METCS232 Introduction to Computer Science with Java

Summer 2009
Prof. Victor Shtern

HOMEWORK 1 (assigned Lecture 1, due Lecture 2)

1. Establishing Feedback

To be sure that you indeed are able to communicate with the professor, send him an e-mail message to his Boston University e-mail address shtern@bu.edu. Send the message from the e-mail address you are going to check regularly for this course. The message subject should start with the course number and your last name. For example, if your last name is Jones, use the following subject line:"CS232-Jones First Message." Use this course number-last name subject prefix (e.g., "CS232-Jones") for all your communications with the professor.

In your first message, specify your name, BU ID, phone numbers and the

e-mail address that you will use for the course. Describe your prior experience with computer systems and programming, and your current occupation. Send this message within two days from the start of the course.

2. Reading Assignment

Read the first two chapters of the textbook, review the key terms and chapter summaries. Make sure that you can answer review questions. If you have difficulties, consult the textbook website at
http://cs.armstrong.edu/liang/intro7e/studentsolution.html
You will also find there advice on common errors and solutions to programming exercises with even numbers. Studying these solutions will give you ideas how to structure your own code.
3. Programming Exercises.

For each programming exercise, use the naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary variables.

a) Do Programming Exercise 2.3: Write a program that prompts the user to enter a number in feet, accepts input from the user (use the Scanner class), converts the value to meters and displays the result (one foot is 0.305 meters). Define the conversion factor as a Java constant.
b) Do Programming Exercise 2.5: Write a program that calculates restaurant tips. The program should prompt the user for the bill subtotal and the gratuity rate, accept user input (use the Scanner class) and compute and display the gratuity and total. For example, if the user enters 10 for subtotal and 15% for gratuity rate, the program displays $1.5 as gratuity and $11.5 as total.

c) Do Programming Exercise 2.15: Suppose you add $100 each month to a savings account with the annual interest rate 5% so that the monthly interest rate is 0.05/12 = 0.00417. After the first month, the value in the account becomes
100 * (1 + 0.00417) = 100.417

When $100 is added, the value in the account at the end of the second month becomes
(100 + 100.417) * (1 + 0.00417) = 201.252

and so on.

Write the program to display the account value at the end of the sixth month (after $600 has been added). Make sure to minimize the changes necessary to make if the values of the amount added at the end of each month and of the annual interest rate change.

4. Submissions

Write a brief memo to explain why you think that your test runs are sufficient and non-redundant for demonstrating that each program is correct. For exercise (c), explain how you minimized code modifications for computing with different values of the amount added and of interest rate.

For each programming exercise, turn in the source code and the captured results of execution. Type all your work.

This assignment is due before the start of Lecture 2.

METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 2 (assigned Lecture 2, due Lecture 3)

1. Reading Assignment

Read chapters 3 and 4 of the textbook, review the key terms and chapter summaries. Make sure that you can answer review questions. If you have difficulties, consult the textbook website at

http://cs.armstrong.edu/liang/intro7e/studentsolution.html
You will also find there advice on common errors and solutions to programming exercises with even numbers. Studying these exercise solutions will give you ideas how to structure your own code.

2. Programming Exercises.

For each programming exercise, use the naming conventions and commenting style as described in the text and lectures. Initialize only those variables whose values are used further in computations. Do not use unnecessary variables.

a) Do Programming Exercise 3.11: Write a program that finds the number of days in a given month. The program prompts the user to enter the month (as an integer from 1 to 12) and the year (use two separate prompts and the same Scanner object). For example, if the user entered month 2 and year 2000, the program should display "February 2000 has 29 days". If the user entered month 3 and year 2005, the program should display "March 2005 has 31 days". Use a switch statement to generate output for each month.

b) Do Programming Exercise 4.23: Compare different ways of adding floating point numbers. Write a program that displays the results of computing the following series (for n = 50000) four times:

1 + 1/2 + 1/3 + 1/4 + + 1/n

The first time, compute the sum using double numbers and adding fractions from left to right (increasing the denominator from 2 to n). The second time, compute the sum using double numbers and adding fractions from right to left (decreasing the denominator from n to 2).

