
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Journal of Mathematical Psychology 53 (2009) 474–485

Contents lists available at ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Sequential learning using temporal context!

Karthik H. Shankar, Udaya K.K. Jagadisan, Marc W. Howard ∗
Syracuse University, United States

a r t i c l e i n f o

Article history:
Received 24 August 2008
Received in revised form
8 July 2009
Available online 6 August 2009

a b s t r a c t

The temporal context model (TCM) has been extensively applied to recall phenomena from episodic
memory. Here we use the same formulation of temporal context to construct a sequential learning
model called the predictive temporal context model (pTCM) to extract the generating function of a
language from sequentially-presented words. In pTCM, temporal context is used to generate a prediction
vector at each step of learning and these prediction vectors are in turn used to construct semantic
representations of words on the fly. The semantic representation of a word is defined as the superposition
of prediction vectors that occur prior to the presentation of the word in the sequence. Here we create a
formal framework for pTCM and prove several useful results. We explore the effect of manipulating the
parameters of the model on learning a sequence of words generated by a bi-gram generating function.
In this simple case, we demonstrate that feeding back the constructed semantic representation into the
temporal context during learning improves the performance of the model when trained with a finite
training sequence from a languagewith equivalence classes among somewords.We also describe pTCMA,
a variant of the model that is identical to pTCM at steady state. pTCMA has significant computational
advantages over pTCM and can improve the quality of its prediction for some training sequences.

© 2009 Published by Elsevier Inc.

1. Introduction

Sequential learning algorithms that extract the generating
function of a language from sample sequences of symbols, are of
high significance not only to the machine learning community,
but also to the cognitive psychology community. A variety of
experiments indicate that humans are adept at reconstructing the
generating functions of toy languages with artificial grammars
(e.g. Mintz, 2002) and are able to discover underlying equivalence
classes among the symbols if they exist. The success of any model
in learning the generating function of the language can be directly
measured either by letting the generating function reconstructed
by the model generate novel sequences or by letting the model
predict subsequent symbols on a test sequence.

Training neural networks on the sample sequences based on
supervised learning paradigm has been a very popular approach
to model the underlying learning mechanisms (e.g. Elman, 1991;
Plate, 2003). Christiansen and Chater (2001) review the successes
of such connectionist modeling methods in making contact
with a variety of psycholinguistic data. The slowness of the
supervised learning algorithms make them very inefficient in
learning the structure of natural languages. On the other hand, the

! Supported by NIH grant 1-R01 MH069938 to MWH.∗ Corresponding address: SyracuseUniversity, Syracuse, NY 13244, United States.
E-mail addresses: karthik@memory.syr.edu (K.H. Shankar),

marc@memory.syr.edu (M.W. Howard).

unsupervised learning models can be very fast and have proven
successful in capturing certain features of natural languages. Some
of these models, like the hyperspace analogue of language (HAL,
Lund & Burgess, 1996), the bound encoding of the aggregate
language environment (BEAGLE, Jones & Mewhort, 2007) and
the constructed semantics model (CSM, Kwantes, 2005), can
be classified as incremental learning algorithms, because they
construct the semantic representation of symbols ‘‘on the fly’’.1
That is, as the sequence of words (symbols) from the training
corpora is presented, the semantic representations of thewords are
gradually updated. Othermodels like latent semantic analysis (LSA,
Landauer & Dumais, 1997), the Topic model (Griffiths, Steyvers,
& Tenenbaum, 2007), and the automatic distillation of structure
(ADIOS) model (Solan, Horn, Ruppin, & Edelman, 2005), need to
access the entire corpus of training sequences prior to beginning
their process of constructing semantic representations. Hence,
they do not describe the process of learning per se, but rather
describe statistical computations that are taken after all experience
has already occurred.

A common feature of all these models is that they all rely
either explicitly or implicitly on being able to maintain a context
and vary it as the sequence is presented. For instance, simple
recurrent networks (SRN, Elman, 1991) and holographic recurrent

1 The inclusion of the Kwantes (2005) model in this list of incremental learning
models relies on its description of a semantic representation that is computed (but
not stored) in response to a probe item.

0022-2496/$ – see front matter© 2009 Published by Elsevier Inc.
doi:10.1016/j.jmp.2009.07.005

Author's personal copy

K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485 475

networks (HRN, Plate, 2003) accomplish the task of sequence
predictionprimarily because there exists a context layer of neurons
which sort of stores the prior states of the sequence. In LSA, the
Topic model and CSM, words (symbols) that appear in a particular
document are defined as appearing in a common context. Although
it is not explicit in these treatments, these models are consistent
with a representation of context that changes quite slowly—
words at the beginning and end of a document with hundreds of
words are treated as being part of the same context.2 In HAL and
BEAGLE, the context in which a word is presented is defined as a
combination of words presented in closer temporal contiguity. For
instance, in BEAGLE, words that appear within the same sentence
are rated to be in the same context—context changes over a more
rapid time scale in these models than in LSA, the Topic model
or CSM.

In this paper, we describe a sequential learning model called
pTCM (predictive temporal context model), which can be viewed
as a neural network model with a context layer. The context layer
hasmuch in commonwith context in the SRNs. It encodes the prior
states of the sequence and changes gradually as the sequence is
presented. The precise formulation of the context and its evolution
is based on the temporal context model (TCM, Howard, Fotedar,
Datey, & Hasselmo, 2005; Howard & Kahana, 2002; Sederberg,
Howard, & Kahana, 2008). A crucial difference between pTCM and
SRNs is that the learning process in pTCM is unsupervised and does
not use backpropagation as do the SRNs.

As the training sequence is presented to themodel, at each step,
themodel generates a prediction for the subsequent symbol that is
to occur in the sequence and simultaneously builds up a semantic
representation vector for the symbol that is presented. It turns out
that the semantic representation gives a natural way to categorize
symbols into equivalence classes (we demonstrate this property
with respect to a toy language). The semantic representation is
built based on the idea that words occurring in similar contexts
are interchangeable (Harris, 1951) and paradigmatically related to
each other. For instance, consider the sentence, The baker reached
into the oven and pulled out the floob. To the extent that the model
predicts effectively, itwill construct the semantic representation of
the unknown word floob with words like pizza and bread, that are
predicted to occur in that temporal context. An important aspect
that distinguishes pTCM from other models is that the semantic
representation constructed on the fly is fed back into the learning
process. For example, if the word floob occurs in the corpus for the
second time, its previously constructed semantic representation
(made up of words like pizza and bread) influences the context
that follows the second presentation of the word. In the spirit of
the distributional hypothesis, where words that occur in similar
contexts carry similarmeanings,we expect this procedure to speed
learning through generalization. When the sample sequence is
too short for sufficient statistics of the language to be sampled,
such a ‘‘learning through generalization’’ could be very useful (we
demonstrate this property with respect to a toy language).

This paper is split into three parts. In the first part, we formally
describe the mathematical aspects of pTCM. In the second part,
we describe the behavior of pTCM when trained on a corpus long
enough to have sampled all possible statistics of the language,
and describe a variant of the model called pTCMA(which is not a
sequential learningmodel). It has been a challenge to employpTCM

2 A term-by-document matrix, such as that used as the starting point of these
models, is consistent with an explicit representation of context in a very large
embedding dimension in which the state of context for each document is chosen
randomly. If these context vectors form basis vectors for the embedding space, then
a row of a term-by-document matrix can be understood as the sum of the contexts
in which that word appeared.

to learn (natural) large languages, because the vector and matrix
multiplications involved in the algorithm are computationally
very time expensive. pTCMAalleviates much of the computational
complexity and can potentially scale up to learn large languages.
In this paper, we do not illustrate the performance of the model on
a real language (but see Howard, Shankar, & Jagadisan, in press).
In the third part of the paper, we illustrate the properties of the
model by training it on a toy language with a precisely defined
generating function, this helps us to evaluate the model with
mathematically precise measures. The ability of the model to
construct useful semantic representations after training on corpus
of a real language and the utility of this semantic representation
in describing semantic effects on episodic memory tasks will be
addressed elsewhere.

2. The predictive temporal context model (pTCM)

In this section, we will formalize the predictive temporal
context model (pTCM). We first lay out the mathematical
framework, then discuss the learning rules that will be employed.
Future sections will derive important results and explore the effect
of the model’s parameters on learning.

