
Scaling Behavior in the Temporal Context Model

Marc W. Howard
Department of Psychology

Syracuse University

The Temporal Context Model (TCM) postulates a distributed representation of temporal con-
text that provides the cue for episodic recall tasks. TCM, coupled with the Luce Choice Rule
for determining probability of recall, a conjunction referred to as TCMFR, is able to explain the
existence of the long-term recency effect, as well as predicting the persistence of associative
effects even with the inclusion of a delay between items. Here, quantitative predictions of
TCMFR such as the magnitude of the delay interval is increased in continuous-distractor free
recall are developed. The magnitude of the recency effect is operationally defined as the ratio
of the probability of first recall (PFR) of the last list item to the PFR of the next-to-last item.
Properties of associative effects are operationalized by using analogous measures derived from
conditional response probability (CRP) curves. TCMFR predicts a decrease in recency with
increasing delay. The rate of this decay and the qualitative pattern of change with increasing
delay depend on the rate of contextual drift. For a range of values of the rate of contextual
drift, TCMFR also predicts a transient increase in the recency effect as the length of the delay
increases from zero. The model predicts that contiguity effects in free recall should follow
a similar pattern, but that associative asymmetry, ubiquitously observed in free recall, should
decay monotonically with increases in the delay interval.

In continuous-distractor free recall, presentation of each
list item is followed by a distractor-filled interval. The length
of this interval during list presentation is referred to as the
inter-presentation interval (IPI). In addition, the last item in
the list is followed by another distractor-filled interval prior
to presentation of the memory test. This interval is referred
to as the retention interval (RI). If the IPI and the RI are the
same duration, this has the effect of “stretching out” the list
in time. Early theorists studying the long-term recency ef-
fect hypothesized that the magnitude of the recency effect
depends on the ratio of these two intervals (Bjork & Whitten,
1974; Crowder, 1976). Thisratio rule hypothesis separately
predicted data on the scale of minutes, hours and days (Glen-
berg et al., 1980; Glenberg, Bradley, Kraus, & Renzaglia,
1983).

The ratio rule hypothesis predicts that the magnitude of
the recency effect should be scale-invariant; multiplying both
the RI and IPI by a timet should have no effect on the mag-
nitude of the recency effect. The Glenberg studies showed
that manipulating IPI and RI separately at a particular scale
resulted in changes in the recency effect that obeyed the
ratio rule. However, more recently Nairne, Neath, Serra,
and Byun (1997) have observed systematic deviations from
scale-invariance in the serial position curve.
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Michael Kahana, who also provided numerous helpful comments
on an earlier draft. Supported by 2-RO1 MH55687. Corre-
spondence to Marc Howard, Syracuse University, Department of
Psychology, 430 Huntington Hall, Syracuse, NY 13244-2340, or
marc@memory.syr.edu.

The Temporal Context Model

The Temporal Context Model (TCM Howard & Kahana,
2002a) was developed to provide a description of context that
could be used to generate recency and associative effects.
TCM postulates that the state of the temporal context vector
at time stepi, t i is a function of the prior state of temporal
context, as well as some input vectortIN

i :

t i = ρi t i−1 +βtIN
i . (1)

The scalarβ is treated as a free parameter constrained such
that 0< β < 1. In TCM, ρi is chosen such that||t i || = 1. If
the length oftIN

i is always one, as we assume here, then at
each time stepi, ρi is given by

ρi =
√

1+β2
[(

t i−1 · tIN
i

)2−1
]
−β

(
t i−1 · tIN

i

)
. (2)

Here we will assume that thetIN vectors caused by non-
repeated words are mutually orthonormal vectors on an
infinite-dimensional space of reals, so that the dot product in
Eq. 2 is always zero. In this situationρi = ρ for all i, where
ρ without the subscript is defined as

ρ :=
√

1−β2. (3)

Under these circumstances we find that the similarity of any
two temporal context vectors falls off as an exponential func-
tion of the time between them:

t i · t j = ρ|i− j|. (4)



2 HOWARD

We will use Eq. 4 extensively in the present ms to refer to the
similarity between contextual states.