The third time, use float and go from left to right; the fourth time, use float and go from right to left.

c) Do Programming Exercise 4.27: Write a program that displays all the leap years, ten per line, in the twenty first century (from 2001 to 2100). To properly format the output, call the print() method rather than println(). After printing each value increment a count. When the count reaches 10, start a new line (call println() or print "\n") and reset the count to zero. Make sure that after printing the last value the program prints a single new line even when a different number of values (e.g., 5) per line is used.

d) Do modified Programming Exercise 3.9: Write a program that prompts the user to enter the lengths of three edges of a triangle (use three separate prompts and a Scanner object to accept double values). The program computes the perimeter of the triangle if the input is valid (the sum of any two edges is greater than the third edge). Otherwise, the program displays the message that the triangle is invalid. The program continues prompting the user for new sets of data until the user enters zero as the length of the first edge (use an infinite loop and a break statement).

3. Submissions

Write a brief memo to explain why you think that your test runs are sufficient and non-redundant for demonstrating that each program is correct. Make sure that your test data force execution of each branch of the code. For exercise (b), explain the differences in the results (if any). For exercise (c), explain how you assured that a new line is displayed at the end only when necessary.

For each programming exercise, turn in the source code and the captured results of execution. Type all your work.

This assignment is due before the start of Lecture 3.

METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 3 (assigned Lecture 3, due Lecture 4)

1. Reading Assignment

Read chapter 5 and the first three sections of chapter 6 of the textbook, review the key terms and chapter summaries. Make sure that you can answer review questions. If you have difficulties, consult the textbook website and review the solutions to programming exercises with even numbers. Studying these exercise solutions will give you ideas how to structure your own code.

2. Programming Exercises.

For each programming exercise, use the naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary code or variables that do not serve a useful purpose. Define as constants those values that do not change during execution. Make code easy to read.

a) Do Programming Exercise 5.19: compute the area of a triangle. Write a class whose main() calls the following two methods of the same class:

public static boolean isValid(

 double side1, double side2, double side3)

public static double area(

 double side1, double side2, double side3)
The first method returns true if its three arguments represent a valid triangle (the sum of any two sides is greater than the third side) and false otherwise.

The second method returns the area of the triangle computed as

sqrt(s * (s-side1) * (s-side2) * (s-side3))

where

s = (side1+side2+side3)/2

In main(), prompt the user to enter the length of each triangle edge and accept user input as double. Then call method isValid(). If this method returns true, call method area() and display the result. If the input values do not describe a valid triangle, display a message "Invalid triangle". Use method sqrt() from class Math.

b) Do Programming Exercise 5.29: implement a modified game of craps. At the start of the game, if the sum of the first roll of two dice is 2, 3 or 12, you lose, if the sum is 7 or 11, you win. In both cases, the game ends after the first roll. If the sum of the first roll is neither 2, 3, 12, 7 or 11, this sum represents a 'point' and the game continues until either (1) the sum of the next roll is 7 (you lose) or (2) the sum equals the value of 'point' (you win). Write a class, e.g., GameRules, with three following methods:

public static int getDice()
public static int start()
public static void play(int point)
Method getDice() calls method random() from class Math (see section 5.9.5) twice to simulate the roll of two dice, prints the roll results and their sum and returns the sum.

Method start() implements the actions of the first roll of the game. It calls method getDice() and then analyses the roll result returned from getDice(). If the sum is 7 or 11, method start() displays "You win" and returns 0 to signal the end of the game to its caller main(). If the sum is 2, 3 or 12, start() prints "You lose" and also returns 0 to signal the end of the game. Otherwise, method start() prints the value of the 'point' and returns this value to the caller.

Method play() implements the continuation of the game (if the game has not ended after the first roll). It implements a do-while loop. In the body of the loop, it calls getDice() until the sum is either 7 or equals the value of 'point' (which is passed to play() as its argument). If the sum is 7, method play() prints "You lose." If the sum equals the point, it prints "You win."
Write another class, e.g., Crap, whose main() method controls the game. First, it calls method start() from class GameRules. If the result is 0, the game is over (you either won or lost in the very first roll). Otherwise, main() calls method play() to continue the game.

c) Do Programming Exercise 6.1: analyzing input data stream. Write a program that reads ten numbers, computes their average and finds out how many numbers are above the average. In the main() method, create an array of double values of the length 10. In a 'for' loop, prompt the user to enter the next value and accept it as double. After the loop, compute the average and then go over the array again, counting the values that are greater than the average. At the end, print the average and the count of values greater than the average.

