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Abstract

A key idea in demand estimation is to model products as bundles of characteristics.

In this paper, we offer an approach for jointly learning latent product characteristics

and consumer preferences from search data, in order to predict demand more accu-

rately. We combine data on consumers’ web browsing histories and hotel price/quantity

data to test this method in the hotel market. In two distinct applications, we show that

closeness in latent characteristic space predicts competition, and parameters learned

from search data substantially improve post-merger demand predictions.

JEL Codes: C13, C38, C51, C52, L1, L22, L81.

Keywords: E-Commerce; Search; Demand Estimation; Transfer Learning; Embeddings

*This research was started while Luis was an intern at Microsoft Research. We are grateful for comments
from Dean Eckles, Liran Einav, Matt Gentzkow, the participants at the Marketplace Innovation Workshop,
our reviewers from the 22nd ACM Conference on Economics and Computation, the two anonymous reviewers
along with the Associate Editor at Marketing Science. We are also grateful to Duane Vinson and STR for
providing the hotel data for this paper.

1



1 Introduction

Demand estimation is a widely used tool in empirical industrial organization and beyond,

with applications to many industries, including transportation, healthcare and media. In

many of these industries, the number of products is large, and modeling demand over all the

products—as in the AIDS demand system (Deaton and Muellbauer 1980)—is impractical,

because it requires estimating a substitution matrix that is quadratic in the number of prod-

ucts. Building on the ideas of Lancaster and McFadden (Lancaster 1966, McFadden 1973),

a literature has emerged that assumes consumer preferences are over product characteristics

rather than products. When the number of characteristics is much smaller than the number

of products, this reduces data requirement. It also facilitates interpretation: products that

are close in characteristic space are competitors because they vie for consumers who value

the characteristics they share.

There are two important practical problems with this approach. The first is that in some

markets—such as books (De los Santos and Wildenbeest 2017), movies (Einav 2007) and

cereal (Nevo 2001)—the observable characteristics, such as genre, length or mushiness, are

coarse. “Ben-Hur” and “The Lord of the Rings: The Return of the King” are both long

movies, but they may not be competing for the same viewers. As a result, demand systems

built from these observables are often unable to capture the relevant substitution patterns

for choice. The second is that it is notoriously difficult to estimate consumer preferences

accurately from market-level choice data alone. As Berry, Levinsohn, and Pakes (2004) and

others have shown, the presence of second choice data helps considerably in learning about

the distribution of consumer tastes.

In this paper, we propose a method that uses a set of revealed preference inequalities

constructed from an auxiliary search dataset to improve demand estimation on a primary

choice dataset. By search dataset, we mean records of options that consumers considered

prior to making a choice. Search data reveals what products are considered together exists

in many online markets (e.g., browsing data from an e-commerce platform), though nothing
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in our approach is limited to this case.1 Given that search data often originates from a single

search engine or spans different time periods, the set of participants may not fully represent

market demand patterns. For this reason, we are interested in the case where the search

data is used to inform demand estimation on a traditional market-level dataset of price and

quantity. For example, in our application to the hotel market, we use search data from

Internet Explorer (IE) users, and combine this dataset with a choice dataset from STR, a

company whose data has high coverage of the entire hotel market.

Our method builds off the observation that consumers will generally only consider options

that they believe they might choose i.e. products that, for them, offer high expected utility.

It follows that products which are often searched together are either attractive to everyone

(high utility products), or share some common characteristic that makes them attractive to

a subset of consumers with high taste for that characteristic. This characteristic need not

be observed to the econometrician; the search co-occurrence reveals it.

Reversing this logic, sets of consumers who all search a given product are likely to share

a strong taste for some characteristic of that product. This too can be learned from the

data, after accounting for the possibility of globally preferred products with fixed effects.

Formally, we use a set of revealed preference inequalities to learn these latent tastes and

characteristics: any product searched by a consumer must have higher expected utility for

that consumer than any product they did not search. To estimate these latent parameters, we

apply the Bayesian Personalized Ranking (BPR) method (Rendle, Freudenthaler, Gantner,

and Schmidt-Thieme 2009) to these inequalities. This method has the advantage of being

computationally scalable to estimate millions of parameters on large datasets, in addition to

being implementable using easily accessible software. We then map these parameters to a

distinct population of consumers relevant for estimating market-level demand.

The inequalities we use can be micro-founded by a sequential search model (Honka, Seiler,

and Ursu 2023). Consumers see some subset of product characteristics, and click on options

1For example, it could instead be companies the consumer called looking for service.
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to learn more. Under some assumptions, the model implies that the products a consumer

chooses to search on are the ones which are expected to offer the largest gains to utility.

This in turn implies a number of pairwise inequalities: if options A and B were clicked, but

C and D were not, the consumer expects more utility from A or B than C or D, resulting

in four inequalities. Compared to purchase data in discrete choice settings, where a single

product purchase decision is observed, this substantially expands the number of consumer

revealed-choice inequalities seen by the researcher. We then show this is consistent with a

downstream model of discrete choice using the results of (Moraga-González, Sándor, and

Wildenbeest 2023). Our proposed estimation method could also be used in other settings

where the researcher has access to supplementary data on consumer preferences in the form

of inequalities (e.g. from consumer surveys). The main contribution of the paper is showing

that this set of inequalities makes learning latent characteristics and consumer preferences

tractable, and these latent parameter improve the predictions of demand estimation.

To show this, we offer two applications. Our first application tests whether the charac-

teristics learned from search data are most similar for products which are closer competitors.

We estimate an event study design based on the entry of new hotels, and predict which hotels

will lose market share post-entry on the basis of how close each hotel is to the new entrant,

where the distance is either in latent, observable, or geographic space. We find that the

latent model predicts better than a model based on standard observables (such as hotel class

and amenities), but less well than one based purely on geographic distance. We interpret

this result as showing that the search data allows estimation of latent characteristics that

can predict substitution patterns, but if the observables are rich—e.g. geography plus class

and amenities—the value added from estimating latent characteristics may be smaller. As

noted earlier, there are markets (e.g. books, movies, cereal) in which observable data are

not rich, and this method would be even more useful in those settings.

Our second application concerns merger analysis. We consider the 2016 merger of Mar-

riott International and Starwood Hotels & Resorts Worldwide, which created the world’s
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largest hotel company. After showing that this merger has substantial price effects, we apply

our method to predicting out-of-sample post-merger market shares using only pre-merger

data. Here we run a horse-race between the canonical demand model of BLP (Berry, Levin-

sohn, and Pakes 1995), which uses only observables and choice data, and an augmented

BLP model with latent characteristics and/or latent consumer preferences learned from

search data. We find that adding these parameters yields substantial improvements: while

BLP fits better out-of-sample (in the sense of mean squared error) than a standard logit by

15%, when we include consumer preferences learned from search data, the corresponding im-

provement is 48% in our preferred specification. We also find that specifications using latent

characteristics in place of observables yield improvements over the standard BLP model.

Our results suggest two ways in which the methods developed in the paper may be

valuable in applications. First it may allow discovery of latent characteristic representations

of markets with limited observables, which may facilitate discussions around market structure

and the nature of competition. Second it may improve demand estimation by allowing

consumer preferences to be learned (up to mean utility and scale parameters) from search

data, where they are more plausibly identified.

Our paper relates to the literature on structural demand estimation, the literature on

consumer search, and the literature on incorporating machine learning for demand estima-

tion. Since Berry, Levinsohn, and Pakes (1995), structural demand estimation in economics

has often relied on modeling consumer preferences over a “characteristic space”, which is

taken as given, to determine how close products are in a market for discrete choices. Berry,

Levinsohn, and Pakes (2004) uses “second choice” data as supplemental micro-data that aids

the identification of substitution patterns across cars in the auto market. In our framework,

search data allows us to observe multiple products a consumer expects to yield high utility,

enabling better identification of substitution patterns.

Methodologically, this paper is most similar in spirit to a strand of the marketing litera-

ture, beginning with Elrod (1988), that has concerned itself with estimating the structure of
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markets via factor models using revealed choices (Elrod 1988, Elrod and Keane 1995, Keane

et al. 2013). These papers use observations of consumers in a panel structure to estimate la-

tent characteristics of products, identifying the market structure from consumers who switch

from one product to another. Our identification strategy follows a similar procedure, instead

relying on products that are searched together within a single purchase decision to identify

products as close substitutes.

Our paper also relates to a more recent strand of the marketing and economics literature

using search data to identify substitution patterns over the product characteristic space,

with a focus on explicitly modeling the choice set formation process. Kim, Albuquerque,

and Bronnenberg (2011) use aggregate search and sales data to estimate the latent charac-

teristics of products, and consumer preferences over these characteristics. Koulayev (2014)

uses clickstream data in a similar empirical setting to our own, along with revealed pref-

erence inequalities implied by sequential search, to estimate search costs in the presence of

unobserved consumer heterogeneity. Amano, Rhodes, and Seiler (2019) uses the sparsity

of choice sets in a market with many products, to feasibly estimate consumer demand and

substitution patterns in online settings. Our paper similarly uses search data to better ex-

plain consumer preferences at the purchase decision stage in a market with a large number

of products, though our applications do not model the search process explicitly.

The search model used for our estimation is built on the literature using search models

(Honka, Seiler, and Ursu 2023) to explain consumer purchase decisions. These papers rely

on an assumption of either simultaneous (Honka 2014) or sequential (Moraga-González,

Sándor, and Wildenbeest 2023) search to quantify the role of search in consumer welfare and

substitution patterns. Our paper is less ambitious than many of these papers, in the sense

that we choose to estimate latent parameters in a prior step to demand estimation, rather

than jointly estimating a model of search and choice. This makes our estimation procedure

more tractable and versatile across empirical settings, where search and choice data may

come from different datasets, but also unable to estimate richer counterfactuals, such as
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altering the search environment and evaluating its implications for downstream demand.

Our paper also relates to a new literature that seeks to employ machine learning meth-

ods to augment demand estimation (Bajari, Nekipelov, Ryan, and Yang 2015). Most closely

related to our own paper in this literature are those papers that attempt to directly esti-

mate the characteristic space of products using embeddings methods popularized in the ma-

chine learning literature for representing a large number of products in a common domain

(Salakhutdinov and Mnih 2008, Koren, Bell, and Volinsky 2009, Johnson 2014, Rudolph,

Ruiz, Mandt, and Blei 2016). A number of recent papers use these methods to estimate

latent characteristics, latent preferences, or both in economic settings (Ruiz, Athey, and

Blei 2017, Athey, Blei, Donnelly, Ruiz, and Schmidt 2018, Sams 2019, Donnelly, Kanodia,

and Morozov 2020, Magnolfi, McClure, and Sorensen 2022). Our paper similarly uses estab-

lished machine learning methods, specifically the Bayesian Personalized Ranking method of

Rendle, Freudenthaler, Gantner, and Schmidt-Thieme (2009), to estimate the latent charac-

teristics and preferences over hotels from search data.

2 Data

We draw on 3 datasets to estimate latent parameters and conduct our empirical analysis.

