J.R. Gayvert and K.B. Bravaya. Projected CAP-EOM-CCSD method for electronic resonances. J. Chem. Phys., 156:094108, 2022. [http].
J.R. Gayvert and K.B. Bravaya. Application of box and Voronoi CAPs for metastable electronic states in molecular clusters. J. Phys. Chem. A, 126:5070–5078, 2022. [http].
E.A. Karnaukh and K.B. Bravaya. The redox potential of a heme vofactor in Nitrosomonas europaea : a Polarizable QM/MM study. Phys. Chem. Chem. Phys., 23:16506–16515, 2021. [http].
Y. Kim, Y. Bui, R.N. Tazhigulov, K.B. Bravaya, L.V. Slipchenko. Effective fragment potentials for flexible Molecules: Transferability of parameters and amino acid database. J. Chem. Theor. Comp., 16:7735–7747, 2020. [http].
Ragesh Kumar T.P., J. Kocisek, K.B. Bravaya, and J. Fedor. Electron-induced vibrational excitation and dissociative electron attachment in methyl formate. Phys. Chem. Chem. Phys., 22:518–524, 2020. [http].
A.A. Kunitsa and K.B. Bravaya.
Feshbach projection XMCQDPT2 model for metastable electronic states. 2019, submitted.
[arXiv.org].
R.N. Tazhigulov, J.G. Gayvert, M. Wei, and K.B.
Bravaya. eMap: a Web Application for Identifying and Visualizing Electron or Hole Hopping Pathways in Proteins.
J. Phys. Chem. B., 123:6946–6951, 2019.
[http].
R. N. Tazhigulov, P. K. Gurunathan, Y. Kim, L. V. Slipchenko, and K. B. Bravaya.
Polarizable Embedding for Simulating Redox Potentials of Biomolecules.
Phys. Chem. Chem. Phys., 21:11642–11650, 2019.
[http].
Z. Li, M. M.
Dawley, I. Carmichael, K.B. Bravaya and
S. Ptasinska.
Dipole-Supported Electronic Resonances Mediate Electron-Induced Amide Bond Cleavage.
Phys. Rev. Lett., 122:073002, 2019.
[http].
M.K. Lee, K.B.
Bravaya, and D.F. Coker.
Ensembles of accurate model Hamiltonians for photosynthetic light harvesting
from first principles.
J. Am. Chem. Soc., 139:7803–7814, 2017.
[http].
A.A. Kunitsa,
A.A. Granovsky, and K.B. Bravaya.
CAP-XMCQDPT2 method for molecular electronic resonances: theory and
benchmarks.
J. Chem. Phys., 146:184107, 2017.
[http].
T.C. Jagau, K.B.
Bravaya, and A.I. Krylov.
Extending quantum chemistry of bound states to electronic resonances.
Annu. Rev. Phys. Chem., 68:525–553, 2017.
[http].
A. Acharya,
A. Bogdanov, B. Grigorenko,
K. Bravaya, A. Nemukhin,
K. Lukyanov, and A. Krylov.
Photoinduced chemistry in fluorescent proteins: curse or blessing?
Chem. Rev., 117:758–795, 2017.
[http].
R.N. Tazhigulov and K.B. Bravaya.
Free energies of redox half-reactions from the first principles calcualtions.
J. Phys. Chem. Lett., 7:2490–2495, 2016.
[http].
A. M. Bogdanov,
A. Acharya, A. V. Titelmayer,
A. V. Mamontova, K. B. Bravaya,
A. B. Kolomeisky, K. A. Lukyanov, and
A. I. Krylov.
Turning on and off photoinduced electron transfer in fluorescent proteins by
pi-stacking, halide binding, and Tyr145 mutations.
J. Am. Chem. Soc., 138:4807–4817, 2016.
[http].
A.A. Kunitsa and
K.B. Bravaya.
Electronic structure of excited states of para-benzoquinone anion revisited.
Phys. Chem. Chem. Phys., 8:3454–3462, 2016.
[http].
A. Kunitsa and
K.B. Bravaya.
First-principles calculations of the energy and width of the 2Au shape
resonance in p-benzoquinone, a gateway state for electron transfer.
J. Phys. Chem. Lett., 6:1053–1058, 2015.
[http].
B.L. Yoder, K.B.
Bravaya, A. Bodi, A.H.C. West,
B. Sztáray, and R. Signorell.
Barrierless proton transfer across weak CH...O hydrogen bonds in dimethyl
ether dimer.
J. Chem. Phys., 142:114303, 2015.
[http].
Y. Shao, Z. Gan,
E. Epifanovsky, A. TB Gilbert,
M. Wormit, and others.
Advances in molecular quantum chemistry contained in the Q-Chem 4 program
package.
Mol. Phys., 113:184–215, 2015.
[http].
J. Lazzari-Dean,
A.I. Krylov, and K.B. Bravaya.
The effects of resonance delocalization and the extent of system on ionization
energies of model fluorescent proteins chromophores.
Int. J. Quant. Chem., 115:258–1264, 2015.
[http].
V.A. Mironov, K.B.
Bravaya, and A.V. Nemukhin.
On the role of zwitterions in kindling fluorescent protein photochemistry.
J. Phys. Chem. B, 119:2467–2474, 2015.
[http].
D. Zuev, T.-C.
Jagau, K.B. Bravaya, E. Epifanovsky,
Y. Shao, E. Sundstrom,
M. Head-Gordon, and A.I. Krylov.
Complex absorbing potentials within EOM-CC family of methods: Theory,
implementation, and benchmarks.
J. Chem. Phys., 141:024102, 2014.
[http].
T.C. Jagau,
D. Zuev, K.B. Bravaya,
E. Epifanovsky, and A.I. Krylov.
A fresh look at resonances and complex absorbing potentials: Density
matrix-based approach.
J. Phys. Chem. Lett., 5:310–315, 2014.
[http].
R.B. Vegh, K.B.
Bravaya, D.A. Bloch, A.S. Bommarius,
L.M. Tolbert, M. Verkhovsky, A.I.
Krylov, and K.M. Solntsev.
Chromophore photoreduction in red fluorescent proteins is responsible for
bleaching and phototoxicity.
J. Phys. Chem. B, 118:4527–4534, 2014.
[http].
K.B. Bravaya and
A.I. Krylov.
On the photodetachment from the green fluorescent protein chromophore.
J. Phys. Chem. A, 117:11815–11822, 2013.
[http].
K.B. Bravaya,
D. Zuev, E. Epifanovsky, and A.I.
Krylov.
Complex-scaled equation-of-motion coupled-cluster method with single and double
dubstitutions for autoionizing excited states: Theory, implementation, and
examples.
J. Chem. Phys., 138:124106, 2013.
[http].
K. Khistyaev,
A. Golan, K.B. Bravaya, N. Orms,
A.I. Krylov, and M. Ahmed.
Proton transfer in nucleobases is mediated by water.
J. Phys. Chem. A, 117:6789–6797, 2013.
[http].