3. For Advanced Students (not for extra credit)

In exercise (a), make methods isValid() and area() members of class Triangle. In main(), use an infinite loop to request from the user multiple sets of triangle data, terminate the loop when the user enters zero as the value of the first edge of the triangle.

In exercise (b), run the game multiple times, count the number of wins and the number of losses and their ratio. Display the outcome of only first five games. Set (editing source code is ok) the number of games to run so large that you can conclude whether the game is fair.

In exercise (c), provide the capability to accept any number of values. In the prompt to the user indicate the special sentinel value, e.g., zero, which denotes the end of input. Count the total number of values that the user enters before entering zero. If the number of values exceeds the length of the array, allocate an array twice as long (20 elements first time, 40 elements next time and so on) and copy the values from the old array into the new array.

4. Submissions

Write a brief memo to explain why you think that your test runs are sufficient and non-redundant for demonstrating that each program is correct. Make sure that your tests cover all paths through the code.

For exercise (b), include only those game results which contribute to demonstrating that the program is correct. List all method calls you used in exercise (b) and explain the differences between the forms of syntax that you used for method calls this exercise. Draw a design diagram for the methods which you have implemented in exercise (b).
For each programming exercise, turn in the source code and the captured results of execution. Type all your work.

This assignment is due before the start of Lecture 4.

METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 4 (assigned Lecture 4, due Lecture 5)

1. Reading Assignment

Read remaining sections of chapter 6 and the first four sections of chapter 7 of the textbook, review the key terms and chapter summaries. Make sure that you can answer review questions. Review the solutions to programming exercises with even numbers.
2. Programming Exercises.

For each programming exercise, use the naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary variables and unnecessary code. Define as constants those values that do not change during execution. Make code easy to read.

a) Do Programming Exercise 6.5: reporting distinct numbers. Write a program that prompts the user to enter 10 integers and displays the distinct values (the values that appear more than once are displayed only once). Save arriving values in an array if they are new (and increment the number of values saved), and discard the input values which are already in the array. To decide whether the value is already in the array, write the following method:

public static boolean isInArray(int [] numbers, int size, int value)

The method goes over the values currently in the array (the number of values is in the parameter 'size'). If the value is found in the designated segment of the array, the method returns true. If the loop over the array ends without finding the value, the method returns false. The main() method calls isInArray() and saves the value and increment the size if the value is not found. At the end, main() displays the number of distinct values and their list.

b) Do modified Programming Exercise 6.7: evaluate the uniformity of the output of method random() by counting the occurrence of each outcome of a call to random() and saving counts in an array. Generate random integers between 0 and 9 inclusive (use (int)(Math.random()*10)), accumulate the counts in an array of ten integers so that 0's are counted at index 0, 1's are counted at index 1 and so on.

To implement the program, write a class with the following methods:

 public static void createData(int [] counts, int numReps)

 public static void printData(int [] counts)
 public static void testRandom(int numReps)

Method createData() calls method random() the numReps times (in the textbook, it is 100) and increments the elements of the array according to each outcome.

Method printData() goes over the elements of the array and displays them one element per line (e.g., "Count for 0 is 9").

Method testRandom() defines the array of integers and passes it to methods createData() and printData() along with the number of repetitions where appropriate.

In the main() method of the class call method testRandom() for 100, 1000 and 10000 repetitions. Observe the decrease in variability of the results.

c) Do Programming Exercise 7.1 (the Rectangle class). Implement a class Rectangle with data fields for the width and height (double) of the rectangle and for its color (String). Implement a no-arg constructor that initializes the values of width and height to 1 and color to "white". Implement a constructor that initializes a rectangle with specified values of width, height and color.

Implement the accessor and mutator methods for each data field, a method getArea() that returns the rectangle area and a method getPerimeter() that returns the rectangle perimeter. There is no need for all rectangles to have the same color.

Write another class whose main() method creates two rectangle objects, one with width 4, height 40 and color white and another with width 3.5, height 35.9 and color red. Then it calls the Rectangle accessor methods to display the properties of each object and prints their areas and perimeters. Use the mutator methods to change the width of the first rectangle to 5 and its height to 50. Compare the areas of two rectangle objects. If the first rectangle has a greater area than the second, check whether the second rectangle could be placed within the first rectangle. Depending on the outcome, print a message saying whether this is so or not.