Consider a languagewhich has a finite number of uniquewords.
We shall refer to the unique words as ‘‘items’’ and denote them by
Greek letters (α, β, . . .). We shall pick a long sequence of words
using the generating function of the language and refer to it as a
token list. Wewill refer to theword (item) in the ith position of the
token list as the ‘‘ith token’’. The challenge faced by any statistical
learning model is to use the token list to learn to reproduce the
generating function that specifies the language. We will evaluate
the model by asking how nearly the sequences generated by
the model resemble the sequences generated by the language.
In general, the token list used for learning will only describe a
small fraction of all possible meaningful sequences that can be
generated from the language. A better (more efficient) model will
be able to approximate the generating function of the language
with a shorter token list. The accuracy of the prediction can be
estimated by comparing the model’s generating function with the
true generating function of the language.

2.1. Mathematical framework

In this paper, we will adopt the Dirac notation by denoting
column vectors as a ‘‘ket’’, e.g., |v〉 and row vectors as a ‘‘bra’’, 〈v|.
The primary advantage of this notation is that it becomes intuitive
to visually identify the inner product as a ‘‘braket’’ 〈v|u〉; the outer
product appears as a ‘‘ketbra’’: |u〉〈v|. That is, 〈v|u〉 ‘‘compresses’’
to a scalar whereas |u〉〈v| ‘‘expands’’ to a matrix. Fig. 1 provides a
graphical summary of the model that may facilitate the following
description.

We define an orthonormal vector |fα〉 corresponding to each
word α. The set of all these vectors form the basis of the word
space. The vector corresponding to the ith token in the token list
is |fi〉, which is just the |fα〉 corresponding to the word presented
as the ith token. Next, we define a context space.We shall represent
the context vector right after learning the ith token by |ti〉. We
assume that the context vector is always normalized such that the
sum over all its components is equal to one. This differs frommost
previous treatments of TCM (but see Howard, Jing, Rao, Provyn, &
Datey, 2009). The choice ofL1 norm is important in enablingmany
of the steps of the proofs here. The dimensions of the f space and t
space can in principle be different.

We next define a set of operators, C, M, H and S, that act on the
f space and t space. The operator C transforms each of the basis

Author's personal copy

476 K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485

Fig. 1. A pictorial representation of the mathematical framework underlying the
model. The two vector spaces f and t are denoted by blocks, and the four operators
M, C, H, S are denoted by arrows: the tail of the arrow indicates the space on which
the operator acts, and the head of the arrow indicates the space onto which the
operator projects. The vectors |f〉, |s〉 and |p〉 live in the f space, while the vectors
|c〉, |h〉 and |t〉 live in the t space.

vectors of the f space, |fα〉 into a vector in the t space, which we
denote by |cα〉.
|cα〉 = C|fα〉. (1)

Unless otherwise noted, we will assume that C is the identity
operator and that the dimensionality of the t space is the same
as the dimensionality of the f space. The operator M acts on a
context vector from t space and yields a vector in the f space.
More specifically, at any step of the learning process,M acts on the
prevalent context vector and yields a prediction vector

|pi〉 = M|ti〉. (2)

Note that |pi〉 refers to a particular vector in the f space. We will
see that the properties of M are such that |pi〉 can be thought of as
a prediction of the item that will be presented at time step i + 1.

The operator S acts on a vector from the f space and yields
another vector in the f space. More specifically, S acts on the basis
vectors of the f space, |fα〉 to yield a vector |sα〉which we can think
of as a semantic representation of word α.

|sα〉 = S|fα〉. (3)

The operators we have discussed so far, C, M, and S are all linear
operators.

For completeness, we also include an operator H that acts on a
vector from the t space and yields another vector in the t space.
More specifically, H acts on |cα〉 to yield |hα〉.
|hα〉 = H|cα〉. (4)

In general, H can be a (highly) nonlinear operator that recovers
some combination of the previous states of temporal context in
which item α was presented. We hypothesize that H describes
the output of the hippocampal formation (Howard et al., 2005).
We hypothesize that this act of recovery corresponds to successful
episodic retrieval. Here our focus is on discovery of the consistent
structural relations among words in a language rather than on
episodic memory for specific instances in which words were
presented, so we will not dwell much on H except to locate it in
the formal framework we develop.

2.2. Learning rules

Having defined the spaces, operators and the vectors in the
model, we now describe the learning rules that specify the values
of these quantities in response to a token list. At every step of
learning, the operators M, S, and H, and the context vector |ti〉 are
updated. To keep themodel simple, we assume that the operator C
does not evolve with learning. To further simplify matters, assume
throughout the remainder of this paper that the dimensions of the
t space and f space are the same and the operator C is the identity
matrix. We should point out that there are much more complex
learning rules that can be imagined within the mathematical
framework of pTCM; we use the simplest possible rules here to
illustrate the basic properties of the model.

2.2.1. Evolution ofM
We first define an operator M which stores the item-context

association at each step of the learning process. Aswe step through
the token list, the operator M is updated by adding on to itself an
outer product of the corresponding item vector and the prevalent
context vector. Hence, at any stage of learning,M is given by

M =
∑

i

|fi〉〈ti−1|, (5)

where the summation goes from the beginning of the token
list to the appropriate point on the token list. M is essentially
unchanged from the outer product matrix referred to as MTF in
other applications of TCM (e.g., Howard, Kahana, & Wingfield,
2006; Sederberg et al., 2008). By factoring out the word frequency
of item α, wα , we can re-expressM as

M =
∑

α

wα|fα〉〈tα|, (6)

where |tα〉 is the normalized average context vector.

wα|tα〉 =
∑

i

〈fi|fα〉|ti−1〉.

Since |fα〉’s form the orthonormal basis of the f space, note that
the term 〈fi|fα〉 acts as a Kronecker delta function whose value is
unity whenever the ith token is α and is zero otherwise. Hence, the
above equation is essentially the summation over all those context
vectors that existed prior to the presentation of the word α. By
defining a diagonal matrix of word frequencies

W =
∑

α

wα|fα〉〈fα|,

we can write M = WM, where

M =
∑

α

|fα〉〈tα|, (7)

that is, M is the row normalized version of M (i.e., each row
of M sums to one). At each step of learning M is updated, and
consequently M is also updated. In fact, we can think of the
operator M as being updated in an online fashion without having
to store the un-normalized M. If the word α occurs for the wth

time in the token list, and if the prevalent context vector is |t〉,
then the corresponding row of M, denoted by 〈tα| is updated in
the following way.

〈tα| →
(
1 − 1

w

)
〈tα| + 1

w
〈t|. (8)

It is straightforward to see that the operator M constructed this
way is essentially equivalent to the M constructed from the steps
leading to Eq. (7).

Author's personal copy

K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485 477

2.2.2. Evolution of S
At each stage of learning, M operates on the prevalent context

vector |ti〉 to yield a prediction vector |pi〉, and this prediction
vector is used to update the operator S. We first define an operator
S which is updated at each step of learning by adding on to itself
an outer product of the prior prediction vector and the item vector.
Hence, at any stage of learning, S is given by

S =
∑

i

|pi−1〉〈fi|, (9)

S is then defined as the column normalized version of S, i.e,
normalize each column to sum to one. S can then be expressed as

S =
∥∥S

∥∥
col , S =

∑

α

|sα〉〈fα|, (10)

where we use the ‖.‖ notation to reflect normalization such that
the sum of all components of the vector within it is one. The
subscript ‘‘row’’ or ‘‘col’’ implies that the matrix inside the double
bar is normalized such that every row or column sums up to one.
In the above equation, |sα〉 is the normalized sum over all the
prediction vectors evaluated just before the item α occurs each
time in the token list.

|sα〉 =
∥∥∥∥∥
∑

i

〈fi|fα〉|pi−1〉
∥∥∥∥∥ . (11)

This vector |sα〉 can be thought of as the semantic representation
of the item α. The learning rule works to make |sα〉 similar to other
items that were presented in similar contexts. In this way, the
model implements a definition of semantic similarity that is based
on contextual interchangeability (Harris, 1951; Miller & Charles,
1991), at least with respect to preceding contexts.