Murdock, Smith, and Bai (2001) used an equation similar
to Eq. 1 to model contextual drift in applying TODAM2 to
data on judgments of frequency and judgments of recency.
In that treatment, context changed according to

t i = ρt i−1 +
√

1−ρ2ζi , (5)

whereζi is a random vector whose elements are chosen from
a normal distribution with standard deviation 1/

√
N, where

N is the dimensionality of the vector space. This equation
is similar to Eq. 1 in that it describes a contextual represen-
tation that changes gradually over time. Further, the expec-
tation of the dot product between any two context vectors
derived from Eq. 5 falls off exponentially over time in a way
similar to Eq. 4. The major difference between TCM and
the treatment of Murdock et al. (2001) is the nature of the
input vectors. In TCM, the input vector is not random, as in
Eq. 5, but is caused by the item being presented. This means
that, rather than defining a random walk, as Eq. 5 does, Eq. 1
results in a process in which context drifts in a direction de-
termined by the item being presented. As we shall see, this
difference enables TCM to model associative effects between
items.

In TCM, the cue strength for an item is derived from the
similarity of the current state of temporal context, used as the
cue for episodic recall, to the state(s) of context that obtained
when the item was presented. This is accomplished by inclu-
sion of an outer product matrixMTF connecting thet vector
space to thef vector space.MTF is updated at time stepi
using

MTF
i = MTF

i−1 + f i t′i (6)

when item patternf i is presented in contextt i .1 This enables
us to calculate a cue strengthai between a cue state of con-
text t and each itemf i as follows. Assuming that itemf i was
presented only once, we have:

ai := f′iM
TFt (7)

= ∑
k

f′i fkt′kt

= ∑
k

δikt′kt

= t i · t , (8)

whereδi j is the Kronecker delta, which is 1 ifi = j and zero
otherwise and we have used the assumption of orthonormal-
ity on thef vectors. From this expression we can see that the
cue strength for a particular item is a function of the similar-
ity of the state of context used as a cue to the state of context
in which that item was presented.

In calculating the probability of first recall (PFR), the cue
is the state of context at the time of test,tT and the state of
context in which itemi was presented ist i . The cue strength
of item i in calculating the PFR is therefore justt i · tT .

How might the activations specified by TCM be used to
support recall? In applying TCM to free recall data, Howard

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

ABSENCE

t t t t

HOLLOW PUPIL

IPI IPI RI

1 2 3 T

Figure 1. Schematic of continuous-distractor free recall.In the
illustration, a list of three items is shown. A distractor of duration
IPI intervenes between each item in the list. A distractor of duration
RI precedes the test at timeT. If the value of the IPI is the same
valuet as the duration of the RI, then the total delay between the
time of test and itemi is the time associated with the distractors,
t (L− i +1), plus the time associated with the item presentations,
L− i, whereL is the number of items in the list. Note that the du-
ration that the items are presented is not assumed to change as the
delay interval is increased. The figure is not necessarily to scale—
items are usually presented for times on the order of seconds (one
or two seconds), whereas distractor intervals are often on the scale
of tens, or even hundreds of seconds.

and Kahana (2002a) used the Luce Choice Rule to generate
probabilities of recall. Because the contextual cues specified
by TCM could be applied to a number of tasks using a num-
ber of different methods, the conjunction of TCM with the
Luce Choice Rule used to describe free recall data will be
referred to as TCMFR. Given a set of cue strengths{ai}, this
rule states thatPi , the probability of recalling itemi is given
by:

Pi =
exp

(
2ai
τ

)
∑ j exp

(
2a j
τ

) , (9)

where the sum in the denominator extends over all the
potentially-recallable items in the list. Notice thatτ controls
the sensitivity of this process. Asτ grows without bound,
all items are equally likely to be recalled. Asτ goes to zero,
the most strongly activated item is recalled with probability
one. To initiate free recall, the sum in the denominator of
Eq. 9 includes all the list items. In describing associative
effects, the sum includes all of the items in the list other
than the just-recalled item. A complete description of free
recall would require that there be some means to edit out re-
peated recalls, analogous to that used by SAM (Raaijmakers
& Shiffrin, 1980). The present ms, however, relies on rela-
tive measures, and so this distinction can be ignored for the
present purposes.