Hotel Demand and Price Data. Our first dataset, which we obtained from STR,

spans January 2001 to March 2019 and contains monthly financial performance data for

5,358 hotels in 5 western U.S. States (Arizona, California, Nevada, Oregon, and Washington).

Specifically, for each month-year, STR records an anonymized ID uniquely associated with

each hotel, the total number of rooms sold, and the total revenue received by the hotel from

room sales. From this, we infer the average price per room sold, also known as the average

daily rate (ADR) in the hotel industry. We deflate the nominal ADR recorded each month to

real March 2019 U.S. dollars using the CPI for All Urban Consumers time series. Reporting

of financial performance data is voluntary on the part of hotels, however coverage is quite
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high. Of the universe of hotels in these states, only 10% of hotels reported no data for the

entire sample, and we have data for 83% of all hotel-by-month-years.

Census of Hotel Characteristics. The second dataset we use from STR links anony-

mous hotel IDs to certain observable hotel characteristics. This dataset contains the market,

according to STR definitions, that each hotel competes in, the sub-market a hotel is located

(e.g. Hollywood/Beverly Hills within the Los Angeles market), an anonymized ID to link to

the transaction data, the total meeting space in square feet, the month-year the hotel was

first opened/closed (where applicable), as well as categorical variables representing the size

(total capacity in rooms) of each hotel, the location type of each hotel (near airport, urban,

suburban, near highway, a resort area, or a small metro / town), the operation structure of

the hotel (franchise, owned by chain, or an independently owned/branded hotel), and the

price segment the hotel belongs to, which is a categorization based on their typical ADR

(higher segment meaning more expensive hotels). This dataset also includes anonymized IDs

describing the affiliation brand of each hotel, the company owning the hotel, the management

company managing day-to-day operations of the hotel, and the parent company of hotel. For

example, although we never observe the hotel, affiliation, or company name in the data, a

Ritz Carlton hotel in the dataset would contain a numeric affiliation ID corresponding to

all Ritz Carlton hotels in the dataset, and a numeric parent company ID corresponding to

Marriott International, Inc., the parent corporation that owns the Ritz Carlton brand. The

dataset also contains the zipcode associated with each anonymized hotel ID, which we map

to the average latitude-longitude within each zipcode, using a cross-walk originally based on

2013 U.S. census data.2 We use latitude and longitude to capture the spatial component of

product differentiation in the hotel industry. Affiliation IDs are provided at the annual level,

to account for mergers and acquisitions, while all other characteristics are measured in 2019,

and do not change over time.

Internet Explorer Click-Stream Data. Finally, our third dataset consists of the

2Source: https://gist.github.com/erichurst/7882666
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web browsing histories of a sample of 29,936 Internet Explorer (IE) users from June 1st,

2014 to May 31st, 2015 visiting the website expedia.com. We make use of a session ID

variable recorded by IE that captures the URLs visited by a single user during one continuous

“session” defined as continuous usage of their computer where the time between clicks is no

more than 30 minutes. The URLs in the click-stream data, contain the Expedia ID of each

hotel, the check-in date selected by the user, the price displayed to the user for each hotel that

appears on screen, as well as whether the user clicked on a particular hotel in expedia.com.

We classify a click on a hotel’s Expedia page that is displayed to a user on their web browser

as constituting a “search” of the hotel by a user. This allows us to group together hotels that

were jointly considered within each session. We use this search data to estimate consumer

heterogeneity and latent characteristics of hotels.

Tables 1 and 2 displays the summary statistics describing the observable characteristics

of the 4,218 hotels that appear in both datasets. While the median consumer searches one

hotel per search session, there is a substantial mass of consumers (44%) that search multiple

hotels. These consumers provide information on hotel substitutability, which we will use

to identify the latent parameters governing demand from search data. For our search data,

we remove consumers who search more than 35 hotels during a single session, which are

likely web-scrapers and not actual consumers. We retain those visitors to the website who

searched at least one of the 4,218 hotels included in both datasets. Our final sample of

searchers consists of 18,492 unique visitors who engage in 23,986 unique search sessions.

Table 3 contains summary statistics on the search sessions in the Expedia dataset.

3 Methodology

3.1 Demand Estimation and Pitfalls

A standard model for consumer demand in discrete choice settings, popularized by Berry,

Levinsohn, and Pakes (1995), and known as “BLP”, is the mixed logit choice model. One of
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Mean Std. Dev Minimum 25th Pctile Median 75th Pctile Maximum

Transaction Data
Monthly Price ($) 129.34 81.95 18.06 80.91 110.66 151.47 1,576.09
Monthly Hotel Occupancy 2,951.06 3,381.11 7 1,224 2,101 3,360 77,305

Continuous Variables
Latitude 37.50 4.77 31.39 33.81 36.13 38.65 48.95
Longitude -118.83 3.66 -124.19 -122.14 -119.02 -117.21 -108.95
Meeting Space (Sq. Ft.) 3,981.22 11,326.00 0 0 560 2,500 220,000
Year Hotel Opened 1984.22 27.24 1798 1977 1989 1999 2014

# of Hotels 4,218
# of Geographical Markets 21
# of Month-Years 87

Table 1: Summary Statistics: STR Hotel Dataset (Continuous Data)

Ownership Structure Size Category Price Segment Location Type
Value Mean Value Mean Value Mean Value Mean

Chain Management 0.16 Less Than 75 Rooms 0.32 Economy Class 0.24 Airport 0.08
Franchise 0.70 75 - 149 Rooms 0.43 Midscale Class 0.16 Interstate 0.07
Independent 0.13 150 - 299 Rooms 0.18 Upper Midscale Class 0.25 Resort 0.10

300 - 500 Rooms 0.05 Upscale Class 0.17 Small Metro/Town 0.16
Greater Than 500 Rooms 0.02 Upper Upscale Class 0.11 Suburban 0.45

Luxury Class 0.06 Urban 0.14

Table 2: Summary Statistics: STR Hotel Dataset (Categorical Variables)

Mean Std. Dev Minimum 25th Pctile Median 75th Pctile Maximum

Price of Hotels on Platform ($) 118.02 77.86 14.00 72.49 100.11 138.37 19,374.00
Price of Searched Hotels 207.88 253.92 16.95 99.99 145.00 221.88 19,374.00
# of Hotels Searched per Session 1.85 1.80 1 1 1 2 35
Pr(Hotel Stay Purchased) 0.05 0.21 0 0 0 0 1
# of Consumers 18,492
# of Search Sessions 23,986

Table 3: Summary Statistics: Expedia Search Dataset Hotel Dataset

the key features of this model is that preferences are expressed over characteristics observed

to the researcher and associated with each product. The second key feature of this model is

consumer heterogeneity. Typically, researchers allow for random unobserved heterogeneity

following some parametric distribution (e.g. a normal distribution) in preferences along

observed product characteristics. By specifying preferences over characteristics associated

with a product, rather than products directly, the model is able to capture rich substitution

patterns in a tractable manner for demand estimation.

Three cases stand out as situations where the above model may be limiting in its abil-

ity to capture substitution patterns. First, the econometrician may lack access to data on
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characteristics which consumers have preferences over. Given this scenario, the random

preferences over observed characteristics provide very little bite in capturing substitution

patterns. Second, the characteristics over which consumers have preferences may be high di-

mensional. For example, in the hotel market, hotels are differentiated by the local amenities

they are close to, which is difficult to summarize with a low-dimensional collection of ob-

servable characteristics. Similarly, in the market for books, textual descriptions may provide

rich measures of product differentiation, but are not easily summarized. This will make it

infeasible to estimate substitution patterns over these characteristics, unless the econometri-

cian has access to market-level data over a proportionally large number of markets. Third,

the parametric assumptions on the distribution of random coefficients may be restrictive and

unable to capture taste heterogeneity across consumers. Allowing even random, paramet-

ric unobserved tastes for product characteristics to correlate with each other can make the

preference specification in mixed logit models very rich in capturing underlying consumer

demand. In practice, however, it is often difficult to identify the correlation structure in un-

observed preferences using only market level price and quantity data, so researchers typically

assume unobserved tastes for product characteristics are independent.

This paper seeks to address the above limitations by augmenting the mixed logit de-

mand model with latent parameters learned from search data. First, suppose in addition to

observed characteristics there are a set of low dimensional latent characteristics associated

with each product. These latent characteristics allow consumers in the same market to have

a heterogeneous match value with product j that is not constrained to depend on observable

product characteristics. These latent characteristics address the first two limitations of the

BLP model.

Second, suppose that instead of following a parametric probability distribution, consumer

preferences are non-parametrically estimated in the search data, and are allowed to follow the

same distribution (up to scale) in the choice data.. This additional flexibility may allow for

non-linearities in preference heterogeneity, along with correlated preferences along particular
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dimensions of the characteristic space. For example, consumers may have high preferences

for hotels that are close to the city center only when they also have high preferences for

hotels near bars, but when the consumer is interested in visiting museums, the correlation

between preferences for nearby bars and the city center is eliminated.

With only market-level price and quantity data, the estimation of latent characteristics

and a non-parametric distribution of consumer heterogeneity is largely hopeless. A natural

reason this is challenging in a discrete choice setting is that consumers select at most one

good for purchase when they arrive to the market, which limits our ability to observe what

the consumer would have chosen in the absence of the purchased good. To estimate unob-

served characteristics with market-level data, along with heterogeneous preferences, would

require us to observe systemic correlations in demand between hotels that are not similar on

observable characteristics, but still explainable by exogenous factors such as entries, exits,

and mergers. We would require, at the very least, data on preferences a consumer has over

other products besides those they purchase.

In order to address the estimation limitations of this proposed, more flexible demand

model, we make use of individual-level search data to supplement the traditional market-

level price and quantity data used to estimate discrete choice models. With the advent of

online commerce, search data is increasingly available to researchers interested in studying

consumer behavior. The primary advantage of search micro-data is it allows us to observe

substitution patterns within an individual consumer and purchase decision. In this way, we

view our usage of search data for demand estimation as an extension of the incorporation

of “second choice” data in (Berry, Levinsohn, and Pakes 2004) and micromoments used in

(Petrin 2002). The intuition for our approach is that learning all available information for

each product in a market is costly, particularly in an online setting where there can be

thousands of products. Thus, consumers must form choice sets of a subset of all goods in

the market before making a purchase decision. Much like discrete choice demand models

use a “revealed preference” approach to infer purchased products yield high utility, we use
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the choice sets formed by consumers as a revealed preference signal that consumers expect

products they search to yield high utility. The key difference is that we can observe multiple

products entering a consumer’s choice set, whereas purchase decisions in discrete choice

settings are limited to one good per person / purchase decision. For example, we may observe

2 hotels are systemically searched together that do not share any observable characteristics,

which would suggest they are similar along a latent characteristic.