2.2.3. Evolution of the context vector |ti〉
In TCM, the current state of context changes gradually from

moment to moment. A parameter ρ that lies in the range (0, 1)
encodes the rate at which the context changes. At each step of
learning, the context vector is updated in the following way.

|ti〉 = ρ|ti−1〉 + (1 − ρ)|tIN〉. (12)

As the value ofρ grows closer to one, context changesmore slowly;
as the value of ρ approaches zero, context changes more rapidly.
The vector |tIN〉 is the input that drifts the context away from its
previous state, and it depends on the current item from the token
list.

|tIN〉 = γ |hIN〉 + (1 − γ)|cIN〉. (13)

Here |hIN〉, the hippocampal input, corresponds to the input from
theHoperator and |cIN〉, the cortical input, corresponds to the input
from the C operator. If the current item is α, then |hIN〉 is taken to
be |hα〉 and |cIN〉 is taken to be

|cIN〉 = C
[
φ|sα〉 + (1 − φ)|fα〉

]
. (14)

That is, the cortical input to the context is taken to be a
combination of the semantic representation of itemα and the fixed
representation of item α. The parameter φ is a free parameter
of the model that lies in the range (0, 1); its value determines
the ratio of the semantic component to the fixed component in
the input pattern |cIN〉. The presence of the fixed representation
avoids a collapse of the context vectors to a point (see Howard
et al., 2005, 2009, for a discussion), hence we shall take φ to be
strictly less than one. In this paper, we will see that the presence
of the semantic representation (φ '= 0) enables the model to
generalize from the sequences it has observed to sequences it has

not yet observed, analogous to the recovery of |ti−1〉 in previous
applications of TCM (Howard et al., 2009; Rao & Howard, 2008).

In this paper, we focus on construction of semantic memory
based on sequential learning of a token list. Generalization
and integration across disparate experiences is a key feature of
declarative memory (e.g. Eichenbaum, 2000). In our treatment
of semantic memory, we use |sα〉 to accomplish this function
rather than |hα〉. So, throughout this paper, we will always take
γ to be zero. Our semantic representation |sα〉 is composed
of the prediction vectors that were present when item α was
presented rather than the prior contexts in which item α was
presented (Howard et al., 2009; Rao & Howard, 2008). This is
essential for sequentially organized materials, such as language.
The semantic representation for a word α, |sα〉 becomes similar
to the semantic representation of other words that would fit into
similar contexts, rather than becoming similar to the preceding
contexts themselves. To illustrate the utility of this, imagine that
we have learned English and we are presented with a novel word
in the following sentence: The baker reached into the oven and pulled
out the floob. Here, the semantic representation of floob should not
be made similar to the preceding context, i.e., pulled, baker, oven,
etc. Rather, the semantic representation of floob should be made
similar to words that would have fit into the same context like
bread, pizza, pie, etc.

3. Steady state behavior of pTCM

Here we prove three useful properties of pTCM by examining
its steady state behavior after training on a language. First, we
demonstrate that at the steady state, the semantic representation S
can be re-expressed in terms of the prediction operatorM. Second,
we derive a method for calculating the steady state of the model
without explicitly calculating |p〉 at each time step. We refer to
the results of this method as pTCMA. For languages described by
large training sets, this can result in saving a tremendous amount
of processing time. Finally, we prove that for languages that can be
characterized by a bi-gram transition matrix, at steady state pTCM
can generate sequences with precisely the same statistics as the
generating function. In the following section, we explore the utility
of nonzero values of φ and pTCMA in learning languages far from
steady state.

Let us suppose that the generating function of our language is
ergodic. That is, all possible states are sampled according to their
specified probability of occurrence in a sufficiently long sequence
of words. One can understand that a probabilistic random number
generatorwill do this as a consequence of lawof large numbers and
the central limit theorem. At the same time, one can also imagine
several scenarios where the assumption of ergodicity would fail.
(i) Consider a generating function that is not finite. That is, the
total number of words might be finite, but the number of rules
are infinite (like a Markov chain of infinite order) or keep changing
with time. Quite possibly, natural languages could fall into such a
category. (ii) Even in the case of a finite generating function with
finite number of words, one can imagine pathological generating
functions that can fail to be ergodic. For instance, imagine a
generating function that with probability 1/2 selects an infinitely
long sequence from the words 1, 3, and 5, and with probability 1/2
selects an infinitely long sequence from the words 2, 4, and 6. Any
sequence from this generating function will get stuck in one of the
two subsets of words. In the case of bi-gram languages, discussed
in the next section, we will show that such a generating function
can be represented as a reducible transitionmatrix. Wewill ignore
such pathological languages except to note that, in this case it can
be understood as two separable sublanguages that would each be
ergodic.

Author's personal copy

478 K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485

For ergodic generating functions, if the number of times a
specific word (say α) occurs in a token list of length N is nα ,
then for sufficiently large N , the probability distribution of nα/N is
approximately normalwith variance proportional to 1/N . We shall
justify this statement with respect to a generating function with
trivial grammatical structure where the probability for any word α
to occur in any given position is Pα , independent of the preceding
or following words in the sequence. In a token list of length N
generated from this language, the number of times the word α
occurs (nα) is simply given by the binomial distribution, withmean
NPα and variance NPα(1 − Pα). For large N , such that NPα (1,
this is an excellent approximation to the normal distribution. The
probability distribution ofnα/N will then be approximately normal
with mean Pα , and variance Pα(1−Pα)/N . For more complicated
languages where the probability for any word α to occur in a
given position depends on the preceding words, nα will be more
complicated than a binomial distribution. Nevertheless, the central
limit theorem ensures that the probability distribution of nα/N is
approximately normal with a variance proportional to 1/N .

By choosingN large,we canmake the probability distribution of
nα/N arbitrarily narrow around the mean. Let the area under this
probability distribution curve within an ε-neighborhood either
side of the mean be 1 − p, and the area under the curve in the
region outside the ε-neighborhood (tails of the distribution) be p.
By increasing N , we can simultaneously push ε and p arbitrarily
close to zero. More formally, for any given ε > 0 and p > 0, we can
choose a large N such that, for all n ≥ N , nα/n can be fixed within
an ε-neighborhood of its mean value (say ωα) with a probability
greater than 1 − p. That is, for all n ≥ N ,

Prob
(∣∣∣

nα

n
− ωα

∣∣∣ < ε
)

> 1 − p. (15)

Note that for each word α in the language, ωα is positive and∑
α ωα = 1.
An important point to note is that the above equation is not

the only property that emerges out of ergodicity. We can do
much more than just predict accurately the number of times
a word occurs in a sufficiently long sequence generated by an
ergodic generating function. We can even predict the entire
distribution of (finite length) sequences which precede or follow
a word in a sufficiently long sequence. Temporal context in pTCM
is constructed from the preceding sequence of words whose
distributions are subject to ergodicity. Hence, we should be able
to accurately predict the average temporal context in which a
word occurs, and even the statistical distribution of the temporal
contexts in which a word occurs in sufficiently long sequence.

Since the operatorsM and S in pTCM are essentially constructed
from the temporal context vectors of each token in the sequence,
and since each token is weighed equally (that is, irrespective of
whether it occurs early in the sequence or later in the sequence)
in constructing these operators (see Eqs. (5) and (9)), they
will converge to a steady state almost certainly when trained
on a sufficiently long sequence. Although the non-normalized
operators M and S will grow without bounds as the token list
becomes longer, the normalized operators M and S will converge
to a steady state.

One can think of alternative learning rules in pTCM. Consider
a learning rule wherein the tokens are weighed unequally while
constructing the M and S operators (unlike Eqs. (5) and (9)). For
instance, we might imagine a rule where a token is encoded with
a weight that depends on the current word frequency of the
corresponding word, thus depending on the position of the token
on the token list. In such a situation, there is no reason to expect
a convergence to steady state. But for the learning rules in pTCM
(Eqs. (5) and (9)), the operators M and S will converge to a steady
state almost certainly.

To analyze the convergence of matrices to steady state values,
we define a scalar measure s, which just sums over the absolute
values of all the entries of the matrix. Denoting the (i, j)th element
of amatrixX by Xij, we define themeasure s through its action onX,

s(X) =
∑

i,j

∣∣Xij
∣∣ . (16)

Clearly, s(X − Y) serves as a distance measure between matrices.
We can define an analogous scalar measure that acts on vectors
by summing over the absolute values of all its components. For
notational simplicity, we shall denote this measure also by s(). If u
and v are two vectors, then clearly s(u− v) will serve as a distance
measure between the two vectors.

The statement that M and S converge to a steady state limit
almost certainly as the token list becomes arbitrarily long can now
be precisely formulated. For any given arbitrarily small ε > 0, and
p > 0, there exists a N , such that for any token list of length n ≥ N ,
we have

Prob
([

s(M − Mn) < ε
]
&

[
s(S − Sn) < ε

])
> 1 − p. (17)

Here Mn and Sn denote the operators obtained from training the
model on a token list of length n, and M and S correspond to the
steady state values.