Analysis

This section will derive expressions that describe pre-
dictions about the scaling behavior of recency and associa-
tive effects using TCMFR. Throughout, we will assume, un-
less an item is explicitly repeated, that an infinite series of
non-repeating, mutually-orthonormal input patternstIN

i cor-
responding to the presentation of the words has been pre-
sented. In the following subsection, we will derive the pre-

1 We assume that thef i ’s are mutually orthonormal infinite-
dimensional vectors, the same assumptions made for thetIN ’s prior
to learning.
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dictions of TCMFR regarding the scaling behavior of the re-
cency effect. We will do this for a very specific measure of
the recency effect derived from the PFR curve. In the next
subsection, we will derive predictions of TCMFR for asso-
ciative measures calculated from conditional response prob-
ability (CRP) curves.

These predictions can be derived for specific experimental
conditions. In treating the recency effect, we will consider
the situation in which each item presentation lasts for one
unit of time and each item is followed by a distractor inter-
val equivalent to the contextual drift resulting from presenta-
tion of t items. That is, the retention interval (RI) and inter-
presentation interval (IPI) are of a duration and type such that
context changes as much from the beginning of the distrac-
tor interval to the end as it would have ift items had been
presented. Because contextual drift in TCM depends on the
amount of information being presented, it is not necessary
to assume that this is precisely equivalent to the duration of
the distractor interval for a specific experimental condition.
More specifically, we assume that thetIN vectors caused by
the distractors are orthogonal, but not necessarily orthonor-
mal. Subscripts are reserved for the states of context cor-
responding to item presentations. In treating associative ef-
fects, it is desirable to eliminate the effects of end-of-list con-
text in calculating the CRP. This is consistent with the finding
that the CRP changes little, if at all, over output positions in
delayed and continuous-distractor free recall (Howard & Ka-
hana, 1999). This is accomplished by assuming that an IPI
equivalent to the presentation oft items intervenes between
list items, but that an infinitely long RI precedes recall of the
first item.

Recency

In describing the recency effect across delay paradigms
Howard and Kahana (1999) utilized a measure called the
probability of first recall (PFR), a serial position curve that
considers only the first item recalled. The PFR was initially
introduced by Hogan (1975) and used extensively by Laming
(1999).

Here, we will measure recency usingR, the ratio of the
PFR for the last item in the list to the PFR for the next to last
item in the list. This is given by

R :=
PL

PL−1
(10)

= exp
2(aL −aL−1)

τ
(11)

whereP is given by Eq. 9. The denominators ofPL andPL−1
are identical, leading to Eq. 11.

We are interested here in the behavior ofR in a
continuous-distractor experiment in which the length of the
delay interval between items and at the end of the list is given
by t, in units of item presentations (see Figure 1). Using
Eq. 4, we have for itemi in a list ofL items

ai = ρt(L−i+1)+L−i

= ρ(L−i)(1+t)+t (12)

This allows us to write Eq. 11 explicitly as

R = exp

[
2ρt

τ
(
1−ρ1+t)]. (13)

In immediate free recall,t = 0 andRsimplifies to

Rimm = exp
2(1−ρ)

τ
. (14)

from this expression it is clear that the value of the recency
effect in immediate free recall is larger for smaller values of
ρ, if τ is fixed. As the length of the delay increases to infinity,
the recency effect decreases:

lim
t→∞

R= 1. (15)

Figure 2ashows the changes inRas a function oft for several
values ofρ. This last expression means that as the length of
the delay interval increases, the relative probability of initi-
ating recall with the last item in the list approaches that of
the next-to-last item in the list. Given an infinite delay and
a fixed duration of item presentation, this is not particularly
surprising—the probability of recallinganythingfrom the list
should go to zero. The implications of this point will be taken
up further in the general discussion.

The recency effectR is a function ofρ, τ and the delay
intervalt: R(ρ,τ, t). Increasingt from zero has the effect of
changing variables, such that

R(ρ,τ, t) = R
(
ρ′,τ′,0

)
, (16)

whereρ′ andτ′ are defined according to

ρ′ := ρ1+t (17)

τ′ :=
τ
ρt . (18)

From this we can see that increasing the delay has the ef-
fect of decreasingρ and increasingτ. Decreasingρ tends
to constrict the scale over which temporal effects contribute
(see Eq. 4). Increasingτ tends to equalize the probability of
recall for all items in the list (see Eq. 9).

