strengths for the
co-occurrence model. Without contextual retrieval the model places the items in a high-dimensional
structure that reflects their co-occurrence. Figure 3c shows the same calculation for TCM with
contextual retrieval. Contextual retrieval enables the model to place the items on a two-dimensional
sheet that preserves the topology of the graph used to generate the pairs. It is not a map—there is
no sense of North nor an accurate metric between the points—but it is a semantic representation
that captures something intuitive about the organization that generated the pairs. This illustrates the
ability of contextual retrieval to organize isolated experiences, or episodes, into a coherent whole
based on the temporal structure of experience.

3.3 More realistic example: Synonyms

The preceding simulations showed that retrieved context enables learning of simple topologies with
a few items. It is possible that the utility of the model in discovering semantic relationships is limited
to these toy examples. Perhaps it does not scale up well to spaces with large numbers of stimuli, or
perhaps it will be fooled by more realistic and complex topologies.

In this subsection we demonstrate that retrieved context can provide benefits in learning relationships
among a large number of items with a more realistic semantic structure. We assembled a large list of
English words (all unique strings in the TASA corpus) and used these as probes to generate a list of
nearly 114,000 synonym pairs using WordNet. We selected 200 of these synonym pairs at random
as a test list. The word pairs organize into a large number of connected graphs of varying sizes. The
largest of these contained slightly more than 26,000 words; there were approximately 3,500 clusters
with only two words. About 2/3 of the pairs reflect edges within the five largest clusters of words.

We tested performance by comparing the cue strength of the cue word with its synonym to the
associative strength to three lures that were synonyms of other cue words—if the correct answer had
the highest cue strength, it was counted as correct.6 We averaged performance over ten shuffles of
the training pairs. We preserved the order of the synonym pairs, so that this, unlike the previous two
simulations, described a directed graph.

Figure 4a shows performance on the training list as a function of learning. The lower curve shows
“co-occurrence” TCM without contextual retrieval,γ = 0. The upper curve shows TCM with con-
textual retrieval,γ > 0. In the absence of contextual retrieval, the model learns linearly, performing
perfectly on pairs that have been explicitly presented. However, contextual retrieval enables faster
learning of the pairs, presumably due to the fact that it can “infer” relationships between words

5We also observed the same results when we presented the model with complete rows and columns of the
sheet as a training set rather than simply pairs.

6In instances where the cue strength was zero for all the choices, as at the beginning of training, this was
counted as 1/4 of a correct answer.
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Figure 4: Retrieved context aids in learning synonyms that have not been presented.a. Performance
on the synonym test. The curve labeled “TCM” denotes the performance of TCM with contextual
retrieval. The curve labeled “Co-occurrence” is the performance of TCM without contextual re-
trieval. b. Same asa, except that the training pairs were shuffled to omit any of the test pairs from
the middle region of the training sequence.

that were never presented together. To confirm that this property holds, we constructed shuffles of
the training pairs such that the test synonyms were not presented for an extended period (see Fig-
ure 4b). During this period, the model without contextual retrieval does not improve its performance
on the test pairs because they are not presented. In contrast, TCM with contextual retrieval shows
considerable improvement during that interval.7

4 Discussion

We showed that retrieval of temporal context, an on-line learning method developed for quantita-
tively describing episodic recall data, can also integrate distinct learning events into a coherent and
intuitive semantic representation. It would be incorrect to describe this representation as a semantic
space—the cue strength between items is in general asymmetric (Figure 1c). The model thus has
the potential to capture some effects of word order and asymmetry. However, one can also think of
the set oftINs corresponding to the items as a semantic representation that is also a proper space.

Existing models of semantic memory, such as LSA and LDA, differ from TCM in that they are off-
line learning algorithms. More specifically, these algorithms form semantic associations between
words by batch-processing large collections of natural text (eg. the TASA corpus). While it would
be interesting to compare results generated by running TCM on such a corpus with these models,
constraints of syntax and style complicate this task: temporal proximity is no longer a reliable
indicator of local relations. Interestingly, optimizing the model parameters on the TASA corpus
results in an impoverished version of the model that closely resembles BEAGLE[]. The semantic
relations now formed, while still extending beyond simple cooccurrence, are not longer as rich as
in the original model; in face of noisy local relations, the model emphasises averaging over them to
integrating them together. One way to avoid this might be by implementing a cleverer learning rule
in theMTF matrix, currently bothMTF andMFT have the same learning rule.

The present results suggest that retrieved temporal context—previously hypothesized to be essen-
tial for episodic memory—could also be important in developing coherent semantic representations.
This could reflect similar computational mechanisms contribute to separate systems, or it could indi-
cate a deep connection between episodic and semantic memory. A key finding is that amnesics with
impaired episodic memory retain the ability to express previously-learned semantic knowledge but
are impaired at learning new semantic knowledge [18]8 Previous connectionist models have argued
that the hippocampus contributes to classical conditioning by learning compressed representations
of stimuli, and that these representations are eventually transferred to entorhinal cortex [5]. This

7To ensure that this property wasn’t simply a consequence of backward associations for the model with
retrieved context, we re-ran the simulations presenting the pairs simultaneously rather than in sequence (so that
the co-occurrence model would also learn backward associations) and obtained the same results.

8There is a different pattern of results if the patient becomes amnesic sufficiently early in development [17].
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could be implemented in the context of the current model by allowing slow plasticity to change the
cINs over long time scales [11].
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