Let us now restrict our focus to those generating functions,
which when used to train pTCM will satisfy the convergence
criteria, namely Eqs. (15) and (17). In this section, we show that we
can obtain analytic relationships between the steady state values
M and S. First, we show that S can be written as a function of M.
Next, we derive a convenient expression forM as a function of the
M obtained with φ = 0.

3.1. Claim 1: S can be calculated fromM

The operators M and S to which the sequence of Mn’s and
Sn’s converge almost certainly (as defined in Eq. (17)) satisfy the
following relationship.

S =
∥∥MM′∥∥

col . (18)

Before proving Claim 1, let us first motivate it. Recalling the
definition of S from Eq. (9), we can rewrite S after time step i as

Si =
i∑

j=0

|pj−1〉〈fj|

=
i∑

j=1

Mj−1|tj−1〉〈fj|, (19)

where the second line follows from the definition of |p〉 (Eq. (2)).
The sum of the outer product |tj−1〉〈fj| is just M′

i . If Mj−1 were not
changing over j, then we would be able to quickly verify Claim 1.
After the steady state has been reached,Mj is constantwith respect
to j and the claim is easily established. We now proceed more
formally along these lines.

For a given small ε > 0 and p > 0, let us choose a N large
enough such that Eqs. (15) and (17) holds true. Now consider a
token list of length 2N from our ergodic generating function. We
will use the firstN tokens of the list to train themodel according to
the learning rules from theprevious section and store the operators
asMN and SN. Then we will continue the learning process over the
remaining N tokens and refer to the operators aggregated during
the second N tokens as

δM =
2N∑

i=N+1

|fi〉〈ti−1|, δS =
2N∑

i=N+1

|pi−1〉〈fi|. (20)

Author's personal copy

K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485 479

It will now be convenient to define δM and δS to be the row
normalized and column normalized versions of δM and δS. Since
M and S are defined to be incrementally additive with the
presentation of tokens, we have

M2N = MN + δM,

S2N = SN + δS. (21)

Let us now explicitly row normalize the first line of the above
equation. Note that the sum of each row of the matrix M is
proportional to the word frequency of the corresponding word
(that is, the number of times that word occurred in the token
list). From Eq. (15), we see that the word frequency of any word
is the same (up to an order of Nε difference, with a probability
1 − p) for the first N tokens and the second N tokens. Hence while
normalizing each row of M2N, we will have equal contribution (up
to an order of ε) from MN and δM. Thus, with a probability greater
than 1 − p, we have,

M2N = 1
2
MN + 1

2
δM + O(ε). (22)

Here, we use the notation O(ε) to denote a matrix with terms of
order ε. If the number of unique words in the language is D, and
if ω is the least value of all the ωα ’s (described in Eq. (15)), it can
be shown that s (O(ε)) < Dε/ω. Moreover, from Eq. (17), we have
s(M−MN) < ε and s(M−M2N) < ε. Using these inequalities and
subtractingM from both sides of the above equation, and applying
the measure s(), we have

M − δM = 2
(
M − M2N

)
−

(
M − MN

)
+ 2O(ε)

s(M − δM) ≤ 2s
(
M − M2N

)
+ s

(
M − MN

)
+ 2s(O(ε))

< (2D/ω + 3)ε. (23)

The inequality in the second line of the above equation is a
consequence of the fact that the measure s() obeys the triangle
inequality. By a similar argument, it also turns out that s(S− δS) <
(2D/ω + 3)ε. This implies that as ε goes to zero with increasing
N the operators δM and δS converge almost certainly to the steady
stateM and S respectively.

Now, to prove Claim 1, let us explicitly evaluate δS.

δS =
∥∥∥∥∥

2N∑

i=N+1

Mi|ti−1〉〈fi|
∥∥∥∥∥
col

=
∥∥∥∥∥

2N∑

i=N+1

M|ti−1〉〈fi|
∥∥∥∥∥
col

+ O1(ε)

=
∥∥∥MδM

′∥∥∥
col

+ O1(ε)

=
∥∥MδM′∥∥

col + O1(ε). (24)

The first equality comes from the definition (Eq. (20)). The second
equality holds almost certainly (with a probability greater than
1 − p) because for all i > N , Mi differs from M only by an order
of ε. The third equality again comes directly from our definition of
δM (Eq. (20)). The fourth equality is justified because the columns
of δM′ and δM

′
are the same up to a normalization constant, and

under overall column normalization, a difference in normalization
constant is eliminated.

The notation O1(ε) again denotes a matrix with terms of order
ε, and is different from the matrix O(ε) in Eq. (22). The individual
entries of thematrix O1(ε) are both positive and negative and each
of its columns sumup to zero. Over and beyond noting the fact that
thematrixO1(ε) can bepushed arbitrarily close to zero by choosing
a large value of N , we can evaluate an upper bound for it. Since this
is inconsequential to the continuity of the proof, we will just state

the result without details. Recall that each row ofM sums up to one
by construction, but no such constraint is imposed on the sum over
its columns. If d is the lower bound for all the column sums, it turns
out that s (O1(ε)) < 2εD/d. Note that, for the ergodic generating
functions considered here, d is necessarily positive. Thus we can
write,

s
(
δS −

∥∥MδM′∥∥
col

)
< 2εD/d. (25)

Alongwith s(M−δM) < (2D/ω+3)ε and s(S−δS) < (2D/ω+3)ε,
the above equation immediately leads to Eq. (18) as we take ε to
zero, thus proving Claim 1.

3.2. Claim 2: M (for any φ) can be calculated from the model with
φ = 0

If we defineMo to be the steady state value ofM obtained with
φ = 0, then we have the following relationship.

M = (1 − φ)Mo + φMoS′. (26)
This claim is only true if the operator C is an identity operator,
as assumed here. Hence the vectors |fi〉 and |ci〉 can be used
interchangeably.

The utility of Claim 2 is that it has tremendous practical
implications when scaling the model up to real-world languages.
During training of pTCM it is necessary to evaluate the |pi〉 vector
at each time step, which requires multiplying a vector by a matrix.
This can be extremely costly. If there are D dimensions, the cost of
this calculation goes like ND2. In contrast, computation ofMo does
not require any of these calculations during learning. Claim 2 states
that M can be calculated with only a few matrix multiplications,
which go like D3. Using Claim 2 rather than explicitly calculating
each |pi〉 speeds up the calculation by a factor of approximately N

D ,
which can be a tremendous advantage.

To prove Claim 2, we again imagine training the model on a
token list of length 2N as before. Instead of just keeping track of
the context vector |t〉 at each step, now we also keep track of the
context vector |to〉 that evolves with φ = 0, and construct the
corresponding operatorsMo

N and δMo which converge to the steady
state valueMoalmost certainly. For the remainder of the proof, the
term ‘‘almost certainly’’ implies that a given statement holds true
with a probability greater than 1 − p, and that p can be pushed
arbitrarily close to zero by choosing a sufficiently large N . From
the learning rules, we have
|ti〉 = ρ|ti−1〉 + (1 − ρ) [(1 − φ)|fi〉 + φSi−1|fi〉] (27)

|toi 〉 = ρ|toi−1〉 + (1 − ρ)|fi〉. (28)
A linear combination of the above two equations would yield,
|ti〉 − (1 − φ)|toi 〉 = ρ

[
|ti−1〉 + (1 − φ)|toi−1〉

]

+ (1 − ρ) [φSi−1|fi〉] . (29)
With the definition that
|ki〉 ≡ |ti〉 − (1 − φ)|toi 〉,
we can write
|ki〉 = ρ|ki−1〉 + (1 − ρ)φSi−1|fi〉. (30)

Let us represent the individual columns of the steady state S as
|sβ〉. Hence as in Eq. (10), we have

S =
∑

β

|sβ〉〈fβ |.