To evaluate the effect of increasing the delay on the re-
cency effect, we will use the recency effect in immediate
free recall,Rimm, as a baseline against which to measure
changes in recency. Using the transformation defined by
Eqs. 17 and 18 (or equivalently Eqs. 13 and 14) we find that

S :=
R(t)
Rimm

(19)

= exp

[
2(1−ρ′)

τ′
− 2(1−ρ)

τ

]
= exp

[
2ρt

(
1−ρ1+t

)
τ

− 2(1−ρ)
τ

]
. (20)

If TCM, coupled with the Luce Choice Rule were invariant
with respect tot, thenS would always be one. Clearly it is
not; this model is inconsistent with the ratio rule.
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Figure 2. Properties of scaling behavior in TCM. a. The value ofρ determines the initial value of recency and the scale over which it
declines, and the qualitative change in recency with increasing delay. The graphs describe predictions for a continuous-distractor experiment
in which the interpresentation interval (IPI) and retention interval (RI) are both set to the valuet. R (a measure of the recency effect in the
probability of first recall) is shown as a function oft for three different values ofρ. For lower values ofρ, recency in immediate recall
(t = 0) takes on larger values. For lower values ofρ, R more quickly approaches 1, indicating no recency effect. The qualitative shape of
the function also depends onρ, as illustrated inb. In this and the other panels,τ was set to one.b. The valueρ = 1/2 is critical for the
qualitative change in recency witht. Whenρ = 1/2, Sstarts out with a slope of zero ast increases from zero. For larger values ofρ, S(t)
starts out with a positive slope, for smaller values, a negative slope.c. TCM predicts peaks inSthat depend only onρ. For values ofρ > 1/2,
the ratioSreaches a peak at a valuetmax that depends onρ. As ρ tends toward one,tmax increases and is associated with larger values ofS.

Increases in recency with increasing delay. We will now
examine Eq. 20 in more detail to understand the qualitative
behavior of recency in TCMFR.

If
ρt −ρ1+2t −1+ρ > 0, (21)

thenS> 1 and the recency effect becomes more pronounced
than in immediate free recall. If the derivative with respect
to t of the left hand side of the above inequality is positive at
t = 0, then the recency effect will become more pronounced
as the delay is increased. This requires that

logρ
(
ρt −2ρ1+2t) > 0. (22)

Evaluating this expression att = 0 gives us the condition for
whichS increases witht at t = 0:

logρ(1−2ρ) > 0, (23)

which is satisfied for12 < ρ < 1. In other words ifρ > 1
2, then

there is a value of the delay for whichS> 1. If ρ > 1
2, the

model predicts that the recency effect in the PFR should be
greater for some value oft than it is in immediate free recall.

Maximal values of recency. We have just seen that for
ρ > 1

2, there are some values oft for whichS> 1, indicating
an increase in the recency effect over that observed in imme-
diate free recall. For all these values,Salways ends up less
than one ast increases without bound. It follows that there
must be some point at which increasingt stops increasing
recency. This happens whendS

dt = 0. Now,

dS
dt

= S
2
τ

(
1−2ρ1+t)ρt logρ. (24)

This has a zero for

ρ1+t =
1
2
. (25)

For all values ofρ > 1
2, the recency effect begins increasing

ast increases from zero. For all values of1
2 < ρ < 1, there

is a non-zero value oft for which S takes its maximal value.
This value oft is given by:

tmax=− log2
logρ

−1. (26)

Associative effects

The preceding section discussed the scaling behavior of
the recency effect in TCM. Here we discuss the behavior of
associative effects in TCM as the delay between items is in-
creased. In TCM, repetition of an item, whether during list
presentation, or after successful recall of an item, results in
retrieved temporal context. The input pattern retrieved when
the item initially presented at list positioni is repeated at a
later timer is given by:

tIN
r = αOtIN

i +αNt i , (27)

whereαO andαN are non-negative scalars chosen such that
||tIN

r = 1||. In practice the ratio of the two components is
fixed using a new free parameter

γ := αN/αO. (28)

This definition and the condition that||tIN
r = 1|| provide two

equations to solve for two unknowns, allowing us to specify
values forαO andαN at each time step.