One advantage of our approach is that we do not require purchase decisions to appear

in the search microdata in order to estimate demand. That is, we use the search data to

estimate latent characteristics and consumer preferences in a prior estimation step, without

any information on purchases. This summarizes the information learned from search data

into a set of latent parameters. Then, assuming an affine mapping from the search and

market population of consumers, researchers can transfer these latent parameters into a

standard demand framework. This distinction is important because search data, while widely

available, is typically from one specific platform. Even when there is selection into use of that

platform—i.e. the population is not fully representative—co-occurrence in search may still

help in estimating the demand model for the full market. Then, using aggregate quantity

and price data, we can still answer questions of interest that affect an entire market, not just

a single platform, such as the impact of a merger on welfare or alternative policies set by a

social planner.

3.2 A Model of Search and Choice

In this section, we describe how we use search data to construct additional revealed pref-

erence inequalities to help identify both consumer heterogeneity and unobserved product

characteristics relevant for consumer demand. We do so through a micro-founded model of

sequential search, which we then show is internally consistent with a second choice stage

demand model one can estimate using market-level data. While we could in principle jointly

estimate this two-stage choice model, we treat the estimation of latent demand parameters
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from search data as a standalone method, since our use case is to augment a traditional

demand system using the rich search microdata that informs us about consumer preferences.

Preferences Assume that consumers have the following utility over J products:

ui,j,t = δj,t − αipj,t + β⃗iX⃗j + ϵi,j,t (1)

δj,t = δj + βXj,t + ξj,t (2)

X⃗j,t = [X⃗o
j,t, γ⃗j] (3)

[αi, β⃗i] = v⃗i, v⃗i ∼ V (4)

ϵi,j,t = ζi,j,t + (1− σζ)ϵ̃i,j,t (5)

δj,t is the mean utility of product j in period t, composed of homogenous preferences for

product characteristics Xj,t (β), and a vertical demand shock (ξj,t). αi and β⃗i denote the

consumer’s heterogeneous preferences over price and product characteristics, respectively.

ϵi,j,t denotes an idiosyncratic match value, decomposed into a component known to consumers

prior to search, ζi,j,t, and a component revealed after search, ϵ̃i,j,t. Product characteristics

X⃗j,t are a (K + L) × 1 vector of product characteristics, K of which are observable to the

researcher (X⃗o
j,t), and L of which are unobservable to the researcher (γ⃗j). V ∈ ∆RL+K+1

is the distribution of consumer preferences v⃗i over prices and product characteristics. We

normalize the utility of the outside option ui,0, involving no purchase, to be zero. We assume

the econometrician is able to observe both X⃗o
j,t and pj,t, but unable to observe the remaining

parameters governing preferences.

In terms of the consumer’s information structure, we assume that ϵ̃i,j,t is the only unknown

component of utility. Both the cumulative match value ϵi,j,t and the post-search component

ϵ̃i,j,t are distributed i.i.d. according to an extreme value type 1 (Gumbel) distribution with

normalized mean of zero 0 and scale parameter 1, while ζi,j,t, the pre-search idiosyncratic

shock, is distributed i.i.d. according to the conjugate Gumbel distribution derived in Cardell
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(1997) with scale parameter σζ .
3 As a result, expected utility is as follows:

δ̄i,j,t ≡ E[ui,j,t] = δj,t − αipj,t + β⃗iX⃗j + ζi,j,t (6)

Search Decision We assume that consumers engage in sequential search across products

(Weitzman 1978, Honka, Seiler, and Ursu 2023). Search is costly, with the cost for consumer

i to search product j being ci,j,t. Weitzman (1978) characterizes the optimal search behavior

in this environment. Each product is associated with a reservation value rijt which solves

the equation:

ci,j,t =

∫ ∞

ri,j,t

(z − ri,j,t)dF (z|δ̄i,j,t) (7)

This reservation value is the utility that would make a consumer indifferent between searching

product j — and potentially finding a higher utility, but having to pay the search cost —

and stopping search now. The distribution F is type 1 extreme-value (TIEV) with location

(1−σζ)δ̄i,j,t and scale (1−σζ). Consumers will optimally search products in descending order

of reservation value, stopping if at any point the utility offered by the best option they have

found so far exceeds the reservation of the next object to be searched (which, by definition

of the reservation value, is then not worth searching).

An implication of the model is that any product that was searched must have had a

higher reservation value than any product that was not searched:

ri,j,t ≥ ri,k,t, ∀j ∈ Ji,s, ∀k ̸∈ Ji,s (8)

Since the distributions of utility form a location family, a product that was searched either

had a lower search cost than one that was not searched, offered higher expected utility, or

both. Notice that in comparison to choice data, which offers the same logic (the product

3This is analogous to the structure of the nested logit model, where consumers choose a group of products
followed by a product within the group, except that the idiosyncratic terms ϵ̃i,j,t and ζi,j,t apply to different
stages of search and choice.
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chosen offered either higher utility or was easier to find), search data serves as a means to

“expand” the set of revealed preference inequalities observed in the data (when consumers

search more than one product). In particular, we use the logic of the search model to

imply that all searched products j have reservation values than all unsearched products k.

By observing a larger set of inequalities the problem of identifying preferences as well as

latent characteristics becomes more feasible. We exploit this in our estimation of consumer

preferences and unobserved characteristics.

Choice Decision Following Moraga-González, Sándor, and Wildenbeest (2023) we assume

search costs ci,j,t are distributed i.i.d. across consumers and products according to the

following distribution:

S(c) = Pr(ci,j,t ≤ c) =
1− exp(− exp(−H−1

0 (c)− µ))

1− exp(− exp(−H−1
0 (c)))

(9)

where we define H0(r) =
∫∞
r
(z − r)dF0(z) for F0 a type 1 extreme value distribution with

normalized mean of 0 and scale parameter 1, and µ > 0 a location shifter of the search

cost distribution.4 As shown in that paper, if the component of utility that is unknown to

consumers is distributed extreme value type 1 , then integrating over consumer heterogeneity

V , the search cost distribution S, and the idiosyncratic match value ϵi,j,t yields the following

purchase probabilities/market shares:

sj,t ≡ Pr(j is purchased) =

∫
βi,αi

exp(δj,t − αipj,t + β⃗iX⃗j − µ)

1 +
∑

k∈Jt exp(δk,t − αipk,t + β⃗iX⃗k − µ)
dV (i) (10)

That is, these are the mixed traditional logit choice probabilities, up to a location shifter µ

representing the costly search. These conditions hold in our setting - Appendix C provides

the derivation.

The model presented here for recovering latent product characteristics and consumer

4H0 is strictly decreasing in r and therefore invertible.
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preferences from search data serves as a vehicle to better estimate demand. This search

model is not without limitations. We discuss two of the most noteworthy ones below, and

how a researcher might address them:

Product Rankings. We assume here that search costs are idiosyncratically distributed

across consumers and products. This may be violated in practice because of the important

role that search rankings play on online platforms (Ursu 2018). Higher ranked products are

much more prominent, easier to find, and more often clicked. Moreover, because of the large

number of products in our market, it is likely that some products are not even viewed by

consumers before clicking if they are ranked too low, which could lead to some products

not being searched simply because the consumer is unaware of these choices. We could

accommodate this situation by augmenting the location of search costs to be a function of

the product’s ranking Rj, e.g. specifying a location parameter µj = log(1+exp(µ0+µRRj)),

as recommended in Moraga-González, Sándor, and Wildenbeest (2023). Since we do not

observe search rankings in our search data, we have not chosen to go this route, which may

lead to some bias in estimation. We expect that these rankings would be most important

in impacting the hotel fixed effect we estimate during the search stage, which is not used in

later analysis.

New Products. Because we estimate the latent characteristic vector γ⃗j based on consumer

search behavior, we are unable to use this model to characterize market outcomes if a new

product became available. This is a well-known issue with embeddings methods known as

the “cold-start problem” (Schein, Popescul, Ungar, and Pennock 2002). In Section 4, we

show that, at least in this market, our estimated latent characteristics can predict observable

characteristics with reasonable accuracy. This suggests that if necessary, researchers may be

able to predict the latent characteristics of new products with success using a set of observed

characteristics, particularly if the researcher has access to high-dimensional observable data,

such as textual product descriptions. One could follow the approach of Cortes (2018) to
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estimate these latent characteristics for new products.

3.3 Estimation

3.3.1 Search Model

Given an observed choice set of size |Ji,s|, without information on search order, the sequential

search model of Section 3.2 implies |Ji,s| · (J − |Ji,s|) inequalities of the kind in equation 8

for each consumer i, comparing the reservation value of searched products with unsearched

products.5 A natural way to proceed would be to choose parameters that maximize the

likelihood of the observed inequalities; that is to maximize the probability of events of the

form Pr(rijt ≥ rikt) for j searched and k not searched. In Appendix D we build on Moraga-

González, Sándor, and Wildenbeest (2023) and show this is equivalent to maximizing:

Pr
(
−αi∆pj,k,t + β⃗i∆X⃗j,k,t +∆δj,k,t > −∆ζi,j,k,t − (1− σζ)(H

−1
0 (ci,j,t)−H−1

0 (ci,k,t))
)

(11)

Where ∆xj,k,t = xj,t − xk,t. The left hand side of the inequality is the difference in expected

utilities offered by products j and k excluding the pre-search shock ζ, and the right hand side

is the sum of the difference in pre-search and search cost components of reservation values.

This is a computationally unwieldy loss function, due to the presence of the term H−1
0 (·),

which is an inverse of a non-linear function. Since search costs are i.i.d. across products,

this term acts mostly to change the shape of the likelihood function. If we were to ignore

the term related to search costs, the likelihood of Equation 11 would reduce to:

Pr (E[ui,j,t] > E[ui,k,t]) = σ
(
(−αi(pj,t − pk,t) + β⃗i · (X⃗j − X⃗k) + (δj,t − δk,t))/σζ

)
(12)

5This number of inequalities is large in magnitude, particularly compared to those from a purchase
decision, which only reveals that the chosen product is preferred to J − 1 other available products when
we abstract from choice set formation. On average, each consumer in our sample has 10, 267 inequalities
implied by their search patterns, compared to the 4,192 inequalities on average that would be implied by
single purchase decisions. In particular, the increased number of revealed preference inequalities revealed
from search data relative to purchase data is (|Ji| − 1) × (Jt − |Ji| − 1). When J is large and |Ji| is even
moderately sized, this can result in significantly more data on consumer preferences.
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where σ denotes the sigmoid, or logit function, σ(x) = 1
1+exp(−x)

, using the fact that the

difference of the two TIEV shocks ζ is logistic with scale σζ (Cardell 1997). It is identical

to the posterior likelihood formed in Rendle, Freudenthaler, Gantner, and Schmidt-Thieme

(2009) for the Bayesian Personalized Ranking model, a machine learning model used for

large-scale embedding problems (under priors that we detail below). Because we want to

apply the scalable machine learning techniques from that paper, which are Bayesian, we

maximize this posterior likelihood rather than applying maximum likelihood estimation to

the likelihood of Equation 11. We are therefore misspecified for the true likelihood, and

this is best thought of as a quasi-likelihood estimation procedure. In Appendix D we show

via simulations that the quasi-likelihood and likelihood are very similar, as the difference in

(true) reservation values closely follows a logistic distribution with a higher scale attributable

to the additional variation from H−1
0 (ci,j,t). This is equivalent to an increased value of σζ ,

which we do not estimate (so that all parameters are learned up to a scaling factor.) Since

the objective functions are very similar, assuming we correctly specify utility, we expect the

quasi-MLE estimates will be similar to the MLE estimates. Still, we may not consistently or

efficiently extract latent product characteristics and preferences from the search data using

this approach. We are willing to make this statistical compromise in order to gain access to

well established machine learning approaches, because we know that ultimately the learned

features will be “plugged-in” into a completely separate demand estimation step, which

uses GMM and has much stronger statistical guarantees. Insofar as this estimation is mis-

specified, our latent parameters will be less informative. Nonetheless, we show later in the

paper that these estimates are useful for predicting demand after a significant change to

market structure.