Since S is the steady state value to which Si’s converge almost
certainly, from Eq. (17), we see that for all i > N ,
|ki〉 = ρ|ki−1〉 + (1 − ρ)φS|fi〉 + O(ε)

= ρ|ki−1〉 + (1 − ρ)φ
∑

β

〈fβ |fi〉|sβ〉 + O(ε). (31)

Author's personal copy

480 K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485

From the definitions of δM and δM
o
, we have

δM =
2N∑

i=N+1

|fi〉〈ti−1|, δM
o =

2N∑

i=N+1

|fi〉〈toi−1| (32)

⇒ δM − (1 − φ)δM
o =

N∑

i=1

|fi〉〈ki−1|. (33)

Since δM and δM
o
are constructed based on the same token list, the

rows corresponding to the same word in either matrices will have
the same sum. Hence rownormalization of thematrices on the LHS
of the above equation will yield,

δM − (1 − φ)δMo = φ

∥∥∥∥∥

2N∑

i=N+1

|fi〉〈ki−1|
∥∥∥∥∥
row

. (34)

Now, note that Claim 2 (Eq. (26)) is equivalent to the claim that
δM − (1 − φ)δMo converges to φδMoS′ almost certainly. We can
now explicitly expand

φδMoS′ = φ

∥∥∥∥∥

2N∑

i=N+1

∑

β

|fi〉〈toi−1|fβ〉〈sβ |
∥∥∥∥∥
row

. (35)

We need to show that for large N , Eq. (34) converges to
Eq. (35) almost certainly. Note that these two expressions are row
normalized matrices. So let us explicitly compare a specific row
of the two matrices corresponding to the word α. The αth row of
Eq. (34) can be transposed to give the following column vector

φ

∥∥∥∥∥

2N−1∑

i=N

〈fi+1|fα〉|ki〉
∥∥∥∥∥ (36)

and the αth row of Eq. (35) can be transposed to give the following
column vector

φ

∥∥∥∥∥

2N−1∑

i=N

〈fi+1|fα〉
∑

β

〈fβ |toi 〉|sβ〉
∥∥∥∥∥ . (37)

We shall now show that Eq. (36) converges to Eq. (37) in the large
N limit. Let us expand them out. First note that

|toi 〉 = ρ|toi−1〉 + (1 − ρ)|fi〉

= (1 − ρ)
i−1−N∑

j=0

ρ j|fi−j〉 + ρ i−N |toN〉, (38)

where the second line follows from repeatedly expanding |toi−1〉.
Then, we find

∑

β

〈fβ |toi 〉|sβ〉 = (1 − ρ)
i−1−N∑

j=0

∑

β

ρ j〈fβ |fi−j〉|sβ〉

+ ρ i−N
∑

β

〈fβ |toN〉|sβ〉. (39)

Similarly, we can repeatedly expand Eq. (31) to obtain

|ki〉 = (1 − ρ)φ
∑

β

i−1−N∑

j=0

ρ j〈fβ |fi−j〉|sβ〉

+ ρ i−N |kN〉 + (i − N)O(ε). (40)

The factor (i − N) occurs in front of O(ε) because Eq. (31) has
to be iteratively used (i − N) times to completely expand |ki〉.
The normalized vectors in Eqs. (36) and (37) can be constructed
from Eqs. (40) and (39) respectively by summing over the i’s and
subsequently normalizing them. Note that during normalization of

both Eqs. (40) and (39), the second term in the RHS will pick up a
factor ofO(1/N) compared to the first term. This is because the first
term has a summation over j. Thus it is basically the first term in
the RHS of the Eqs. (40) and (39) that would contribute to Eqs. (36)
and (37) respectively, and these two contributions are exactly the
same. The contributions from the other terms in the RHS of Eqs.
(40) and (39) to the Eqs. (36) and (37) respectively, is of the order
O(ε)+O(1/N). For largeN , both ε and 1/N go to zero, thus Eqs. (36)
and (37) converge on to each other almost certainly, hence proving
Claim 2.

An important point to note is that Eqs. (18) and (26) yield the
solution ofM and S corresponding to pTCM only if the token list is
long enough for the model to have reached the steady state. If the
token list is not long enough, then the expressions correspond to
an approximate solution. We refer to the model calculated from
Mo using Claim 2 as pTCMA. In practice, we evaluate pTCMA by
constructing an estimate of S fromClaim1usingMo, thenusing this
S to make an estimate of M using Claim 2; this process is repeated
iteratively until the solution converges.

3.3. Claim 3: pTCM with ρ = 0 and φ = 0 perfectly reconstructs
bi-gram languages

Consider a simple language that can be completely specified by
a bi-gram transition matrix among the D words in the language.
We refer to this matrix describing the probability of transitioning
from one word to another as T. At steady state, with ρ = 0 and
φ = 0, the transition matrix derived from pTCM is equal to the
transition matrix that describes the language:

Tmodel = T. (41)

While we cannot prove that pTCM develops the ability to
perfectly reconstruct all possible generating functions that define
a language (nor indeed is it capable of doing so), we can illustrate
its ability to reconstruct a restricted class of generating functions.
In particular, bi-gram languages for which the probability of the
next word depends only on the identity of the previous word.
Such a language is characterized by a Markov chain of order one
and can be fully specified by a transition matrix T, such that
if word α is presented at time step i then T|fα〉 describes the
probability distribution ofwords thatwill be presented at time step
i + 1: i.e., 〈fβ |T|fα〉 is the conditional probability of word β being
presented at time step i + 1 given that word α was presented at
time step i. We start by specifying more thoroughly some useful
properties of the transition matrix T. Then we describe how the
transition matrix (Tmodel) can be extracted from pTCM, and finally
compare the two.

3.3.1. Specifying T for a bi-gram language
Consider a simple example with just three words ‘A’, ‘B’, and

‘C’. Let us denote the probability of transition from ‘A’ to ‘B’ by PAB,
the probability of transition from ‘A’ to ‘C’ by PAC, and so on. We
can arrange these probabilities in the form of a matrix such that
each column of the matrix corresponds to transition probabilities
from a given word. As a consequence, the sum of each column
of this matrix should be one (a positive matrix with each column
summing up to one is known as a column stochastic matrix). This
is precisely the transition matrix.

T =
[PAA PBA PCA
PAB PBB PCB
PAC PBC PCC

]

. (42)

A straightforward observation is that any transition matrix has
at least one eigenvalue equal to one. To observe this, first note that
any matrix has the same spectrum of eigenvalues as its transpose.

Author's personal copy

K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485 481

If T is a transition matrix, then each row of its transpose T′ sums
up to one. Clearly, a uniform vector (whose every component is
one), is an eigenvector of T′ with an eigenvalue equal to 1. Hence,
T should also have an eigenvalue equal to one.

A slightly more subtle observation is that the eigenvector of
T corresponding to eigenvalue of 1 corresponds to the relative
word frequency vector |w〉 at the steady state. Here, we define
the word frequency vector as a vector with each component being
the relative word frequency of the corresponding word, namely
(wA,wB,wC). Note that in the steady state limit (when the list
generated by the transition matrix T is long enough), we can use
the following equations to obtain the relative word frequencies.

PAAwA + PBAwB + PCAwC = wA

PABwA + PBBwB + PCBwC = wB

PACwA + PBCwB + PCCwC = wC.

The above equations can be concisely expressed as T|w〉 =
|w〉, which shows that the word frequency vector is indeed the
eigenvector of Twith eigenvalue 1.

One can imagine pathological situations where T is reducible,
meaning the nonzero entries of T are separable subspaces. In such
a case, the indices of T can be reordered such that it can be written
as a block diagonal matrix. If we start out with a word in one of the
blocks, the generating function can never generate a word from
outside that block. This would violate our condition of ergodicity
that we have placed on the languages that we consider here.
However, for each block, there would exist an associated word
frequency vector. In this case, the eigenvalue = 1 is degenerate,
with degeneracy being equal to the number of blocks. We shall
just focus on irreducible T here, because in principle, a reducible
T can be viewed as a direct sum of transition matrices of disjoint
languages.

3.3.2. Specifying Tmodel for pTCM
We conjecture that the prediction vector |p〉 is an estimate

of the conditional probability distribution of the subsequent
word predicted by a particular context vector. More specifically,
wα〈fα|p〉 gives an estimate of the probability (up to a normaliza-
tion factor) that the subsequent word will be α, where wα is the
relative word frequency and the prediction vector |p〉 is calculated
from the knowledge of the prevalent context vector |t〉.