3. For Advanced Students (not for extra credit)

In exercise (a), provide the capability to accept any number of values. In the prompt to the user indicate the special value, e.g., zero, which denotes the end of input. Count the number of values that the user enters before entering zero and the number of values in the array. If the number of values in the array exceeds its length, call a method, e.g., reallocateArray() with the array as its parameter which allocates an array twice as long (20, 40 and so on), copies the values from the old array into the new array, and returns a reference to a new array.

In exercise (b), add the following method:

 public static void analyzeData(int [] counts, int numReps)

Method analyzeData() goes over the elements of the array and computes the maximum and minimum vales (compare with Listing 6.1 in the textbook). Then it computes the range of deviations as the percentage of the expected value. For example, for 100 repetitions, the expected count for each digit is 100/10. If the maximum value is 13 and the minimum value is 8, the range is 50 percent. At the end of analyzeData(), display the maximum and minimum counts, and the range of deviation in percent. Call this method at the end of TestRandom() method.

In exercise (c), make the color of all Rectangle objects the same so that changing color for one object changes it for existing objects and also for objects that will be created after that. Add code to main() to demonstrate this capability.

3. Submissions

Write a brief memo to explain why you think that your test runs are sufficient and non-redundant for demonstrating that each program is correct. Make sure that your tests cover all paths through the code.

For exercise (b), comment of the quality of the random() method. Explain whether breaking the overall algorithm into small methods helped you to create the program in small increments or it was a hindrance because of the need to set up module communications, and you would rather put all the code in the main() method.

For each programming exercise, turn in the source code and the captured results of execution. Type all your work.

This assignment is due before the start of Lecture 5.

METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 5 (due Class 7 after the midterm)

1. Reading Assignment

Read the rest of chapter 7 and chapters 8 and 9 of the textbook, review the key terms and chapter summaries. Make sure that you can answer review questions. Review the solutions to programming exercises with even numbers.
2. Programming Exercises.

For each programming exercise, use naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary code. Define as constants those values that do not change during execution. Define as static everything that can be made static. Make code (and comments) easy to read.

a) Do Programming Exercise 7.3 (the Account class). Write a class named Account with data fields for id (int), balance and annual interest rate (double), and the date when the object was created (of class Date). The value of the annual interest rate (default value is 4.5%) must be the same for all Account objects.

Implement a constructor that initializes the object fields to the values of its arguments. Implement the accessor and mutator methods for id, balance, and interest rate and the accessor method for the date.

Implement a withdraw() method. If its argument is negative, it displays "Negative argument, operation terminated." If its argument exceeds the Account balance, it displays "Insufficient funds, operation terminated." Implement a deposit() method. If its argument is negative, it displays "Negative argument, operation terminated."

Implement another class whose main() method creates two Account objects (use any initial data). Print the initial state of the objects, modify their state (including interest rate) and then display their final state.

b) Do Programming Exercise 8.3: checking password. Write class Password that has a String data field for the password and three methods, displayRules(), isValidPassword(), and compare().

Method displayRules() displays a message that says that a valid password should have at least minimum length (use 8 charadters), can contain only letters and digits and must contain at least the minimum number of digits (use 2), and the minimum number of letters (use 3).

Method isValidPassword() returns false if any symbol in the password is neither letter not digit, or if the length of the password is less than the minimum length. It also returns false if the number of digits is less than the minimum number or the number of letters is less than the minimum number. If the password passes all these tests, the method isValidPassword() returns true.

Method compareTo() returns true if its String argument has the same contents as the password of the Password object, and false otherwise.

Implement a constructor with one parameter that initializes a new Password object to the value of its argument.

Write another class, e.g., PasswordManager, whose main() method should create a Password object that contains a valid password inside. It starts with displaying the password rules to the user (by calling the displayRules() method) and then requests the user to enter a string for the password. If the string represents a valid password, main() prints a confirmation, otherwise it prints an "Invalid password" message and prompts the user again until the user enters a valid password.

c) Do Programming Exercise 8.17: count characters, words, and lines in a text file whose name is passed as a command line argument. The main() method checks whether the number of its arguments equals 1 and terminates with a message if not. If the number of arguments is 1, main() creates a File object with the name specified on the command line and checks whether such a file exists. If not, main() terminates with a message. If the file exists, main() creates a Scanner object to read from this file.