The two components,tIN
i and t i together support asym-

metric associations between items. BecausetIN
i is a compo-

nent oft i+1 but nott i−1 (see Eq. 1),tIN
i provides an effective

retrieval cue for items that followed itemi, but not those that
preceded it. That istIN

i · t i+1 = ρβ > 0, buttIN
i · t i−1 = 0. In

contrast,t i provides a symmetric retrieval cue for items pre-
sented near positioni in the list. Prior work provides a more
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thorough discussion of the importance of these two compo-
nents of retrieved context in generating associative processes
(Howard & Kahana, 2002a; Howard, Wingfield, & Kahana,
In revision) and transitive associations that are sensitive to
hippocampal damage (Howard, Fotedar, Datey, & Hasselmo,
Revised).

For mathematical convenience, we will assume in this sec-
tion that we are considering a continuous-distractor list in
which the length of the IPI is given byt and the length of
the RI is infinite. After recall of itemi, the current state of
context is then given by

tT+1 = ρtT +βtIN
r . (29)

Because the RI is infinite,tT will have no similarity to the
contexts associated with the list items. Recalling that the cue
strength of an item is the dot product of the item’s encoding
context to the probe context we can calculate the cue strength
of item j using only the context retrieved by itemi:

a j = tT+1 · t j

=
(
ρtT +βtIN

r

)
· t j

= 0+αOβtIN
i · t j +αNβt i · t j . (30)

This last expression allows us to write a simple expression
for a j in this experimental situation:

a j =
{

αOβ2ρ(1+t)( j−i) + αNβρ(1+t)| j−i| , j > i
αNβρ(1+t)| j−i| , j < i

.

(31)
From this expression, it is clear that there is an associative
asymmetry between forward associations (e.g.j = i +1) and
backward associations (e.g.j = i−1).

Contiguity

The contiguity effect refers to the general experimental
finding that associations formed between words that were
presented in nearby list presentations are stronger than the
associations formed between words presented at distant list
positions. To measure this tendency, we can define two mea-
sures analogous toR, the measure used to describe recency
above. The measureCF will provide an index of the contigu-
ity effect in the forward direction;CB will provide a compa-
rable index in the backward direction:

CF :=
Pi+1

Pi+2
(32)

CB :=
Pi−1

Pi−2
. (33)

Using these definitions, and the expression Eq. 31 for the
item activations, we find that

CF = exp

[
2β
τ

(αOβ+αN)ρ1+t (1−ρ1+t)] (34)

CB = exp

[
2αNβ

τ
ρ1+t (1−ρ1+t)]. (35)

In both of these expressions, the argument of the exponen-
tial has a similar form—a scalar that doesn’t depend ont
multiplied byρ1+t

(
1−ρ1+t

)
. This form is similar to that of

Eq. 13. Following the same logic we used to deduce thatR
increased witht for certain values ofρ, it is straightforward
to reach the same conclusions forCF andCB: for values of
ρ > 1/2, the contiguity effect shows a transient increase as
t increases from zero. The maximal value of the contiguity
effect occurs at the same value oftmax for which the recency
effect shows a maximal value (Eq. 26). This illustrates the
close correlation between recency and contiguity effects pre-
dicted by TCM.

Asymmetry. Equation 31 makes clear that TCM predicts
an asymmetry favoring forward associations (j > i) over
backward associations (j < i) in free recall. This asymme-
try has been extensively observed in free recall (Howard &
Kahana, 1999; Kahana, 1996; Kahana, Howard, Zaromb, &
Wingfield, 2002; Klein, Addis, & Kahana, submitted); a sim-
ilar asymmetry has been observed in serial recall (Addis &
Kahana, submitted; Kahana & Caplan, 2002; Klein et al.,
submitted; Raskin & Cook, 1937).

Here we will define a measurement of asymmetryA as the
ratio between the CRP at lagi + 1 to the CRP at lagi − 1.
Using Eq. 9, this becomes

A :=
Pi+1

Pi−1
(36)

= exp

[
2(ai+1−ai−1)

τ

]
= exp

(
αOβ2ρ1+t). (37)

From Eq. 37 we can clearly see that associative asymmetry
disappears ast increases to infinity:

lim
t→∞

exp
(
αOβ2ρ1+t) = 1. (38)

WhenA = 1, this means that the probability of recalling an
item one position forward in the list is equivalent to the prob-
ability of recalling an item one position backward in the list.
It is also clear from Eq. 37 thatA decreases monotonically
with increases int. Unlike recency and contiguity, associa-
tive asymmetry decreases monotonically.