At steady state, the preceding context can be taken to be the
average context in which the current word would occur. Suppose
the current word is β . Then the context used to cue for the next
word is on average

|t〉 = ρ|tβ〉 + (1 − ρ)C
[
φ|sβ〉 + (1 − φ)|fβ〉

]
. (43)

We can write explicit expressions for each of these terms using
the operators that have been defined. From the definition of M
(Eq. (7)), we have |tβ〉 = M′|fβ〉. From the definition of S (Eq.
(4)), we have |sβ〉 = S|fβ〉. Finally, from the definition of C (Eq.
(1)), we have |cβ〉 = C|fβ〉. Putting everything together, we can
calculate an estimate of the probability distribution function (up to
a normalization factor) for the word following β to be W |p〉 = W
M |t〉, which can be expanded out as

WM
[
ρM′ + (1 − ρ)

(
φCS + (1 − φ)C

)]
|fβ〉. (44)

By normalizing this vector,we get the subsequentword probability
distribution for eachwordβ . Arranging these vectors as columns of
a matrix we have an estimate of the bi-gram transition probability
derived from the model

Tmodel =
∥∥∥WM

[
ρM′ + (1 − ρ)

(
φCS + (1 − φ)C

)]∥∥∥
col

. (45)

3.3.3. Proof of Claim 3
Consider the case where ρ = 0, φ = 0 and C is an identity

operator. We have Tmodel = ‖WM‖col. We will now show that, at
the steady state, Tmodel = T. Firstly, note that after the presentation
of the item β , the context vector becomes |fβ〉. From the definition
of the transition matrix we see that, given an item β has occurred,
the probability of the subsequent item to be α is given by Pβα =
〈fα|T|fβ〉. Secondly, note that the average context inwhich the item
α occurs in the token list is |tα〉. If the word vectors |fα〉 are chosen
as bases, then the average context vectors |tα〉 form the rows ofM.

It is now straightforward to calculate |tα〉. Given an item α,
the probability that it occurs immediately following item β can be
denoted by P(β|α). Then,

|tα〉 =
∑

β

P(β|α)|fβ〉. (46)

Note that P(β|α) is different from Pβα , which is the conditional
probability of the next word being α, given the current is β . We
can now use Bayes’ theorem to write

PβαP(β) = P(β|α)P(α) (47)

where P(α) and P(β) are the marginal probabilities of occurrence
of items α and β respectively, which are exactly the relative word
frequencies wα and wβ . Hence, under the assumptions we have
made here,

|tα〉 =
∑

β

Pβα

wβ

wα

|fβ〉. (48)

Let us now write out the column vectors of Tmodel.

Tmodel|fβ〉 = ‖WM‖col |fβ〉

=
∥∥∥∥∥
∑

α

wα|fα〉〈tα|fβ〉
∥∥∥∥∥

=
∥∥∥∥∥
∑

α

Pβαwβ |fα〉
∥∥∥∥∥ . (49)

Since the index β is a constant on the columns and Pβα is
normalized such that

∑
α Pβα = 1, column normalization of the

above equation will automatically get rid of the factor wβ . Thus

〈fα|Tmodel|fβ〉 = Pβα = 〈fα|T|fβ〉. (50)

Thus we have shown that Tmodel = T when ρ = 0 and φ = 0.
Note that, we have used the steady state M and S to construct the
Tmodel. If we had used the M and S created from a finite token list
to construct Tmodel, then we would not have perfect equality as in
Eq. (50). Instead we would have, for a given ε > 0 and p > 0, for a
sufficiently long token list,

Prob
(
s(T − Tmodel) < ε

)
> 1 − p. (51)

This derivation also supports our conjecture that the prediction
vector |p〉 is an estimate of the conditional probability distribution
of the subsequent word predicted by a particular context vector.
For this class of generating function and these parameters, the
estimate is precisely correct at steady state.

In the general case when ρ and φ are nonzero, Tmodel and T are
not equal. However, this should not be interpreted asmeaning that
these parameters are useless. ρ provides a measure of flexibility
to capture generating functions that are not simply described
by bi-gram models. One can think of the model with nonzero ρ
as roughly analogous to a weighted N-gram model (e.g. Bengio,
Ducharme, Vincent, & Jauvin, 2003). The parameter φ provides the
ability to rapidly discover equivalence classes among words. We
will characterize this property with simulations in the following
section.

Author's personal copy

482 K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485

4. Simulations on a toy language

One of the major challenges in learning a language is
overcoming the curse of dimensionality. To illustrate one aspect of
this problem, let us imagine that we have a bi-gram language with
D words. We want to estimate the value of 〈fα|T|fβ〉. The number
of tokens we need to present to estimate this value from the data
to a given level of reliability goes up with D2. The problem is worse
if the generating function is not a bi-gram model but an N-gram
model. Nonzero values of the parameters ρ and φ cause the steady
state behavior of the model to deviate from optimality for a bi-
gram model. However, nonzero φ works to mitigate against the
curse of dimensionality by allowing generalization among words
with similar roles in the language.

The ability to rapidly generalize among synonymous words is
of course only an advantage for languages that contain synonyms.
Here we illustrate the utility of nonzero φ by explicitly simulating
the model on training sequences generated from a small toy
language with classes of synonymous words. We also compare
pTCMA to the results of explicit simulation of this toy language and
the form of convergence to the steady state.

4.1. Methods

For these simulations, T is a 9 × 9 matrix which is composed of
three categories A, B and C, with threewords each. T can bewritten
as TABC ⊗ X, where TABC contains the probabilities of transition
between the threeword categories andX is a uniform 3×3matrix.
In the simulations we used

TABC =
[0.1 0.4 0.1
0.7 0.0 0.8
0.2 0.6 0.1

]

, X =
[1/3 1/3 1/3
1/3 1/3 1/3
1/3 1/3 1/3

]

. (52)

Note that because X is uniform, words within a category are
perfectly interchangeable.

We implemented the model in the R programming language.
We chose each of the nine |f〉 vectors to be a basis function for
our space and C to be the nine-dimensional identity matrix. As a
consequence,M,M, S and S are all 9×9matrices. Each point in the
simulations reflects an average over 2000 randomly chosen token
lists. The variability in the mean value is essentially zero for all
simulated points. We initialized |t0〉 and the operators M and S to
be all zeros at the beginning of each token list. We also assumed
that if |si〉 = 0, then |tINi 〉 = |ci〉. Note that this initialization
leads to nonsensical predictions at the first several presentations.
However, the form of the initialization is rapidly lost over the scale
we report here. Essentially indistinguishable resultswere observed
if the |t0〉 and the operators were initialized to be uniform or small
random values.

The optimal value of ρ for a bi-gram generating function such
as the one considered here is zero. That is, the model’s capability
of discovering equivalence classes and its accuracy of prediction is
maximal when ρ is zero. In this paper, we only report the results
of the simulations with ρ = 0.

4.2. Results

We explicitly demonstrate three aspects of pTCMwhen trained
on the bi-gram language (Eq. (52)). First we show that for
sufficiently long training sequences, pTCM converges to a steady
state. Then we show that nonzero values of φ give a significant
advantage for short training sequences in discovering equivalence
classes among words and in improving the quality of prediction.

Fig. 2. The discrepancy between thematrixMN and its steady state valueMdefined
as s(M−MN) is plotted as a function of N , the number of tokens in the training set.
Each point reflects the average over many training sets chosen independently from
the generating function. Filled circles, open circles and filled diamonds correspond
to values of φ of 0, 0.3, and 0.5, respectively. ρ = 0 in all the cases. Points connected
by solid lines show the average of simulations using pTCM. Points connected by
dashed lines show the average of simulations using pTCMA.

4.2.1. Convergence to steady state
As discussed previously, if the number of tokens N is large

enough, the operatorsMN and SN will stabilize to their steady state
values M and S respectively. Also recall that the steady state S
can be expressed as a function of the steady state M (Claim 1),
so evaluating the convergence of MN is sufficient to establish
the convergence of SN . An important point to note is that the
generating function T does not uniquely fix the steady state values
M and S; they depend strongly on ρ and φ. Moreover, it turns out
that the rate of convergence to the steady state is faster for higher
values of φ and ρ. To measure the distance from the steady state,
we use the measure s() (defined in Eq. (16)). To give a sense of
the scale of this measure, we note that since the matrices T, M
and S are all 9 × 9 (row/column) stochastic matrices, we have
s(T) = s(M) = s(S) = 9.

Fig. 2 shows the distance from the steady state value of M
for pTCM and pTCMA as a function of the number of tokens in
the tokens list for three values of φ with ρ fixed at zero. There
are two features of the model that can be observed from Fig. 2.
First, the convergence to steady state is faster for greater values
of φ. Second, there are at most modest differences in convergence
between pTCMand pTCMA.3 AsN growswithout bound, the curves
end up at a distance of zero from the steady state value of M. For
φ = 0, the distance to steady state decreases to 0.2 after a token
list of 80,000 tokens. For φ = 0.5, the number of tokens needed to
approach within the same distance is 15,000.

4.2.2. Discovering equivalence classes
There are two distinct steps involved in categorizingwords into

equivalence classes. The first is to recognize that the words within
a category are sufficiently similar to each other, and the second is
to recognize that the categories are sufficiently distinct from each
other. Herewe show that the equivalence classes amongwords can
be directly read out from the semantic representation matrix S.