Since our search data is a single snapshot over the course of 12 months, we assume that

δj,t is constant over time, e.g. δj,t = δj, and estimate a single “hotel fixed effect” for each

product.6 Recall that we make no distributional assumptions on the preferences β⃗i or αi. As

6Since our characteristics are time-invariant, this is equivalent to assuming the unobservable (to the
researcher) quality ξj,t is constant within product during our sample period. In practice, when we estimate
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a result, we will treat them as individual-specific preference parameters to be learned, based

on the search data we observe on each individual. This will give us an empirical estimate of

the distribution of consumer preferences V .

Thus the parameters of the search model consist of the individual consumer preferences,

αi, β⃗i, the unobserved characteristics of products, γ⃗j, and the mean utilities, δj. In some

cases, we may observe a single consumer engage in multiple search sessions, which we treat

as independent purchase decisions (but with common preference parameters across sessions).

Let Si denote the set of search sessions we observe for a single consumer i, and Ji,s denote

the choice set (clicked products) formed by consumer i during search session s. Given

observed choice sets Js,i , the objective we use to estimate the parameters of the model,

Θ = {αi, βi, γj, δj} is as follows:

log
(
Pr(Θ|{Js,i})

)
−λΘ||Θ||2 =

∑
i

∑
s∈Si

∑
j∈Ji,s

∑
k ̸∈Ji,s

log
(
Pr(E[ui,j,t] ≥ E[ui,k,t]|Θ)

)
−λΘ

NΘ∑
k=1

θ2k

(13)

where λθ denotes an L2 regularization hyperparameter to prevent overfitting, and θk denotes

the kth element of the vector Θ. This is consistent with the Bayesian interpretation of the

model, where we place a normal prior on the parameters Θ with mean 0 and variance λ−1
Θ .

It is identical to the posterior likelihood formed in Rendle, Freudenthaler, Gantner, and

Schmidt-Thieme (2009) for the Bayesian Personalized Ranking model, a machine learning

model used for large-scale embedding problems. This allows us to rely on tools from the

machine learning literature to obtain estimates in our high-dimensional parameter space.

We make use of all the inequalities available for each consumer. In our application, the

hotel market, this will mean learning from the fact that a consumer searching for a hotel in

San Diego does not click on any hotels in New York City. While this decision not to restrict

the comparisons — for example, to hotels within a market — may seem odd, it is exactly

these comparisons that allows the model to learn that hotels in San Diego should be far from

demand in Section 6, we re-estimate the δj,t based on aggregate market shares.
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hotels in New York City in the latent space.

Identification. The search model estimation amounts to simultaneously learning con-

sumer preferences ({αi, β⃗i}) and latent product characteristics (γj, δj). Due to the scale

of the pre-search shock (σζ) being unknown, we cannot identify the scale of the parameters

in utility space. We estimate the scale in our choice model. The intuition for why these pa-

rameters are identified (up to scale) is as follows. Pairs of products that are often searched

together must have similar locations in product space, otherwise they wouldn’t both be util-

ity maximizing for a consumer with preferences βi.
7 Similarly, consumers who all search

some product j must have similar preferences. And higher order relationships provide more

information: if a pair of consumers both search a particular pair of products, this is further

evidence that both consumers and products are close in their respective spaces. Since prices

may be endogeneously correlated with unobservables, the location of our price preferences

αi will be biased. However, as long as suppliers do not price discriminate across consumers,

the distribution of preferences αi across consumers will be properly identified. When we

estimate our demand system, we calibrate the mean price coefficient using a prior study

from the same dataset (Lewis and Zervas 2016) to overcome this endogeneity concern.

Specifications. To test how well this approach works, we consider specifications in which

we have only observable characteristics (and learn consumer preferences), and those where

we only have latent product characteristics and preferences, with no observables:8

1. Observable Characteristics: K = 13, L = 0. There are no latent characteristics

γ⃗j, but we use the search data to recover the distribution of consumer preferences V

over observable characteristics from STR. These include logged meeting space, size

category, price segment, a dummy for the hotel being independent, the 6 location

7For consumers who search only one product, preferences are learned to maximize the match value with
the searched hotel, as would occur with discrete choice purchase data.

8We could in principle include both observable and latent characteristics in the same model, but this
would result in a high-dimensional characteristic space that would make downstream demand estimation
computationally difficult.
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type dummies, and latitude/longitude, which capture geographic preferences beyond

location type. This specification evaluates the usefulness of our embeddings algorithm

solely for recovering consumer preferences.

2. Latent Characteristics: K = 0, L = 12. We assume that we do not have access

to observable characteristics of hotels from the STR dataset. This is done to evaluate

the ability for search data to non-parametrically recover a characteristic space that

captures the relevant product differentiation over hotels. This will allow us to evaluate

how well our model might transfer to settings where we do not observe rich observable

characteristics (e.g. books, movies), and one would need to rely on search data to

recover the characterstic space. Note that we still allow consumers to have preferences

over price, which is observed directly in the search microdata.

Limitations of Specification Choices There are two limitations to how we choose to

estimate our model of consumer preferences. The first is our choice to include latitude and

longitude linearly as a proxy for spatial preferences in the observable characteristics model.

In practice, more appropriate measures of spatial preferences would include transformations

of these coordinates to capture distances to various amenities consumers value, such as the

city center, museums, and airports. We chose to not include these distance metrics because

(a) it would require extensive institutional knowledge to construct these measures in each

market, which is typically unavailable when working with large-scale search datasets, and

(b) adding these distances would dramatically increase the dimensionality of the character-

istic space, making downstream demand estimation computationally difficult. At the same

time, it is likely that adding a small set of auxiliary measures based on geography, such as

distance to city center, to the observable characteristics model would improve the quality

of our estimated preferences. This is particularly important given that in Section 6, we will

benchmark our search-based preference specifications against a traditional demand model

with these observables, which may be unable to capture spatial differentiation.
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The second is that we assume that each consumer considered all products in our dataset

when deciding which hotels to search. As mentioned in our discussion of product rankings,

this assumption is likely to deviate from reality. In practice, a consumer typically searches a

subset of hotels within a specific geographic market, for example when planning a vacation

to a particular location but unsure what hotel to book. While our demand estimation in

Section 6 does restrict choices to be within a geographic market, we do not impose this

restriction during the estimation of preferences from search data. In part, this is because we

do not want to restrict certain geographic preferences a priori – it may be that consumers

co-search hotels in different geographic markets, and thus are actually close substitutes,

possibly because of similar amenities at each hotel, or because consumers view these ge-

ographically distinct markets as similar. In principle, our model allows for imposing this

restriction ex-ante, if one had data on which markets a consumer considered (say, by using

their query search words that generated the search options). Such a restriction may improve

the search-based preferences in this setting. This choice is likely to be consequential as we

show later in the empirical sections that much of what the latent preference capture is spatial

differentiation.

Computational Details. We provide an implementation of the search model written

using the keras machine learning package in python.9 This expedites the time it takes to

optimize the model’s parameters due to (1) automatic gradient computation and (2) use

of GPUs for optimization. We maximize the posterior likelihood of the model using batch

optimization10 and the ADAM stochastic gradient optimizer (Kingma and Ba 2014).

In order to avoid overfitting the model parameters to the search data, we select hyper-

parameters (# of dimensions,# of training iterations, and regularization parameter) using a

leave-one-out approach for searched hotels.11 For each session with two or more searched ho-

9Link: https://github.com/luisarmona/learning-mkt-struct.
10We use a batch size of 10,000 inequalities per gradient evaluation
11Because of the differing scale and time-varying nature of prices relative to observables, we do not regu-

larize the price coefficients αi during estimation.
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tels, we exclude all inequalities that involve one randomly selected hotel being preferred, as

in (Rendle, Freudenthaler, Gantner, and Schmidt-Thieme 2009).12 This removes 36% of all

inequalities from these multi-hotel search sessions. After each iteration through the training

set of inequalities, we evaluate the likelihood of the model on the held-out validation set, and

iterate until we do not improve the likelihood of the held-out validation set. We then re-run

the model on the full set of inequalities using the hyperparameters that maximize the like-

lihood of the validation set. Appendix Figure A1 displays the out-of-sample log-likelihood

as we vary the number of latent dimensions, by regularization hyperparameter.13 Across

dimensions, the best out-of-sample performance occurs with a regularization parameter of

λΘ = 10−6.14 The returns to additional latent dimensions are negligible after 12 latent di-

mensions, which is comparable to the dimensionality of our observed characteristics, so we

choose the model with 12 dimensions for our analysis.

3.3.2 Demand Model

Given that the choice probabilities follow a mixed logit we with endogenous prices, we can

use the methods developed in Berry, Levinsohn, and Pakes (2004) to estimate the demand

for products, conditional on latent parameter estimates Θ̂. Given choice data from the

same sample of search data, the parameters governing demand are already learned from

the search data, up to a scale parameter σζ and a location shifter µ of utilities due to

search costs, greatly simplifying demand estimation. In our setting, we lack purchase data

for our sample of consumer searches, but have traditional market-level data on price and

quantities. As a result, our set of search and purchase consumers differ, which may imply

12For example, if A and B are the only searched hotels in a session i, and A is the chosen excluded hotel,
we remove all inequalities of the form A ≻i x for unsearched hotels x and only rely on inequalities of the
form B ≻i x during training. Sessions with only one searched hotel are not used during training.

13We use a grid of 10−x from x = 4 to x = 7 for λθ, as this is the region where regularization leads to a
non-degenerate number of training iterations.

14We normalize the regularization parameter during training by |Θ|, the number of parameters. For the
specification with only observable characteristics, we found the hyperparameter λΘ = 10−1 performed best,
and use the learned consumer preferences from this model for all analysis with latent preferences on solely
observables characteristics. For this specification, we normalized observables to have mean zero and standard
deviation one, so that regularization treats latent preferences equally along each dimension.
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a different distribution of preferences across these population. To accommodate such a

scenario, we assume the distribution of preferences αi, βi for our search sample V and the full

market population of hotel consumers G belong to the same location-scale family. Explicitly,

preferences from search relate to the market-level preference distribution as follows:

v⃗i ∼ G, vi = [ᾱ, β̄] + Σv̂i v̂i ∼ V̂ (14)

where V̂ denotes the estimated distribution of preferences from search data, Σ is a (K+L)×

(K + L) rescaling matrix, and [ᾱ, β̄] denotes an unknown mean preference vector. In our

exercises, we assume Σ is a diagonal matrix, so this is equivalent to assuming the demand

population distribution is equal to the search population up to an affine transformation. We

interpret this assumption as the demand population having the same underlying preference

correlation structure as the search population, but allow the importance/scale of consumer

heterogeneity to differ by characteristic. This also allows us to estimate our demand system

using traditional methods, simply substituting V̂ for the typical assumption of random (e.g.

normal) unobserved heterogeneity. Since the mean utilities may also differ across popula-

tions, we discard the δj’s learned from search data and re-estimate δj,t using our market-level

demand data.