The main() method reads the file by calling nextLine() in a 'while' loop which terminates when there is no more data in the file. In the body of the loop, it accumulates the count of characters by adding to it the number of characters in the current line. It increments the number of lines and then accumulates the count of words by calling the following method:

private static int countWords(String s)
This method creates a local Scanner object and passes its argument string to the Scanner constructor. In a 'while' loop, it reads the next character by calling the Scanner's next() method and increments the count of words in the line until a call to hasNext() returns false.

At the end, main() prints the file name and the counts of characters, words, and lines.

d) Do Programming Exercise 9.7 (ATM machine). Use the Account class from exercise (a) of this homework. Create a class, e.g., ATM, with the following data fields: an array of ten Account objects, the id of a current account, and a Scanner object for accepting keyboard user input. In the class no-arg constructor, populate the array with Account objects with id from 1 to 10 (not 0 to 9) and balance $100.00.

This no-arg constructor calls methods getId(), getChoice(), withdraw(), and deposit().
Method getId() prompts the user to enter an account id or 0 to terminate the program. If the user input is outside of the range, it repeats the request until the id is within the range.

Method getChoice() displays the menu with the choices for (1) checking balance, (2) withdraw, (3) deposit, and (4) exit from the account and prompts the user for the selection. If the user input is inside the proper range, getChoice() returns it. Otherwise, it repeats the request until the user enters a proper value.

Method withdraw() prompts the user for the withdrawal amount and delegates the work to the method withdraw() of the Account object whose id was entered in getId(). Similar, method deposit() prompts the user and calls the method deposit() from the Account object with the given id.

The no-arg constructor uses nested loops to control the process. The user enters the account id in the outer loop and then makes a series of selections for this account in the inner loop. When the user enters 4 as the next choice, the inner loop terminates and the user enters the next account id in the outer loop. When the user enters 0 as the next id, the outer loop terminates. This ends constructor execution.

To support this process, the outer loop starts with a call to method getId(). If the return value is 0, it breaks the loop and the constructor terminates. Otherwise, getChoice() is called in the inner infinite loop. After that, the body of the inner loop either displays the balance, or calls withdraw() or calls deposit() using a switch statement. The value of id is used to access the Account object in the array. If the user choice is 4, do nothing in the switch, but break the inner loop. After that the outer loop requests the account id again.
The main() method of the application creates a new application object (and hence invokes the no-arg constructor) and terminates.
3. For Advanced Students (not for extra credit)

In exercise (a), add to the Account class a data field of type Password from exercise (b). Add to the Account constructor a String argument to initialize the password. Add to class Account method compare() that passes its String argument to the Password's compareTo() and returns true if its argument is the same as the password.

In exercise (b), after main() created a valid Password object, prompt the user to reenter the password and then calls the compareTo() method to compare the two passwords. If the user enters a string that is different from the password that was entered earlier, main() displays an "Different passwords" message and repeats the prompt until the user reenter the correct password, and main() terminates with a "Correct password" message.

In exercise (c), if the user enters a file name that does not exist, the main() method should request the user to try again until either the user enters the file name which exists or the user makes three unsuccessful attempts. In this case, main() prints "Too many attempts" and terminates.

In exercise (d), the constructor should create Account objects with passwords "password01", password02" and so on until "password10"" (use a loop and string concatenation in the body of the loop). In getId(), after the user enters a valid id, use the infinite loop to ask the user to enter the password. Compare the user input with the Account object password (using the account id). If the password is correct, getId() returns the value of id entered earlier. Otherwise, it repeats the request until the user enters the correct password.

3. Submissions

Write a brief memo to explain why you think that your test runs are sufficient and non-redundant for demonstrating that each program is correct. Make sure that your tests cover all paths through the code.

For exercise (a), explain the difference between the interest rate and other Account data fields.

For exercise (b), explain what you made static and why.

For exercise (c), explain advantages and disadvantages of creating a Scanner as a local object versus a class data field.

For exercise (d), discuss advantages and disadvantages of argument validation in the Account class rather than in its client class (ATM).

For each programming exercise, turn in the source code and the captured results of execution. Type all your work.

If you complete this assignment (or part of it) by the midterm, you will be better prepared for the exam. The formal due date is the class after the midterm.

METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 6 (due class 8)

1. Reading Assignment

Read the chapter 10 and the first five sections of chapter 11 of the textbook, review the key terms and chapter summaries. Make sure that you can answer review questions. Review the solutions to programming exercises with even numbers.
2. Programming Exercise.