Recall that the semantic representation of any word is given
by the corresponding column of the S matrix. Since our language

3 For small values of N , pTCM converges more quickly. For large values of N ,
pTCMA converged slightly more quickly.

Author's personal copy

K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485 483

a b

Fig. 3. The distance on the y-axis gives s(|sα〉 − |sβ 〉) averaged over different words of the language. Each point reflects the average over many training sets chosen
independently from the generating function. Points connected by solid lines are from simulations of pTCM and points connected by dashed lines are from simulations using
pTCMA. Curves with different types of points correspond to different values of φ: filled circles, φ = 0; open circles, φ = 0.3; filled diamonds, φ = 0.5. a. The average
intra-category distance or the average distance between words of different categories is calculated by averaging s(|sα〉 − |sβ 〉) over all possible combinations of α and β
when they both belong to the same category. b. The average inter-category distance is calculated by averaging over all combinations of α and β that belong to distinct
categories.

is made of three categories of three words each, we expect the S
matrix to reflect this category structure. As expected, we found
that the semantic representations of any two words α and β , are
similar to each other if they are from the same category, and less
similar if they are from different categories. More specifically, as
we increase the length of the token list, the distance between
the semantic representations of α and β , namely s(|sα〉 − |sβ〉)
converges to zero if α and β are in the same category. If not,
this distance converges to a nonzero number. In Fig. 3a, we plot
the average intra-category distance, which we define as s(|sα〉 −
|sβ〉) averaged over all possible combinations of α and β such
that they both belong to the same category. We see that the
average intra-category distance converges to zero for all values
of φ as N grows large. We also find that for higher values of
φ, the convergence is faster. Hence, for short training sequences,
the words within a category can be grouped together much more
reliably with higher φ values. In Fig. 3b, we plot the average inter-
category distance, which is defined as s(|sα〉 − |sβ〉) averaged over
all possible combinations of α and β such that they belong to
two distinct categories. We see that the average inter-category
distance converges to a nonzero value. Moreover, we find that
this value is lower for higher values of φ. This implies that for
higher values of φ, even though the intra-category convergence
is faster, the distinguishability among the categories is weaker.
So if our goal were to discriminate categories from a generating
function according a specificmetric, wewould choose aφ such that
the intra-category distance is sufficiently small, while at the same
time the inter-category distance is sufficiently big to discriminate
between the distinct categories. We also note that pTCMA pushes
down the intra-category distance (from Fig. 3a), while at the same
time pushes up the inter-category distance (from Fig. 3b) relative
to pTCM. This shows that pTCMAperforms better than pTCM in
reliably discovering the equivalence classes and discriminating
amongst the distinct categories.

A point worth mentioning is that the inter-category distance
to which the different curves in Fig. 3b converge, is very much
dependent on the generating function. The generating function we
have chosen for these simulations (Eq. (52)) is such that the inter-
category transitions is non-deterministic, that is the columns of
TABC are not orthogonal. As a consequence, for higher values of φ,
the generalization process incorporated in pTCM makes different
categories similar to each other. If we had chosen a deterministic
inter-category transition matrix TABC (unlike Eq. (52)), then the

categories will be maintained completely distinct from each other
in Smatrix, and the inter-category distance would be independent
of φ. In such a situation, the highest possible value of φ is the most
optimal for discovering the equivalence classes.

4.2.3. Accuracy of prediction
Fig. 2 established that nonzero φ results in a faster convergence

to steady state. However, the steady state limit to which themodel
with nonzero φ converges to is non-optimal in the sense that it
does not yield a correct prediction, that is Tmodel '= T. However,
far from steady state, it turns out that nonzero φ improves the
predictiveness of the model (at least for the type of generating
function used here) by discovering and exploiting the equivalence
between the words that are part of the same category.

The scalar measure s(Tmodel − T) can be used to measure the
difference between T and Tmodel. This can be considered as an ‘‘error
in prediction’’ by the model.4 Fig. 4a shows the error induced by
pTCM and pTCMA as a function of N for several values of φ. Fig. 4a
reveals several interesting properties. As expected, for large values
of N , φ = 0 (filled circles) provides the best prediction. However,
for smaller values of N , the model with φ = 0.3 outperforms
the model with φ = 0. Although it performs considerably worse
asymptotically, at very small values of N , the model with φ = 0.5
(filled diamonds) even outperforms the model with φ = 0. For
the two curves in Fig. 4a with nonzero φ, pTCMA yielded a better
prediction than pTCM for all values of N .

Fig. 4b illustrates the advantage of nonzero φ for small N more
clearly. For several values of N , the error is plotted as a function
of φ. Note that for small values of N (see especially N = 100),
the error initially decreases as φ increases from zero, reaching an
optimal value of φ for which the error is minimal, beyond which
increasing φ increases the error. For this specific transition matrix
T and N = 100, the optimal value of φ, the point at which the
curve reaches a minimum, appears to be close to 0.3. For N = 300,
the optimal value of φ is a bit smaller. In the limit as N increases
without bound, the curve would be monotonically increasing such
that the optimal value of φ was zero. For each value of φ > 0,
pTCMA, illustrated by the dashed lines in Fig. 4b, performs slightly

4 There aremore complexmeasures of error in prediction that can be adopted. For
instance, Tmodel and T could be compared with ametric that calculates the expected
Kullback–Leibler divergence. Nonetheless, s() should suffice for our purposes.

Author's personal copy

484 K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485

a b

Fig. 4. Themeasure of the error in prediction on the y-axis is s(Tmodel −T). Each point reflects the average overmany training sets chosen independently from the generating
function. Points connected by solid lines are from simulations of pTCM, and points connected by dashed lines are from simulations using pTCMA. a. For different values of φ,
the error in prediction generated by pTCM is plotted with respect to the number of tokens in the token list N . Filled circles, φ = 0; open circles, φ = 0.3; filled diamonds,
φ = 0.5. b. For different values of N , the error in prediction is shown as a function of φ. For small N , there is an optimal nonzero value of φ. Filled circles, N = 100; open
circles, N = 300; filled diamonds N = 1000.

better than pTCM. In some cases this advantage is substantial. Also
note that the optimal value of φ for pTCMA is not necessarily the
optimal value of φ for pTCM (see especially the filled circles, for
N = 100).

5. General discussion

In this paper we presented a formal sequential learning model
for extracting the generating function from sequentially-presented
words. This model utilizes a representation of temporal context
taken from the temporal context model (TCM, Howard et al., 2005;
Howard & Kahana, 2002; Sederberg et al., 2008). This extension,
which we refer to as the predictive temporal context model
(pTCM) generates a prediction about the next word that will
be presented at any time on the basis of the prior history. The
semantic representation of a word is the superposition of all the
prediction vectors generated just before the word was presented.

We prove several useful results in this paper. Among these,
we show that if presented with a sequence of words generated
by a bi-gram transition matrix, the model yields a perfect
prediction ifφ, which determines the degree towhich the semantic
representation is included in context, is set to zero. Conversely, if
φ is nonzero, the model yields an imperfect prediction in the limit
as the number of tokens in the training list goes to infinity. Under
these circumstances, the semantic representation generated by the
operator S is appropriate, but its inclusion in the context cue leads
to incorrect predictions. There are some generating functions for
which this result does not hold. For instance, if we had a generating
function in which TABC was composed of deterministic transitions,
i.e., if the columns of TABC were orthogonal to one another, then
the model with nonzero φ yields the same quality of prediction at
steady state as does the model with φ = 0.

Far from steady state, when N is relatively small, nonzero φ
yielded a superior fit to the generating function. This is because
the generating function was chosen to have redundancy that can
be exploited by nonzero φ. In this example, all words that were
part of the same category were perfectly interchangeable and thus
synonymous. Nonzero φ is advantageous for small N because the
benefit of ‘‘filling in’’ the category structure outweighs the costs of
distortions to the nontrivial across-category transition structure, at
least in the case of our generating function.

In addition to pTCM, we also introduced pTCMA, a variant of
the model. If the training sequence is long enough for pTCM to
reach a steady state, then pTCMA exactly matches the final state
of pTCM. If the training sequence is not long enough for pTCM to
reach a steady state, the solution reached by pTCM with nonzero

φ depends on the order of presentation of the token list. That is, a
particular sequence learned very early in the token list, can have
a different effect on the final state of the model from the same
sequence learned at a later point in the token list. This is so because
the |p〉 vector that is generated at a particular stage of learning
depends on the development of M up to that point. In contrast,
in pTCMA, the information about when a particular sequence is
learned has no effect on the final state of pTCMA. In other words,
far from steady state, unlike pTCM, pTCMA is history-independent.
We can think of pTCMA as the steady state value that pTCMwould
attain if the token list were a precise estimate of the transitions
that take place in the language. With this in mind, one can imagine
pTCMA as the result of pTCM if it were repeatedly trained multiple
times with the same token list. As mentioned previously, pTCMA
has dramatic practical benefits over pTCM for large languages.