Following Berry, Levinsohn, and Pakes (2004) we estimate the model by generalized

method of moments (GMM), using moments conditions of the form E[ξj,t|Zj,t] where ξj,t is

the product-market specific unobservable defined in the consumer preferences above, and Zt

are a set of market-specific instruments that include own and rival product characteristics.

Identification Notice that because hotel characteristics do not vary over time, we absorb

the term β̄Xj (in addition to the search cost parameter µ) into the fixed effect δj, so that

β̄, µ are not separately identified. In our empirical application, we choose to calibrate the

price coefficient from a paper using the same demand dataset, though in principle if one

had access to exogeneous price shifting instruments, the moment restrictions on these in-
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struments would identify α. In our context, the moments from GMM instead identify Σ,

the parameter governing the importance of unobserved heterogeneity. This requires a set of

instruments that properly capture changes to substitutability across products with similar

characteristics. One candidate set of instruments, and the ones used in this paper, are the

product differentiation instruments of Gandhi and Houde (2016), which have been shown to

be helpful for identification and reduce bias in the estimation of random coefficients. We

provide more details on estimation in our empirical application in Section 6.

4 Information Content of Latent Characteristics

We begin by visually assessing whether characteristics γj obtained from search data capture

the spatial distribution of hotels. We do so by projecting the 12-dimensional latent charac-

teristics obtained from the latent characteristics search model to a two-dimensional space,

using the TSNE method (Maaten and Hinton 2008)15, to see if clusters formed on the 2-d

space correspond to STR’s geographical market definitions.

Figure 1 plots in the left panel the geographical locations of hotels in our STR dataset,

along with the 2-D projection of their locations in their latent characteristic space learned

from the search data in the right panel. Hotels are colored according to the geographical

market they reside in, according to STR. We see that hotel clusters formed in the latent

characteristic space largely correspond to the geographical markets defined by STR.16 This

suggests that much of what is learned in the latent characteristic space is spatial differenta-

tion. It also suggests that we may be able improve estimation by limiting choice sets during

search to reside within geographical markets. However, this would come at the cost of drop-

ping consumers who search across markets, and would require a priori knowledge of market

boundaries, which we would rather not impose on the model. Indeed, the imperfect corre-

15Our perplexity hyper-parameter is set to the square root of the number of hotels in each TSNE embedding
estimation routine

16The multi-colored cluster of hotels in the center corresponds to hotels which appear in Expedia t but
are not actually searched by any of the consumers in our sample.
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Figure 1: Two-Dimensional Representation of Learned Latent Space by Market

spondence of geographic markets to clusters suggests that search data may be used in future

work to better inform market structure in a data-driven way.

We now more formally characterize the information content of the embeddings learned

from search data. To do so, we evaluate the efficacy of embeddings trained in the Latent

Characteristics model to predict observable characteristics of hotels not included in estima-

tion. Specifically, we evaluate whether search data alone can recover product differentiation,

by validating that the search model trained with no observable characteristics accurately

captures observable characteristics we know influence demand in the market for hotels. The

thought exercise is that, if we were unable to observe any characteristics of products, but
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Latent Characteristics Observable Characteristics
In-Sample Out-of-Sample In-Sample Out-of-Sample

Latitude-Longitude 0.555 0.470 0.045 0.060
Independent Hotel 0.052 0.010 0.426 0.345
Near Airport 0.254 0.203 0.059 0.038
Hotel Size Category 0.325 0.297 0.686 0.671

Table 4: Predictability (R-Squared) of Observable Characteristics from Latent and Other
Observable Characteristics

knew products were not homogeneous, could we learn characteristics from search data that

captured the product heterogeneity consumers care about?

We measure the information content of embeddings in predicting observable character-

istics by estimating a flexible function f(·) that takes as inputs the latent characteristics

γj and attempts to predict an observable characteristic Xo
j,c. We split the sample of STR

hotels randomly into an 80%-20% training and test sample, and then use 20% of the training

sample as a validation sample to optimize hyperparameters of the neural network. We use

a 10-layer deep neural network to estimate each characteristic Xo
j,c, using RELU activation

functions for intermediate layers, and optimize over (a) the number of nodes per layer, (b)

the regularization applied during training (c) the number of training iterations.17 Then, after

tuning the hyperparameters, to provide the best in-sample fit to the training data, we predict

the held-out 20% test sample of hotels, and evaluate the predictability of characteristic Xo
j,c

using the R2 metric:

R2
c =

∑Ntest

j=1 (Xo
j,c − f(γj))

2∑Ntest

j=1 (Xo
j,c − X̄o

test,c)
2

(15)

Which measures how much of the variation of characteristic Xo
j,c in the test-sample is ex-

plained by the neural net f optimized over the training sample.

We pick as our target variables the latitude-longitude location of each hotel, whether a

hotel is independent, whether a hotel is located near an airport, and the size category of

each hotel. Table 4 reports the R-squared metric for each characteristic from the neural

17Hyperparameters chosen for each characteristic are reported in Appendix Table A1
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net. To benchmark these results, we also estimate a neural network trained only on ob-

servable characteristics (except the target observable), which exploits the correlation across

observable characteristics within each product. We find that latent characteristics are able

to predict geographical location, whether the hotel is near an airport, and hotel size. The

predictability of geographic variables from latent characteristics suggest that our learned

latent preferences do not recover only idiosyncratic search patterns, but also correlate with

characteristics we know consumers have preferences over when making a decision for pur-

chasing products in our empirical setting, such as spatial differentiation. In Appendix A,

we provide supplementary evidence to this exercise, by examining the correlation structure

of latent consumer preferences, as well as implementing a classifier that shows hotels with

similar latent characteristics share observables such as brand. The Appendix results are

consistent with the evidence provided here: latent parameters recovered from search data

are meaningful in explaining product differentiation in the hotel market.

5 Application 1: Entry Event Study

We evaluate the ability of unobserved characteristics learned from search data to capture

substitution patterns in a reduced-form setting. Fundamental to the concept of substitution

patterns is that consumers are more likely to substitute away from a particular product when

there are competing products available that are “close” in the characteristic space over which

consumers have preferences. Therefore, we expect when a new product enters the market,

the incumbent suppliers that stand to lose the most are products whose characteristics are

close to those of the entrant. We hypothesize that the learned characteristics we recover

from our search model capture parts of the characteristic space consumers have preferences

over, yet the econometrician does not observe. To test this formally, we estimate an event

study that captures the heterogeneous effect of entry depending on whether an incumbent

hotel is “close” in characteristic space to the entrant.
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We perform this exercise as follows: first, we identify all hotel entries that occurred be-

tween January 2002 and March 2018 based on the listed open date in the STR characteristics

dataset. Let te denote the entry month of entrant e. We then take all hotels in the same

geographical market for whom we have complete transaction data ±12 months around this

entry to produced a balanced panel. Given a characteristic space X , for each incumbent

hotel j included in the panel, we compute its distance in characteristic space to the entering

hotel e as follows:

dX (j, e) = ||Xj −Xe||2, Xj, Xe ∈ X (16)

where || · ||2 is the L2 norm. let ĤX ,e denote the empirical distribution of distances for all

hotels included in the panel for entrant e. We then classify a hotel as “close” in characteristic

space if its distance d is below the 10th percentile in distance among all hotels included in

the panel for entrant e.

1{j close in dX} =


1 if H−1

X ,e(dX (j, e)) ≤ 0.1

0 else

(17)

We perform this calculation for all entries in the STR dataset, stack the entry panels for

each entrant e, and estimate the following stacked event study specification:

log(qj,t,e) = αj,e + δt,e +
11∑

s=−13

βs1{j close in dX} × 1{t− te = s}+ ϵi,t (18)

where αj,e denotes hotel-entry panel pair fixed effects, δt,e captures the effect of the entry in

period t on all hotels in the market, and βs measures the differential effect the hotel entry

on hotels close in characteristic space in month s relative to the entry date te. We expect

βs < 0 for s ≥ 0, implying that hotels close in the characteristic space are more negatively

effected in terms of sales after the new hotel enters.

We consider 3 characteristic spaces for this event study:
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1. Geographical Distance: This measures the distance between hotels, determined by

the euclidean distance in their latitude and longitude. Naturally, because preferences

for hotels are in part spatially correlated, we expect incumbent hotels physically near

an entrant to be more negatively effected.

2. Distance in Other Observable Characteristics: This measures the distance in all

observable characteristics provided by STR, excluding longitude and latitude. Because

the units of the observable characteristics vary, we construct the observable character-

istics distance metric using the Mahalanobis distance. This is identical to the euclidean

distance implied by the L2 norm using the following transformed variable:

X̃j = LXo
j , where LL′ = Σ and Σ = Cov(Xo

j , X
o
j ) (19)

Thus, we compute the covariance matrix of observable characteristics, perform a Cholesky

decomposition of this matrix to recover L then multiply the characteristics by L to

recover the standardized observable characteristics.

3. Distance in Latent Characteristics: Using the characteristics learned from the La-

tent Characteristics model described in Section 3.3, we compute the euclidean distance

in latent characteristics, so that Xj = γj. No normalization is required to make units

comparable, since these embedding characteristics are learned in units of utility.18

We estimate the event study for all 3 distance metrics and compare their effectiveness in

capturing the substitution patterns of consumers when a new product enters their choice set.

In Figure 2, we plot the event study coefficients βs for all three distance metrics described

above. Effects are relative to month s = −1. For all distance metrics, we see that prior to

the entry month s = 0, there is no effect of being close to the entrant hotel, since it has

not yet entered the market. After s ≥ 1, demand for nearby hotels in the latent space

18Estimating the event study using the Mahalanobis distance in latent characteristics produces very similar
results.
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Figure 2: Effect of Closeness (< 10th percentile in distance) of Hotel Entry on Incumbent
Hotel Demand, By Distance Metric

decreases by 1%, and this effect is consistent for the subsequent periods included in the

event study sample. Distance in the observable characteristics space yields largely noisy

estimates. By contrast, we see a statistically significant decrease in demand for incumbent

hotels that are close in either geographic or latent characteristic space to the entrant. Because

competition in the hotel market is geographically spatial, the statistically significant effect

on geographic distance is not surprising. What is interesting is that the latent characteristics

learned from search data are also significant and therefore have “learned” some notion of

geography relevant for demand. The effect sizes are smaller though, suggesting that the latent

characteristics are unable to fully capture spatial competition. This may due to differential

factors contributing to how consumers decide to search for hotels versus actual purchases.