Use naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary code. Define as constants those values that do not change during execution. Define as private and/or static everything that can be made private and/or static. Define variables closer to their use. Make code (and comments) easy to read.

Do modified Exercise 10.1: design and implement the inheritance hierarchy of geometric objects.

a) In class GeometricObject, implement data fields for color (String), the date of creation (Date) and whether the object is filled or not (boolean). Only color can be changed after an object instance is created, and the Date field contains the actual time of object creation. There is no need to make the color of all objects the same.

Provide a default constructor and a constructor with parameters for initializing the object's data fields. Implement appropriate (see the previous paragraph) accessor and mutator methods. Override the Object's method toString() to return a string (different from the textbook example) that is printed for a filled object as:

created on Wed Jun 17 12:03:14 EDT 2009

filled, color: red
and for an object that is not filled as

created on Wed Jun 17 12:03:14 EDT 2009

not filled, color: yellow
b) In class Triangle, implement integer (not double) data fields for triangle sides, a constructor with parameters to initialize object fields (no default constructor), method getPerimeter() and method expand() that multiplies each side of the object by the value of its parameter (of type double). Use the Math.round() method for rounding.

Override the method toString() to print data in the following format:

Triangle created on Wed Jun 17 12:03:14 EDT 2009

not filled, color: yellow

sides are 20 30 30 perimeter is 80
c) In class Rectangle, implement integer (not double) data fields for rectangle width and height, a constructor with parameters to initialize object fields, method getPerimeter() and method expand() that multiplies each side of the object by the value of its parameter (double). Use the Math.round() method.

Override the method toString() to print data in the following format:

Rectangle created on Wed Jun 17 12:03:14 EDT 2009

filled, color: red

sides are 20 30 perimeter is 100
d) Create yet another class, e.g., Homework, with five methods.

Method createList() creates an ArrayList object and adds to it a few Triangle and Rectangle objects.

Method printList()goes over its ArrayList parameter printing each list component in the appropriate geometrical object (Triangle or Rectangle) format as specified above.
Method perimeterReport() goes over its ArrayList parameter, expands each geometrical object in the list by a factor of 2 and adds up the new values of object perimeters; at the end, the perimeterReport() method prints the result, e.g.:

Sum of perimeters is 640

Method colorReport() goes over its ArrayList parameter and concatenates the colors (one per line) of geometrical objects in the list and then prints the result in the following format:

Color report:

yellow

white

red

green
Method main() calls createList(), printList(), perimeterReport() and colorReport() and terminates.

3. For Advanced Students (not for extra credit)

In class Triangle, implement method isValid() that returns true if the sides of the Triangle object represent a valid triangle and false otherwise.

Call this method from perimeterReport() to make sure that only valid triangles contribute to the value of the sum of perimeters of geometrical objects.

4. Submissions

Write a brief memo to explain

(a) What the use of inheritance allowed you to achieve in this program by making classes Triangle and Rectangle subclasses of GeometricObject.

(b) What the use of polymorphism allowed you to achieve in this program (be specific).

(c) What the use of dynamic binding allowed you to achieve in this program (be specific).

(d) What additional advantages could be achieved by defining class GeometricObject as an abstract class with abstract methods.

In the source code, for EACH method call, specify

(a) the class of the reference used in the call, and

(b) the class of the object pointed to by the reference.

Turn in the source code and the captured results of execution. Type all your work.

This assignment is due in one week, before the start of Lecture 8.

METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 7 (due class 9)

1. Reading Assignment

Read the remainder of chapter 11 and the whole chapter 12 of the textbook, review the key terms and chapter summaries. Make sure that you can answer review questions. Review the solutions to programming exercises with even numbers.
2. Programming Exercises.

Use naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary code. Define as constants those values that do not change during execution. Define as private and/or static everything that can be made private and/or static. Define variables closer to their use. Make code (and comments) easy to read.

1. Implement modified Exercise 11.1 using your solution to Exercise 10.1. The functionality of the superclass GeometricObject, its subclasses Triangle and Rectangle and their client class Homework should remain the same as in the previous homework.

a) Implement the class GeometricObject as an abstract class. Make sure that the code in the perimeterReport() method does not need to know to what subclass the object belongs.

b) Modify GeometricObject to implement the Comparable interface comparing objects by the size of their perimeters. Add to the Homework class method findMax() that goes over the ArrayList of Triangle and Rectangle objects and prints the value of the maximum perimeter in the list. In addition, it compares each perimeter value with perimeters of other objects and prints the message indicating whether all the perimeter values are unique or there are duplicate values.