General Discussion

TCM is a model that has been used to describe the re-
cency effect and associative effects in immediate, delayed
and continuous-distractor free recall experiments (Howard
& Kahana, 2002a). Here predictions for TCMFR, TCM cou-
pled with the Luce Choice Rule for selecting items in free re-
call, were derived for the situation in which the length of the
delay interval continuously varies from 0, representing im-
mediate free recall, to larger values, representing continuous-
distractor free recall with various distractor durations. For
reasons of tractability, predictions were made for very spe-
cific measures. In treating the recency effect we examined
the behavior of the ratio of the PFR of the last item in the
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list to the PFR of the next-to-last item in the list. In treating
associative effects, the ratio of the CRP for lag+1 to the
CRP for lag+2 was taken as a measure of the contiguity
effect; the ratio of the CRP for lag+1 to the CRP for lag−1
was taken as a measure of associative asymmetry. While the
specific nature of these predictions makes it relatively easy
for them to be falsified,R is a restricted measure that does
not capture every feature of the recency effect. For instance,
the finding thatR is bigger for continuous-distractor lists fol-
lowed by a short RI than in immediate free recall (Figure 2)
might seem counterintuitive ifR is identified with “recency,”
as measured by, for instance, the probability of recalling the
last item in the list. Similarly,R does not capture other
features of the recency effect that are different in immedi-
ate compared to continuous-distractor free recall (Davelaar,
Goshen-Gottstein, Ashkenazi, & Usher, In press; Howard &
Kahana, 1999, 2002a). It should also be noted that the PFR
can be affected by giving subjects specific recall instructions
(e.g. Hogan, 1975), or by rehearsal strategies subjects adopt
(see the PFR curves reported by Laming, 1999). The present
predictions do not apply to these experimental situations.

TCM, coupled with the Luce Choice Rule for calculating
probability of recall, makes several distinctive predictions
regarding the scaling behavior of the recency effect. The
present analyses have predicted several properties of recency
and associative effects:

1. Decrease in recency and contiguity over the long term.
2. Transient increases in recency and contiguity for se-

lected values ofρ.
3. Peaks in recency and contiguity that provide an inde-

pendent means of estimatingρ from the data.
4. Associative asymmetry declines monotonically with in-

creasing IPI.
These predictions provide strong constraints on TCM, cou-
pled with the Luce Choice Rule for calculating relative prob-
ability of recall.

Experimental support

The present ms shows that TCMFR predicts that the re-
cency effect as measured in the PFR should decline, and
eventually disappear, as the length of the distractor interval
is increased to infinity. On the face of it, this might appear
to contradict the finding that recency effects are observed
over very long intervals (e.g. Baddeley & Hitch, 1977; Glen-
berg et al., 1983). However, there is an important difference
between the assumptions used in the current treatment and
those experiments. Here the study materials and the presen-
tation time were assumed to be unchanged by manipulations
in the length of the delay interval, from immediate free recall
to continuous-distractor free recall with infinite delay inter-
vals. Studies that have shown recency effects over very long
intervals have used stimuli that are more extended in time
than the presentation of a single word—rugby matches in the
case of Baddeley and Hitch (1977) and stories in the case
of Glenberg et al. (1983). Typical immediate free recall ex-
periments present words one at a time for a small number of
seconds each. If subjects were presented with a single word

daily for a week for, say, 1 s, and then tested at a 24 hour
delay, it would be quite remarkable indeed if they remem-
bered any of the words.2 Extending item presentations in
time would have the same effect as decreasing the value ofτ
(see Eq. 13), which would tend to recover the recency effect.
Given the fact that massed item presentations are not nearly
as effective as spaced item presentations, it may be neces-
sary to treat extended presentations of an item using a more
elaborate scheme than simply treating a longer presentation
interval like multiple presentations of the item using Eq. 1.