Nonetheless, we conclude that data on search behavior alone is able to capture meaningful

ways in which products are differentiated that may not be observable to researchers.
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6 Application 2: Merger Analysis

We estimate the choice model described in Section 3 and compare various specifications of

consumer demand for merger analysis. To quantify how effective the latent search parameters

are at predicting demand, we benchmark the model against a traditional mixed logit using

only observable characteristics and random consumer heterogeneity.

In November 2015, Marriott International announced it would be acquiring the competing

Starwood Hotels company, creating the largest hotel chain in the world (Dogru, Erdogan,

and Kizildag 2018). In Appendix B, we provide direct evidence that prices decreased by

a large proportion (5%) in markets with a high concentration of Marriott-Starwood hotels

post-merger. We use these large price changes to test whether our estimated demand model

specifications can accurately predict demand in an out-of-sample period which experienced

large price changes, causing demand substitution across products. We evaluate the fit of

these demand models by predicting demand after a major merger in the hotel industry that

induced large price changes. To perform this test, we estimate a demand system on the

pre-merger hotel transaction data data (2012 to 2015), and evaluate the model’s ability to

predict demand changes for hotels post-merger announcement (2016 to 2018), which is held

out when we optimize the GMM objective function of BLP. To allow for a fair comparison

between the models based on latent and observable characteristics, we limit this exercise to

the 4,021 hotels that have at least one user search the hotel in our Expedia dataset (98.3%

of total purchases in our sample).19

Specifications. We consider two specifications of Xj, corresponding to each of our two

search models: (1) the observable characteristics from STR (Xj = Xo
j , 13 dimensions), and

(2) the latent characteristics estimated from search data (Xj = γj, 12 dimensions). We

assume that vi, the unobserved preferences, take 1 of 2 forms. Both sets of preferences are

held constant across all markets in the data.

19Our full sample of 4,218 hotels used to estimate latent parameters includes hotels that were present in
Expedia but not searched by any users during our sample.
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1. vi ∼ N(0, I). This follows the standard mixed logit assumption of (Berry, Levinsohn,

and Pakes 1995). For normally distributed heterogeneous preferences vi, we employ

Gauss-Hermite quadrature over the unobserved heterogeneity.

2. vi ∼ V̂ where V̂ is the empirical distribution of (demeaned) search preferences for all

consumers in our search data. Preferences are demeaned to have mean zero for each

characteristic, and shifted in importance by the scaling matrix Σ.

This implies four demand specifications, in addition to the typical BLP mixed logit de-

mand model. The specification with normally distributed preferences and latent character-

istics benchmarks the informativeness of using latent product characteristics over observable

product characteristics. Conversely, the specification with latent preferences and observable

characteristics benchmarks the improvement in demand prediction from allowing more flex-

ible consumer heterogeneity learned from search data. Finally, the specification with both

search-learned characteristics and preferences benchmarks the performance of using only

search microdata and market-level quantity data to inform consumer preferences.

Estimation Details. We define a market t for this merger analysis as a STR-provided

geographical market × year.20 We use the industry-provided market definitions to mirror

the typical market definition that would be used in demand estimation. We calibrate the

mean price parameter, setting ᾱ = −0.018. This is the preferred estimate in Lewis and Zervas

(2016) in their demand analysis on the same data, and implies an average demand elasticity

of approximately -2.3, which seems reasonable. We choose to make this calibration because

we are unable to find good supply-shifters for price. Lewis and Zervas (2016) are able to

circumvent this problem because they estimate a full model of the supply side that accounts

for capacity constraints; this is beyond the scope of this paper. Since our price coefficient

20We set market size according to a heuristic similar to that of Lewis and Zervas (2016): for each geo-
graphical market g, we take the month-year with the largest total number of rooms sold by all hotels in that
market, and set market size Mg to 1.5 times this quantity, multiplied by 12 to account for the fact that we
estimate demand at the annual level. Thus the size of each geographical market is constant over time.
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is calibrated, the only parameters we estimate are the the non-linear parameters, Σ, and

the hotel fixed effects δj. Σ captures the relative importance of preference heterogeneity

for each characteristic in Xj. This heterogeneity, along with the choice of characteristic

space itself (i.e. including only observable or latent characteristics), will determine the

substitution patterns relevant to merger analysis. Hotel fixed effects are included so that

each model predicts the same “levels” of demand for each hotel, and thus differences across

specifications load solely on the substitution patterns (as measured by Σ) that each model

is able to estimate.

To estimate these demand models, we perform two-step GMM use the pyblp pack-

age (Conlon and Gortmaker 2019). We use the quadratic differentiation instruments pro-

posed by (Gandhi and Houde 2016) to construct our first-step instruments Z.21 For each

characteristic c in X⃗j, we construct instruments Zj,t,c =
∑

k∈t,k ̸=fj,t
(Xj,c −Xk,c)

2, where fj,t

denotes the set of hotels with the same affiliation as j in market t. We then use these to

form empirical moments ĝc(Σ) = 1
N

∑
j,t ξj,t(Σ) × Zj,t,c, where ξ is implicitly a function of

Σ due to the contraction mapping. In the first step, we use the weighting matrix (Z′Z)−1.

In the second step, we use the first step estimates to construct an approximate form of the

optimal instruments, Zopt
j,t = 1

σ̂2
ξ
E[∇θξj,t|ξj,t = 0, Zj,t], where σ̂2

ξ is the first-stage estimate of

the variance of ξ, as recommended by (Conlon and Gortmaker 2019). We then solve the

objective once again to obtain our final estimates for each model.22

While we are able to estimate ξ in the pre-merger data to match market shares/demand

exactly, this is unavailable in the post-merger data. We evaluate the prediction of the model

assuming ξj,t = 0; This is to be consistent with the moments E[ξj,t|Zj,t] = 0.

21We only include the rival differentiation instruments in our estimation. Due to our hotel fixed effects,
variation in our differentiation instruments comes solely from entry/exit in markets from competing brands
during our sample.

22For normally distributed preferences, we found that the objective function with optimal instruments had
flat regions that prevented the optimizer from converging at multiple starting points. For these preference,
we used the original instruments and the efficient weighting matrix to obtain reasonable standard errors.
The out-of-sample MAE and MSE are qualitatively very similar using optimal instruments.
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Pre-Merger Post-Merger
Error Error % Decrease from Logit

MAE MSE MAE MSE MAE MSE
Preferences Characteristics

None Observables 0.138 0.058 0.303 0.201 - -
Normal Observables 0.137 0.056 0.293 0.171 -3.32% -14.99%
Normal Price & Latent 0.134 0.054 0.287 0.164 -5.21% -18.19%
Search Observables 0.102 0.042 0.186 0.103 -38.40% -48.92%
Search Price & Latent 0.124 0.054 0.238 0.184 -21.44% -8.34%

Table 5: Prediction Errors of Structural Demand Model

Predicted demand in the post-merger period(s) takes the following form:

q̂j,t(Σ, G(i)) = Mg ·
( 1

B

∑
i∼G(i)

exp(δj + αipj,t + βiXj)

1 +
∑

k∈Jt exp(δk + αipk,t + βiXk)

)
(20)

Our loss functions for evaluating demand prediction is the mean-squared error and mean

absolute error of log demand in the post-merger dataset:

MSE(Σ, G) =
1

Npost-merger

∑
j,t

(log(q̂j,t)− log(qj,t))
2 (21)

MAE(Σ, G) =
1

Npost-merger

∑
j,t

| log(q̂j,t)− log(qj,t)| (22)

Merger Results Table 5 displays the MSE and MAE of each demand model’s predictions,

both pre and post-merger, when we set the demand shock ξj,t to zero.23 The first row

shows the predictive performance of a simple logit model of demand with no unobserved

heterogeneity in preferences. We benchmark the performance of each model relative to

this baseline logit model in the out-of-sample post-merger data by computing the relative

decrease in an error metric for model m from the logit model. The second row shows

the improvement in performance from a standard BLP model with normally distributed

heterogeneity over observable characteristics. BLP is able to improve upon the logit in

23In Appendix Table A4, we report the full parameter estimatess from each of the 4 models considered.
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predicting both pre and post merger demand, improving the prediction MSE by 15% out-of-

sample. Using only latent instead of observable characteristics outperforms standard BLP

along both metrics, suggesting the unobserved characteristics learned from search data are

informative in capturing preferences at the purchase stage. Including both latent preferences

and characteristics improves upon both according to mean absolute error, but does poorer

according to mean squared error, due to some outlier predictions. When we add search-based

preferences to the observable characteristics only BLP model, in place of normally distributed

heterogeneity, our out-of-sample fit improves over the logit by 48% according to MSE, and

38% according to MAE. Across our specifications, the in and out of sample performance are

comparable, suggesting we do not overfit in our estimation. Our usage of transfer learning, by

estimating a high dimensional latent characteristic and preference space in a first stage with

our large search dataset, allows us to estimate a small number of parameters during demand

estimation, which prevents overfitting, while still capturing important substitution patterns.

Taken together, the results suggest that preferences and characteristics learned from search

data have wide scope to improve demand estimation. Moreover, these may work in tandem

with observable characteristics when available, as seen by the specification with observable

characteristics and search-based preferences, which provides the best out-of-sample fit.

To better understand the performance differences across the various models, Figure 3

plots the implied substitution patterns across demand specifications (with observable char-

acteristics) for products that are close in the characteristic space. For each model, we

calculate the mean diversion ratio (Conlon and Gortmaker 2019) for products similar in

characteristics. The diversion ratio is a normalized version of the cross-price elasticity that

can be interpreted as follows: given a marginal price increase in j, what fraction of con-

sumers that no longer purchase product j switch to k? By construction, the diversion ratios

across all other choices sum to 1. In the bottom row, we report the fraction of consumers

that switch to the outside option. This captures the relative substitutability of all other

products: if consumers have strong preferences for the characteristics of the product they

36



Price
Latitude

Longitude
Log(Meeting Space+1)

Price Segment
Hotel Size Category
Independent Hotel

Location = Suburban
Location = Small Metro/Town

Location = Urban
Location = Resort
Location = Airport

Location = Interstate

Sw
itc

h 
Co

nd
iti

on
al

 o
n 

In
sid

e 
Go

od
 a

nd
 C

lo
se

 in
:

Observables
None
Normal
Search

20 40 60 80 100
Diversion ratio (%)

Switch To Outside Option

Figure 3: Diversion Ratios Across Demand Models with Observable Characteristics

purchase, switchers will be more likely to not purchase at all than switch to another product

with differing characteristics. In the remaining rows, we report the probability of switching

to a product that is “close” along a particular characteristic, conditional on not switching

to the outside good. We define closeness as we did in Equation 17 for our event study appli-

cation: for each hotel, being within the 10% percentile of absolute distance among all other

products in the same market. For dummy indicators, such as being an independent hotel,

this captures the fraction of switchers that choose a hotel with the same characteristic.