2. Do modified Exercise 12.2: implement classes Name, Person, Student and Faculty.

In class Name, provide data fields for first and last names and middle initial, the constructor with parameters to set data field values, method setName() with parameters to set all three data values, and method toString() that returns the concatenation of the last name, space, middle initial, space, first name.

Implement class Person as an abstract class that implements the Comparable interface. Its data fields include two component objects, university ID (a String) and name (a Name object). It has a constructor with parameters for first name, middle initial, last name and the id and the following methods:

setName() with parameters for first name, middle initial, last name,

getFullName() that returns the same value as toString() in class Name,

setName() with the same parameters as setName() in class Name,

toString() that concatenates the id, space and the full name,

compareTo() that compares full names of this object and parameter object.

Implement classes Student and Faculty as subclasses of Person. Class Student has a data field major (a String) and a constructor with parameters for the first name, middle initial, last name and id (initialize major to the default value "Computer Science"). Implement methods getMajor(), setMajor(). Implement toString() that returns two lines concatenating the id, full name and the major, e.g.

U91111111 Jones M John

Major: Computer Science
Class Faculty has a data field rank (a String) and a constructor with parameters for the first name, middle initial, last name, id and rank. Implement methods getRank(), setRank(). Implement toString() that returns two lines concatenating the id, full name and the rank, e.g.

U94444444 Green F Gabi

Rank: ASCP
Implement the compareTo() method in classes Student and Faculty so that they are capable of comparing the target object ('this' object) with an object of the same type only. Student objects should be compared on the 'major' field alphabetically, Faculty objects should be compared on the rank' field alphabetically. If an attempt is made to use compareTo() to compare objects of different types, the program should terminate at run time.

In the client class (e.g., Homework) implement methods printList() and sort() to print and to sort a parameter array of either Faculty or Student objects, and method max() that prints the first maximum object in its parameter array (of either Faculty or Student objects).

When sorting, if two objects have the same value of the sorting field ('major' for Student objects, 'rank' for Faculty objects), do not change the order of these objects in the array and do not compare them on the 'name' field (this is left for advanced students to struggle with).

In client's main(), create two arrays (not ArrayList objects), one should contain Student objects and another should contain Faculty objects. Make sure that the 'major' field of Student objects has meaningful values. Pass these two arrays as arguments to method printList(), max(), sort() and again printList(). Define these arrays so as to prevent compareTo() in Student and Faculty from blowing up even if you try to insert objects of different types in these arrays.

Demonstrate the versatility of methods printList(), max() and sort() by passing an array of String objects to these methods and also by passing an array of Integer objects.

3. For Advanced Students (not for extra credit)

In the first programming exercise, simplify perimeter computations by implementing methods isValid() in both subclasses Triangle and Rectangle (decide what this method returns for Rectangle objects).

In the second programming exercise, if two objects in the list have exactly the same concatenation of the last name, middle initial and first name, use the result of comparing strings for their majors or ranks.

4. Submissions

Write a brief memo to explain

(a) What the use of dynamic binding allowed you to achieve in each exercise.

(b) What additional advantages (if any) are achieved by defining GeometricObject as an abstract class.

(c) What additional advantages (if any) could be achieved by defining Person as an abstract class.

(d) If instead of an array of Integer objects you created an array of Number objects (e.g., by mixing Integer and Double objects in the same array) could you use printList(), max() and sort() to process this array? Explain why.

Turn in the source code and the captured results of execution. Type all your work.

This assignment is due in one week, before the start of Lecture 9.

METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 8 (due class 10)

1. Reading Assignment

Read chapters 13, 15 and 16 of the textbook. Review the key terms and chapter summaries. Make sure that you can answer review questions. Review the solutions to programming exercises with even numbers. If you have questions, do not hesitate to ask them in class.

2. Programming Exercises.

Use naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary code. Define as constants those values that do not change during execution. Define as private or local or static everything that can be made private, local or static. Define variables closer to their use. Make code (and comments) easy to read.

a) Do Exercise 16.4: create a calculator with GUI according to Figure 16.36. Implement it as a single class that extends JFrame with data fields for three text fields and for four control buttons. Similar to textbook GUI examples, use the main() method to create a frame object, pack it, set its title, set it to exit on close, position the frame in the screen center, set it non-resizable and visible.