It should be emphasized that the predictions derived here
are for very specific measures of output order in free recall.
In particular, the discussion of recency effects depends on the
PFR. TCMFR describes a characteristic shape to the PFR—a
monotonically decreasing function of recency that is highest
for the last item. This pattern of data has been observed in
a number of studies of immediate free recall (Hogan, 1975;
Howard & Kahana, 1999; Kahana et al., 2002).3 This finding
stands in marked contrast to data from other free recall stud-
ies that show a “hump” in the recency portion of the PFR, or
a PFR that “plateaus” at the end of the list (Laming, 1999).
In those studies, the last item is not the most likely to be
recalled first, but is approximately equal in recall probability
to the last several items in the list. The resulting PFR shows a
plateau at the end of the list. In other cases, subjects are more
likely to start recall near, but not at, the end of the list and
then recall forward to the end of the list. This pattern results
in a hump in the PFR, such that the item a couple of serial
positions from the end of the list is most likely to be recalled
first. Laming (1999) has shown that non-monotonic PFRs
are observed in reanalysis of classic free recall studies (Mur-
dock, 1962; Murdock & Okada, 1970).4 The reasons for the
discrepancy between studies that generate smooth monotonic
PFR curves and those that yield PFRs with humps or plateaus
are unclear. However, several obvious explanations, such as
modality of presentation, list length, and written versus ver-
bal recall do not provide a clear-cut explanation.

TCMFR’s account of recency clearly does not hold un-
der conditions that yield PFR curves with humps or plateaus.
Such PFR curves presumably reflect a conscious output strat-
egy and/or the operation of rehearsal processes. Although the
modality effect in immediate free recall is correlated with a
change in output order (Nilsson, Wright, & Murdock, 1975),
both auditory and visual presentation modalities give rise to
non-monotonic PFRs (Unpublished observation from reanal-
ysis of Murdock & Walker, 1969). In order to develop an ex-
planation of phenomena, such as the modality effect in im-
mediate free recall, that depend on output order in immediate
free recall, it would be advisable to first observe these effects

2 If they did remember the words, it would probably be a conse-
quence of a strategy in which their experience with the items was
not limited to 1 s, but rather involved extensive rehearsal.

3 A number of unpublished studies collected by the author and
colleagues has also shown monotonically decreasing PFR curves.

4 Re-analysis of the data reported in Roberts (1972) by the author
of the present ms also shows a non-monotonic PFR for various list
lengths and presentation conditions.
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Figure 3. Prior experimental work provides some support for
the scaling behavior predicted by TCM. Nairne, Neath, Serra,
and Byun (1997) measured the recency effect in a continuous-
distractor experiment in which the IPI and RI were set to the same
value. Subjects were presented with 72 lists of six uppercase conso-
nants. During the IPI and RI, subjects were required to read aloud
single digits. At the end of the RI, subjects were presented with
all 16 uppercase consonants used to generate the lists. Subjects
“recalled” by selecting six letters from among the consonants.

under conditions that give rise to a smooth monotonic PFR
function.

The current treatment yields predictions for experimental
situations in which the delay intervals (but not the item pre-
sentations) are scaled up by the inclusion of a delay of length
t. In two experiments, Nairne et al. (1997) found a reliable
decrease in recency ast was increased from 1 to 12 s, consis-
tent with the decrease over a wide range oft values predicted
for all values ofρ. In their Experiment 3, Nairne et al. (1997)
also showed data that suggests a transient increase in recency
prior to the decrease (see Figure 3).

There are several caveats that should be kept in mind be-
fore accepting the data in Figure 3 as confirmation of the
predictions outlined here. First, the Nairne et al. (1997) data
was not, strictly speaking, free recall. At study subjects stud-
ied lists of consonants. At test subjects were provided with
the entire pool of consonants. and were instructed to select
the ones that were presented in the study list. This makes it
very difficult to interpret order of recall effects, as the phys-
ical layout of the choices could make this more of a recog-
nition test with uncontrolled test order than a true free recall
test. Second, the data was reported as probability of recall
(summed over output positions), rather than PFR, for which
predictions were derived here. Third, the dependent measure
used by Nairne et al. (1997) to describe the recency effect
was the slope, or difference, in the serial position curve over
the last two serial positions, rather than the ratio measure we
used here. Further, Nairne et al. (1997) did not specifically
test for the increase to determine if it is statistically reliable.

In manipulating IPI over a range from 0 to 16 s, Howard
and Kahana (1999) found no reliable effect of IPI on associa-
tive effects in free recall (see also Howard & Kahana, 2002b,
figure 4). Further experimentation is required to properly
evaluate the predictions made in the present ms regarding the

scaling behavior of recency and associative effects.