Relative to the logit model, with no unobserved consumer heterogeneity, we find small

increases in substitution, primary along hotel location types and size category when we

add normally distributed preference heterogeneity. In contrast, for the specification with

consumer heterogeneity learned from search data and observable characteristics, our best-

performing model for predicting post-merger demand, we find an increase in substitution in

the outside option, implying a higher degree of product differentiation. Additionally, along

nearly every dimension, the likelihood of switching to a product similar in characteristics

increases substantially. This is particularly salient for geography-based characteristics, such

as geographical coordinates and our set of location type indicators. This suggests that this
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model is able to better predict post-merger demand better because it is able to capturing

the geographical substitution patterns determining demand. In Appendix Figure A2, we

similarly estimate that, for latent characteristics, search preferences imply lower substitution

along certain dimensions of the latent characteristic space. In Appendix Figure A3, we show

that the both models based on learned search preferences exhibit a steeper gradient between

substitutability and geographical distance, consistent with geographic preferences driving

the improvements from using preferences learned from search data.

7 Conclusion

We have presented an approach for using search data to augment traditional demand esti-

mation, in a setting in which search is observed in one dataset, and choice is observed in

another. In particular, we use this auxiliary search data to recover latent parameters that

are useful in predicting market-level purchasing decisions. The key identification strategy in

our methodology is that because there are multiple choices made during the search process,

latent preferences and product characteristics can be simultaneously estimated. Through an

event study, we show these latent characteristics are able to predict the relative losers on the

supply side from a new entrant to a market, suggesting they are meaningful and informative

to market structure. In our analysis of the Starwood-Marriott merger, it appears that the

main value added lies in the estimation of consumer preferences from search, since this allows

us to model choice with a flexible correlation structure rather than making strong parametric

restrictions of random heterogeneity.

Many questions are left open in this work. One is how best to use the data when both

search and choice are observed on the same platform, and the goal is counterfactual prediction

of events on that platform. A second is how the platform’s own choices of product display

and prominence (i.e. search rankings) should be incorporated into the analysis. Last, a

natural application that is left unexplored is to a market where observable characteristics
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are poor predictors of choice, such as the market for books, so that latent characteristics

recovered from search data could better illuminate which products are close substitutes.
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Figure A2: Diversion Ratios Across Demand Models with Latent Characteristics
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Figure A3: Diversion Ratio As a Function of Distance, by Preference Specification

Figure shows the estimated mean diversion ratio from a kernel regression (uniform kernel, bandwidth = 10
miles) between hotels from our estimated demand model, as a function of the geographical distance between
hotels. Het. Preferences denote whether there is no consumer heterogeneity (None), normally distributed
heterogeneity (Normal), or heterogeneity based in preferences learned from search data (Search). Panel (a)
plots comparisons across models using observables characteristics, while Panel (b) plots comparisons across
models using only the price and the learned latent characteristics learned from search data.
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Latent Characteristics Observable Characteristics
# Iterations Nodes/Layer Regularization # Iterations Nodes/Layer Regularization

Latitude-Longitude 8325 10 0.0001 4856 5 0.0046
Independent Hotel 430 5 0.0001 735 40 0.0000
Near Airport 180 40 0.0001 456 20 0.0000
Hotel Size Category 160 30 0.0046 873 40 0.2154

Table A1: Hyperparameters Chosen for Predicting Observable Characteristics

Pre-Merger (Training Data) Post-Merger (Test Data)
MAE % Decrease from Logit MAE % Decrease from Logit

Preferences Characteristics

None Observables 0.138 - 0.303 -
Normal Observables 0.137 -0.96% 0.293 -3.32%
Normal Price \& Latent 0.134 -2.82% 0.287 -5.21%
Search Observables 0.102 -26.04% 0.186 -38.40%
Search Price \& Latent 0.124 -10.38% 0.238 -21.44%

Table A2: Prediction Errors of Structural Demand Model (Mean Absolute Error)

Pre-Merger (Training Data) Post-Merger (Test Data)
R-Squared Increase From Logit R-Squared Increase From Logit

Preferences Characteristics

None Observables 0.916 - 0.687 -
Normal Observables 0.923 0.007 0.732 0.046
Normal Price & Latent 0.927 0.011 0.761 0.075
Search Observables 0.940 0.023 0.840 0.153
Search Price & Latent 0.922 0.006 0.713 0.026

Table A3: Fit of Structural Demand Model (R-Squared)
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Characteristics Observables Price & Latent
Preferences Normal Search Normal Search

Price 0.0129 0.564 Price 0.00991 0.978
(0.00116) (0.798) (0.00415) (0.264)

Latitude 3.49e-11 0.00434 Latent Dimension 1 -3.02e-09 -1.12
(4.35e-09) (0.926) (1.41e-09) (1.3)

Longitude -2.5e-11 -0.000721 Latent Dimension 2 1.29e-08 -0.808
(6.14e-09) (0.539) (3.25e-08) (2.34)

Log(Meeting Space+1) 7.31e-11 0.0284 Latent Dimension 3 -1.05e-09 -0.359
(9.27e-09) (21.8) (2.06e-09) (2.45)

Price Segment -3.13e-11 0.0438 Latent Dimension 4 0.108 -0.0928
(3.73e-10) (81.1) (1.37) (3.18)

Hotel Size Category -1.19e-10 0.0852 Latent Dimension 5 8.1e-10 0.00602
(2.72e-08) (73.8) (1.28e-08) (4.13)

Independent Hotel 3.91e-10 0.372 Latent Dimension 6 -3.73e-09 0.355
(1.15e-08) (49.3) (1.54e-08) (2.08)

Location = Suburban -1.22e-10 -1.58 Latent Dimension 7 -4.06e-10 -0.00261
(2.96e-09) (221) (1.16e-09) (5.76)

Location = Small Metro/Town 2.49e-10 -0.868 Latent Dimension 8 1.11e-09 -0.386
(9.36e-09) (304) (7.46e-09) (3.43)

Location = Urban -0.23 -33.3 Latent Dimension 9 1.34e-10 0.323
(25.4) (48.3) (1.12e-09) (0.755)

Location = Resort -3.65e-10 -2.38 Latent Dimension 10 -1.26e-10 -0.0616
(2.53e-08) (173) (1.91e-10) (2.35)

Location = Airport -5.62e-10 -17.1 Latent Dimension 11 1.33e-09 -1.11
(1.63e-08) (92.8) (1.41e-09) (1.19)

Location = Interstate -2.18e-10 -31 Latent Dimension 12 -5.56e-10 -0.0416
(7.28e-09) (153) (7.57e-10) (3.05)

Table A4: Estimated Consumer Heterogeneity Demand Parameters

47



A Understanding the Characteristics and Preference

Space: Supplementary Evidence

In this section, we provide supplementary evidence to Section 4 that our recovered latent

preferences and product characteristics from search data yield a sensible characterization of

the market for hotels.

We can assess whether our estimated preferences are sensible by examining the correlation

within-consumer of their preferences over various characteristics of hotels. In Figures A4

and A5, we plot the correlation matrix of preferences over characteristics for each of the

two estimated models. In Figure A4, where we estimate preference heterogeneity only over

observable characteristics, we find that preferences for location types are strongly negatively

correlated, while tastes for meeting space and size category (number of rooms) are positively

correlated. The former correlation represents a preference for the overall spatial location of

hotels, while the latter represents an overall taste for large hotels both in guest capacity and

ability to host large business conferences.

Second, we use an off-the-shelf method for classifying products, a top-k classifier, to see

if hotels that are close in the latent attribute space also share observable characteristics.

Specifically, given a candidate hotel j, we examine the characteristics of hotels that are the

top-10 closest in euclidean distance to j in the latent characteristic space:

d(j, k) = ||γj − γk||2 =

√√√√ L∑
l=1

(γj,l − γk,l)2 (A1)

where γ⃗j is the 12-d vector of latent characteristics learned in the latent characteristics only

model. We do this for all hotels k within the same STR-defined geographical market as j.

We then see what share of hotels classified as close according to the top-10 classifier share

the same brand, management company, ownership company, Parent company, and how close

they are in miles to the candidate hotel j. We perform this exercise for all hotels in our
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dataset, then average across the classifiers for all J hotels in our dataset to see if, on average,

the hotels close in unobserved characteristics share observable attributes more often than

those that are classified as far away in the latent characteristic space.

Table A5 plots the result of the top-10 classifier for our targeted characteristics. Observa-

tions differ across target variables because not all hotels have a management, owner, parent

company, or brand (e.g. independent hotels have no parent company). We also use as a com-

parison the results from a top-10 classifier based on the observable characteristics of hotels,

to benchmark our results.24 We find that in general, hotels closer in latent characteristic are

more likely to share supply-side characteristics such as brand/chain affiliation, compared to

a random hotel in the same market. At the same time, the classifier based on observable

characteristics performs better for all characteristics, except distance. To an extent, this

is not surprising since some characteristics (such as class/price segment) are defined at the

brand level, and many hotel chains implement uniform characteristics across their locations.

24We use the Mahalanobis distance on observable characteristics to standardize the scale of each charac-
teristic. Because latitude and longitude is included in our input observable characteristics, we exclude it
when classifying for the distance metric.
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Figure A4: Correlation Matrix of User Search Preferences: Observable Characteristics Model

Baseline Top-10 Classifier Based on Characteristics # Observations
All Hotels In Market Latent Observations

Pr(Same Brand) 0.029 0.039 0.093 3438
Pr(Same Mgmt Company) 0.027 0.051 0.098 1690
Pr(Same Owner) 0.037 0.065 0.117 1202
Pr(Same Parent Company) 0.133 0.164 0.251 3438
Distance (Miles) 51.413 30.265 37.261 4218

Table A5: Predictive Performance of Top-10 Classifier based on Distance in Latent and
Observable Characteristic Space
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Figure A5: Correlation Matrix of User Search Preferences: Latent Characteristics Model
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B Merger Impact on Hotel Conduct

In order to evaluate how effective our proposed demand model is in capturing actual substi-

tution patterns, we exploit a large merger that occurred during our sample period in the hotel

industry that induces plausibly exogenous price changes. On November 16, 2015, Marriott

International Inc announced that it would be acquiring the Starwood Hotels company. The

merger was completed on September 23, 2016 (Dogru, Erdogan, and Kizildag 2018). After

the merger completed, Marriott International became the largest hotel chain in the world.

After this transaction occurred, prices in markets with high concentration of Starwood /

Marriott hotels changed noticeably. Recall that the brand affiliations of each hotel in our

STR dataset is an anonymized ID, so we cannot observe which hotels in our transaction data

were Marriott or Starwood affiliates before the merger. Through further coordination with

STR, we were able to obtain counts of each hotel brand within each geographical market and

class segment, as of December 2015. We use this data to construct an “exposure index” to

the merger, Prj(Starwood or Marriott|Marketj, Classj), and measure the effect of exposure

to the merger on post-merger prices. The rationale behind this exposure index is that if

Marriott/Starwood hotels changed conduct in price-setting after a merger, then hotels be-

longing to the same geographical market/ class segment as Marriott/Starwood hotels will

also respond and change their price-setting behavior. The exposure index then captures both

“direct effects” of Marriott-Starwood hotels changing their price behavior due to backend

changes in costs and increased market power, as well as “indirect effects” of competing hotels

responding to the new price-setting behavior of Marriott/Starwood hotels.