5.1. Extending the model

We have shown in this paper that pTCM can capture the bi-
gram generating functions quite well. But the model is sufficiently
simple that it does not have enough structure to capture various
aspects ofmore complex languages. Herewe suggest several routes
for extending the model to enable it to extract the generating
function of more complex languages.

5.1.1. Nonzero ρ
In pTCM, the prediction at any time is determined by the history

of the context states and the words presented in association with
them. The parameter ρ controls the rate of contextual drift, and
thus how the context retrieved by previous tokens contribute to
the current context. For the bi-gram languages considered here,
the optimal value of ρ is zero—information about tokens before the
most recently presented one contribute no additional information
about the subsequentword.When ρ is zero, only themost recently
presented token gets encoded into the context vector. When ρ is
nonzero, the tokens prior to the most recently presented one also
contribute to the context vector, weighted by the recency of the
token. Hence, in some sense, nonzero ρ helps to maintain word
order information from prior tokens. To efficiently learn complex
languages, storing word order information is very essential. Unlike
pTCM, wherein the word order information is built into the
context vector, models like BEAGLE (Jones &Mewhort, 2007) store
the word order information separately from the context vector.
BEAGLE uses convolution vector products to capture the word
order information. Sahlgren, Holst, and Kanerva (2008) showed
that a computationally simpler strategy of random permutation

Author's personal copy

K.H. Shankar et al. / Journal of Mathematical Psychology 53 (2009) 474–485 485

of word vectors is sufficient to do the same. pTCM’s strategy of
capturing the word order information is much simpler than these
approaches.

Although the temporal context vector discards detailed infor-
mation about word order, this may not be a crippling disadvantage
to the extent that a language has stronger near neighbor correla-
tions than distant correlations among words. On the other hand
a language with stronger distant correlations than near neighbor
correlations, will present a serious challenge to pTCM. In order to
capture such non-adjacent dependencies in generating functions,
varying the value of ρ from word to word might be an effective
strategy. A more complicated strategy is to simultaneously con-
sider multiple sets of pTCM with different values of ρ, where each
set would carry a temporal context vector with a different scale
of word order information. In principle, the information on non-
adjacent dependencies should reside in a combination of across-
scale word order information, hence developing heuristics on
reconstructing them would be of interest for future work.

5.1.2. Quick and optimal learning with variable φ

There is some conflict in the role of φ for the bi-gram
languages considered here. With φ = 0, learning is guaranteed
to be asymptotically perfect, but will take a very long time. On
the other hand, nonzero φ results in faster learning if there
are redundancies in the language, but results in asymptotically
imperfect reconstruction of the generating function, if the inter-
category transitions are non-deterministic. This suggests a learning
strategy in which φ starts out large and gradually decreases.
Unfortunately, the optimal φ for a particular N would most likely
depend on the precise choice of generating function, which is not
known in advance. Developing useful heuristics for this dynamic
learning rule is a major challenge for future work.

5.2. Connection to episodic memory

The present framework develops a representation of semantic
structure from sequentially-presented materials. This uses a
representation of temporal context originally developed for its
use in describing episodic recall phenomena. The semantic
representation utilized here bears some resemblance to the
recovery of temporal context. If the item presented at time step
i is repeated, recovery of temporal context has been described as
the successful recovery of |ti−1〉. Here, the semantic representation
is built up from the superposition of |pi〉, the prediction vector
at time step i, which is just M|ti−1〉. The constructed semantic
representation differs from the recovery of temporal context in
the sense that we envision the buildup of the S operator to take
place over a long period of time, whereas recovery of temporal
context for episodic memory need not reflect the superposition of
a great many states but rather reflect a more restricted range of
events. It is our view that S andH reflect complementary modes of
learning (Norman & O’Reilly, 2003) and that both are necessary for
a complete description of declarative memory.

6. Conclusions

We describe a formal approach to extracting generating func-
tion of a language from sequentially-presented words. This model,
which we refer to as pTCM, utilizes a distributed representation

of temporal context to create a prediction vector. The semantic
representation of a word is constructed by aggregating the predic-
tion vectors that are available when it is presented. We prove sev-
eral useful results and describe an approximation to pTCM, which
we refer to as pTCMA, that can be advantageous for learning large
languages that require extensive training sets. We demonstrate
that when the training set leaves the model far from steady state,
nonzero φ enables the model to make a better prediction for lan-
guages that contain equivalence classes amongwords. Because the
representation of temporal context is inherited from a model that
has been extensively applied to episodic recall tasks, pTCM may
eventually prove to represent an important step towards a unified
model of declarative memory.

References

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic
language model. Journal of Machine Learning Research, 3, 1137–1155.

Christiansen, M. H., & Chater, N. (2001). Connectionist psycholinguistics: Capturing
the empirical data. Trends in Cognitive Science, 5, 82–88.

Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory.
Nature Reviews, Neuroscience, 1(1), 41–50.

Elman, J. L. (1991). Distributed representations, simple recurrent networks, and
grammatical structures.Machine Learning , 7, 195–225.

Griffiths, T. L., Steyvers, M., & Tenenbaum, J. B. (2007). Topics in semantic
representation. Review, 114(2), 211–244.

Harris, Z. (1951). Methods in structural linguistics. Chicago: IL University of Chicago
Press.

Howard, M. W., Fotedar, M. S., Datey, A. V., & Hasselmo, M. E. (2005). The temporal
context model in spatial navigation and relational learning: Toward a common
explanation of medial temporal lobe function across domains. Psychological
Review, 112(1), 75–116.

Howard, M. W., Jing, B., Rao, V. A., Provyn, J. P., & Datey, A. V. (2009). Bridging
the gap: Transitive associations between items presented in similar temporal
contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition,
(35), 391–407.

Howard, M. W., & Kahana, M. J. (2002). A distributed representation of temporal
context. Journal of Mathematical Psychology, 46(3), 269–299.

Howard, M.W., Kahana, M. J., &Wingfield, A. (2006). Aging and contextual binding:
Modeling recency and lag-recency effects with the temporal context model.
Psychonomic Bulletin & Review, 13, 439–445.

Howard, M.W., Shankar, K.H., & Jagadisan, U.K.K. Constructing semantic represen-
tations from a gradually-changing representation of temporal context. Topics
in Cognitive Science (in press).

Jones, M. N., & Mewhort, D. J. K. (2007). Representing word meaning and order
information composite holographic lexicon. Psychological Review, 114, 1–32.

Kwantes, P. J. (2005). Using context to build semantics. Psychonomic Bulletin &
Review, 12(4), 703–710.

Landauer, T. K., & Dumais, S. T. (1997). Solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of
knowledge. Psychological Review, 104, 211–240.

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic spaces from
lexical co-occurrence. Behavior Research Methods, Instruments & Computers,
28(2), 203–208.

Miller, G. A., & Charles, W. G. (1991). Contextual correlates of semantic similarity.
Language and Cognitive Processes, 6, 1–28.

Mintz, T. H. (2002). Category induction from distributional cues in an artificial
language.Memory and Cognition, 30(5), 678–686.

Norman, K. A., & O’Reilly, R. C. (2003). Modeling hippocampal and neocortical
contributions to recognition memory: A complementary-learning-systems
approach. Psychological Review, 110(4), 611–646.

Plate, T. A. (2003). Holographic reduced representation: Distributed representation for
cognitive structures. Stanford, CA: CLSI Publications.

Rao, V. A., & Howard, M.W. (2008). Retrieved context and the discovery of semantic
structure. In J. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural
information processing systems: vol. 20. Cambridge, MA: MIT Press.

Sahlgren, M., Holst, A., & Kanerva, P. (2008). Permutations as a means to encode
order in word space. In Proceedings of the 30th annual conference of the cognitive
science society (pp. 1300–1305). Austin, TX: Cognitive Science Society.

Sederberg, P. B., Howard, M. W., & Kahana, M. J. (2008). A context-based theory of
recency and contiguity in free recall. Psychological Review, 115, 893–912.

Solan, Z., Horn, D., Ruppin, E., & Edelman, S. (2005). Unsupervised learning of natural
languages. Proceedings of the National Academy of Science, 102, 11629–11634.