Comparison to other models of serial position ef-
fects

The changes in the recency effect predicted here could
conceivably be generated by any number of other mech-
anisms that predict exponentially-decaying strength, as in
Eq. 4, and a non-linear competitive retrieval rule analogous
to Eq. 9. There are a number of potential candidates used to
model other tasks in addition to the free recall model stud-
ied here. These candidates include so-called random con-
text models developed to describe simple conditioning (e.g.
Estes, 1955) and paired-associate learning (e.g. Mensink &
Raaijmakers, 1988), and positional models developed to de-
scribe serial recall (e.g. Brown, Preece, & Hulme, 2000)
or retention of order information (e.g. Lee & Estes, 1977).
If these models were applied to free recall with appropriate
assumptions it is possible that they would produce similar
predictions regarding the scaling behavior of the recency ef-
fect to those described here. However, a description of asso-
ciative effects, especially in continuous-distractor free recall,
would be a major challenge for such models.

Nairne et al. (1997) presented modeling results that ex-
plained the decrease in the recency effect apparent in their
data. The distinctiveness-diffusion positional model pre-
sented there showed a monotonic decrease in recency as the
length of the delay interval increased. It is unclear whether
this pattern is a requirement of that model, or a consequence
of the particular parameter choices used in that study. If it
is the former, then the observation of a reliable transient in-
crease in recency would provide a means of experimentally
distinguishing TCM from the diffusion/distinctiveness expla-
nation of the recency effect proposed by Nairne et al. (1997).

Buffer models of the recency effect (e.g. Atkinson &
Shiffrin, 1968; Raaijmakers & Shiffrin, 1980) can explain
part of the qualitative pattern of results predicted here. It
is almost certainly the case that buffer models predict a de-
crease in the recency effect as the length of the delay is in-
creased (e.g. Howard & Kahana, 1999). Further, buffer mod-
els could presumably accommodate a transient increase in
recency in the probability of first recall as the length of the
delay interval is increased by using a drop-out rule that favors
retaining newer items. In a buffer model the probability of
recalling any item from short-term memory to initiate recall
is a function not only of the probability of that item being
in STS, but also of the number of items in STS. This latter
number should decrease as the length of the delay increases,
potentially resulting in more recency. Similar logic can lead
to a transient increase in contiguity effects. It is worth noting
that buffer models with appropriate assumptions can describe
PFR curves with humps or plateaus (Laming, 1999), whereas
these would imply factors external to TCMFR.

TCM and buffer models yield similar predictions with re-
spect to recency and contiguity over relatively short time
scales. Given the extraordinary success of buffer models
in explaining serial position effects over short time scales
(Atkinson & Shiffrin, 1968; Kahana, 1996; Raaijmakers &
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Shiffrin, 1980) this similarity is probably a hopeful sign for
TCM. However, buffer models do not have the capacity to ex-
plain long-term recency effect over appropriately long time
scales, whereas this appears within reach of TCM given stim-
uli that are appropriately extended in time. In particular,
Howard and Kahana (1999) showed that the Raaijmakers and
Shiffrin (1980) model, a buffer model that has been exten-
sively applied to free recall, did not fit data on recency and
contiguity effects over the scale of tens of seconds. Later
work (Howard & Kahana, 2002a) showed that TCMFR was
able to describe the existence of the long-term recency effect
in the PFR and the persistence of associative effects over the
scale of tens of seconds.

Conclusions

The present ms provides a series of detailed experimen-
tal predictions regarding the scaling behavior of recency and
associative effects predicted by TCM, coupled with a Luce
Choice Rule for selecting items for recall. This conjunction
predicts that the recency effect, as measured by the ratio of
the probability of first recall of the last two items in the list,
should decrease over a wide range of delay intervals. For
particular choices ofρ the model also predicts a transient in-
crease in recency as the delay interval increases from zero.
Comparable changes are predicted for contiguity effects. In
contrast, associative asymmetry should decay monotonically
with increases in the delay interval. These predictions pro-
vide strong constraints on the modeling of serial position ef-
fects in free recall. Detailed experimentation will be required
to confirm or disconfirm these predictions.
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