We estimate the effect of exposure to the merger via the following event study specifica-

tion:

log(pj,t) = αj,month(t)+δt+

2019Q1∑
q=2013Q1

βqPrj(Starwood or Marriott|Marketj, Classj)+ϵj,t (A2)

where αj,month(t) denotes hotel×month-of-year fixed effects , to capture time-invariant differ-
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ences in hotel prices as well as seasonalities in pricing structure, δt is a geographical market

× month × year fixed effect, to capture common demand shocks occurring in each market-

month-year, and βs is the effect of the exposure index in quarter q on hotel j. We aggregate

the event-study specifications to the quarterly-level due to power concerns given the large

number of fixed effects. The control group in this event study are hotels in the same market

as Marriott-Starwood hotels but a different class segment. Because consumers have differen-

tial demand, hotels belonging to a different class are not as exposed to the changed pricing

behavior of Marriott-Starwood hotels after the merger.

Figure A6 plots the estimated event study. The dashed red line represents the time of the

merger announcement, while the solid red line represents the date the merger was completed.

The blue dots represent the estimated coefficients of the above specification, while the orange

dots replace the market-month-year fixed effects with market-month-year-location type (e.g.

urban vs suburban hotels in Los Angeles in May 2018) fixed effects.

In general, there do not appear to be strong pre-trends before the merger announcement.

We see large price decreases following the completion of the merger, which is consistent

with discussions surrounding the merger of cost reductions via centralization of sales and

customer service operations between the acquiring and target firms (Dogru, Erdogan, and

Kizildag 2018).

We use this event study as plausible evidence that the Marriott-Starwood merger led to

exogenous price changes by hotels in markets with high exposure to Marriott and Starwood

hotels, independent of demand fluctuations. Therefore, measuring the ability of our demand

models to accurately predict demand post-merger may serve as a test to whether a demand

model augmented with search data may perform “better” in predicting substitution patterns

after exogenous price changes.
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C Derivation of Choice Market Shares

In this section, we derive the choice probabilities implied by the search and choice model

presented in Section 3.2. Recall that expected utility is defined as

E[ui,j,t] = δ̄i,j,t = δj,t − αipj,t + β⃗iX⃗j + ζi,j,t (A3)

Since realized utility is ui,j,t = E[ui,j,t] + (1 − σζ)ϵ̃i,j,t, we can divide by (1 − σζ) to obtain

a cardinally equivalent expression of utility as ũi,j,t = δ̄i,j,t/(1− σζ) + ϵ̃i,j,t, so that utility is

expressed as a location shifter plus an i.i.d. extreme value type 1 (T1EV) random variable

with scale 1 and location 0. From here, we follow the notation of (Moraga-González, Sándor,

and Wildenbeest 2023). Under this re-scaled utility measure, The reservation value under

simultaneous search is defined as:

r̃i,j,t = δ̄i,j,t/(1− σζ) +H−1
0 (c̃i,j,t) (A4)

Where ci,j,t is the user-specific search cost. Let wi,j = min(r̃i,j, ũi,j). This is the minimum of

the reservation value associated with searching product j, and actual utility derived from the

product. Moraga-González, Sándor, and Wildenbeest (2023) show that under the sequential

search environment, the optimal search strategy is to choose the product with the highest

wi,j.
25

We assume in the main section of the paper that the distribution of search costs same

distribution as Moraga-González, Sándor, and Wildenbeest (2023), therefore by Proposition

1 of in that paper, the distribution of w̃i,j follows a Gumbel distribution with location

parameter (δ̄i,j,t − µ)/(1− σζ) and scale 1.26

25Formally, in (Moraga-González, Sándor, and Wildenbeest 2023), there are multiple products within each
“search group”, so they find it optimal to search the group with the highest w, then choose the best product
in that group. In our context, we assume all consumers pay an equal search cost to search one product, so
this second stage choice is degenerate, as there is one product in each group.

26We express the search location parameter µ in terms of the original utility space.
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Since a T1EV variable with location δ and scale σ, multiplied by a constant c, is T1EV

with location c ·δ and scale c ·σ, it follows that the random variable (1−σζ)wi,j is distributed

according to a T1EV distribution with location (δ̄i,j,t − µ) and scale (1 − σζ). Since the

mapping f(w) = (1 − σζ)w is monotonic, it must also be the case that the optimal search

strategy is to choose the product with the highest (1− σζ)wi,j.

Finally, since constant terms are additively separable from a T1EV distribution, we can

express (1− σζ)wi,j as

(1− σζ)wi,j ∼
(
δj,t − αipj,t + β⃗iX⃗j − µ

)
+ ζi,j,t + (1− σζ)ηi,j,t (A5)

Where ηi,j,t is a T1EV random variable with location 0 and scale 1. Because ζ is a conjugate

to the T1EV by Theorem 2.1 of (Cardell 1997), The distribution of ζi,j,t + (1 − σζ)ηi,j,t is

also Gumbel with location 0 and scale 1, which implies that (1 − σζ)wi,j is distributed as

T1EV with location δj,t − αipj,t + β⃗iX⃗j − µ and scale 1. The probability that any particular

(1− σζ)wi,j is largest is given by the max-stability property of the T1EV distribution.

Pr(i choose j) = Pr((1−σζ)wi,j > max
k ̸=j

(1−σζ)wi,k) =
exp(δj,t − αipj,t + β⃗iX⃗j − µ)

1 +
∑

k∈Jt exp(δk,t − αipk,t + β⃗iX⃗k − µ)
(A6)

We can then integrate over the distribution of consuemr preferences αi, βi to get market-level

shares, which concludes the derivation.

D Derivation of Search Likelihood

Consider the normalized utility presented in Section C, where we divide utility by (1− σζ).

Let δi,j,t = δj,t − αipj,t + βiXj, so that E[ũi,j,t] = (δi,j,t + ζi,j,t)/(1 − σζ) and reservation

values are given by Equation A4. Under simultaneous search, the optimal search strategy

is to search products in decreasing order of their reservation value. Our inequalities derived

for search behavior require us to compare reservation values across searched and unsearch
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products; therefore, the relevant probability to consider is:

Pr(ri,j > ri,k) = Pr(ri,j − ri,k > 0) = Pr(− ∆ζi,j,k
(1− σζ)

−∆H−1
i,j,k <

∆δi,j,k
(1− σζ)

) (A7)

Where ∆δi,j,k = δi,j,t − δi,k,t, ∆ζi,j,k = ζi,j,t − ζi,k,t, and ∆H−1
i,j,k = H−1

0 (c̃i,j,t) − H−1
0 (c̃i,k,t).

Given a guess of the latent parameters, The first component, ∆δi,j,k is constant and serves to

simply shift the CDF threshold. So to understand the global properties of the distribution,

we ignore it. According to Cardell (1997), the difference of two gumbel conjugate with scale

σζ is logistic with scale σζ . Therefore, the distribution of −∆ζi,j,k/(1−σζ) is simply a logistic

distirbution with location 0 and scale σζ/(1−σζ). The distribution of −∆H−1
i,j,k is unknown.

In this appendix, we will simulate from it, and evalulate whether the logistic approximation

for reservation values (which would be exact if ∆H−1
i,j,k is zero) is a valid approximation.

The search cost distribution used in Moraga-González, Sándor, and Wildenbeest (2023)

sets search costs equal to zero with probability exp(−µ). This presents a problem, as H−1
0 (0)

is undefined, and implies a reservation value of ri,j = ∞ (e.g. the product is always searched).

This also implies that reservation utilities are equal for two products with zero search costs

(e.g. they are both always searched). This implies the following probability that one product

is searched and the other is not:

Pr(search j, do not search k) = Pr(ri,j,t > ri,k,t) (A8)

= Pr(ci,j,t = 0, ci,k,t > 0) + Pr(ci,j, ci,k > 0) · Pr(ri,j,t > ri,k,t|ci,j,t, ci,k,t > 0)

= Pr(ci,j,t = 0) · Pr(ci,k,t > 0) + Pr(ci,j,t > 0) · Pr(ci,k,t > 0) · Pr(ri,j,t > ri,k,t|ci,j,t > 0, ci,k,t > 0)

= exp(−µ)(1− exp(−µ)) + (1− exp(−µ))2 · Pr(−∆ζi,j,k
1− σζ

−∆H−1
i,j,k <

∆δi,j,k
1− σζ

|ci,j,t > 0, ci,k,t > 0)

Where the second equality follows from the fact that search costs are independent. Notice

that µ is not a parameter of our search model, so it is fixed during optimization and does not

impact the likelihood. Therefore, maximizing the likelihood of our search model is equivalent

56



to maximizing:

Pr(−∆ζi,j,k
1− σζ

−∆H−1
i,j,k <

∆δi,j,k
1− σζ

|ci,j,t > 0, ci,k,t > 0) (A9)

Since ζ is independent of search costs, its distribution is unchanged, conditional on ci,j,t > 0.

The CDF of H−1
0 (ci,j) conditional on ci,j > 0 is:

FH(z|µ) = Pr(H−1
0 (c) ≤ z|µ, c > 0) = Pr(c ≥ H0(z)|µ, c > 0) (A10)

= 1− Pr(c ≤ H0(z)|µ, c > 0)

= 1− S(H0(z)|µ)− S(0|µ)
1− S(0|µ)

=
Fϵ(z + µ)− Fϵ(z)

(1− Fϵ(z))(1− exp(−µ))

Where Fϵ(x) = exp(− exp(−x)) is the CDF of a standard T1EV distribution. This suggests

the search cost component of the reservation values, H−1
0 (ci,j,t), is similar in shape to a

(scaled) truncated T1EV distribution. We sample from this distribution by taking a uniform

sample U ∼ [0, 1], then finding the nonlinear root z satisfies FH(z|µ) = U . We then use

these simulated draws to sample from the distribution of reservation values (conditional on

positive search costs).

Figure A7 displays simulations of reservation values across values of µ, the location of

search costs. For this exercise, we normalize the scale of ∆ζ to be 1 (e.g. σζ = .5), so that

values of µ, which index the search cost component of reservation values, are relative to the

dispersion of ζ. In Panel (a), we plot the distribution of ∆ri,j,k, the difference in reservation

values across two products, conditional on positive search costs, for three values of µ (100,000

draws each). For comparison, we also show the PDF of a logistic distribution with identical

variance with µ = 10. The logistic approximation is quite accurate, irrespective of the choice

of µ.

In Panel (b), we show the moments of the simulated ∆ri,j,k, across values of µ. The

mean and skewness are close to zero across the parameter space. The variance increases
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Figure A7: Simulated search cost Components and reservation values

siightly µ = 5, but is mostly constant, even up to implausibly large values of µ such as

100. It appears that a logistic distribution with scale ≈ s = 1.4 is a good approximation

to the distribution of ∆ri,j,k, irrespective of the value of µ. This suggests that our logistic

approximation will be accurate even for extreme values of search costs, and there will be

little loss of information in our usage of a quasi likelihood.
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