In the frame constructor, create two panels with flow layout. One panel contains three text fields (for operands and the result) and their labels, another panel contains four labeled buttons for operations. Put the first panel on the top (center) of the frame, another on the bottom of the frame, and register the application object as a button listener.

In the event processing method, check whether the event comes from a button and then retrieve the double values from the text fields and perform either addition, or subtraction, or multiplication or division depending on the button. Do not worry about division by zero or incorrect number formats yet, but make sure that trailing and leading spaces do not blow the program.

b) Do Exercise 16.5: create a converter between miles and kilometers with GUI according to Figure 16.37. Implement it as two classes, the application class that extends JFrame (with data fields for a text field for miles and a text field for kilometers) and a listener class that listens to text field events (pressing the Enter key). Create a frame object, pack it, set its title, set it to exit on close, position the frame in the screen center, set it non-resizable and visible.

In the frame constructor, create two panels with grid layouts. One panel contains the Mile and Kilometer labels one above another, another panel contains the text fields for miles and kilometers, again one above another. Put one panel on the left side of the frame, another on the right (center) side of the frame.

In the listener constructor pass both text field references as parameters to be able to respond to pressing the Enter key in either text field. If the event source is the miles field, set the second field to the corresponding value in kilometers. If the event source is the kilometers field, set the first field to the corresponding value in miles. Again, do not worry about incorrect number formats, but make sure that trailing and leading spaces do not blow the program.

3. For Advanced Students (not for extra credit)

Do the second part of Exercise 15.4: display the mouse position when the mouse is pressed and erase the text when the mouse is released (see Figure 15.20b). Implement it as two classes, the application class that extends JFrame (with no data fields) and a display class that extends JPanel.

Create a frame object, set its size to, e.g., 200 by 200, set its title, set it to exit on close, position the frame in the screen center and set it visible. In the frame constructor, add the display panel to the frame.

The display panel has two data fields, a Point to keep the coordinates of the mouse press and a boolean flag that is set to true when the mouse is pressed. In the constructor, it sets itself as a listener to mouse events. When mouse is pressed, it sets the Point's x and y coordinates to the x and y coordinates retrieved from the MouseEvent object, set the pressed flag to true and calls repaint(). When the mouse is released, it sets the pressed flag to false and calls repaint(). Other mouse event response method have empty bodies.

When repainting, the display panel calls the superclass painting method and checks whether the mouse is pressed. If so, it calls drawString() forming the display message with the Point's x and y coordinates.

4. Submissions

Write a brief memo to explain

(a) For each listener registration method call in your programs, specify the type of the method parameter and the type of the object that you pass as the call argument. If these types are different, explain why it is allowed to use one type where another type is expected.

(b) Compare two methods of designating an event listener, a frame class and a separate listener class. Specify advantages and disadvantages of each approach.

(c) For all instance data fields in your classes, explain why you defined them as data fields rather than local variables in one of methods. For all local variables in your methods, explain why you defined them as local variables rather than data fields.

Turn in the source code and the captured results of execution. Type all your work.

This assignment is due in one week, before the start of Lecture 10.

METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 9 (due class 11)

1. Reading Assignment

Read chapters 18 and 19 of the textbook. Review the key terms and chapter summaries. Make sure that you can answer review questions. Review the solutions to programming exercises with even numbers. If you have questions, do not hesitate to ask them in class.

2. Programming Exercises.

Use naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary code. Define as constants those values that do not change during execution. Define as private or local or static everything that can be made private, local or static. Define variables closer to their use. Make code (and comments) easy to read.

a) Do Exercise 18.3: demonstrate the use of the exceptions. Implement it as a single class that extends JFrame with data fields for:

- two text fields (array index and the array element at that index),

- a control button to display the array element (or the error message),

- the array of 100 random integers in the range of 0 to 9999.

Similar to textbook GUI examples, create a frame object, pack it, set its title, set it to exit on close, position the frame in the screen center, set it non-resizable and visible.

In the constructor, fill the array with random integer values, create a panel with grid layout and add to this panel two labels ("Array index" and "Array element") and the two corresponding text fields. Add this panel to the center of the frame, and the control button "Show element" to the bottom of the frame.

For event processing use anonymous inner classes that pass their event parameter to method processInput(). Make sure that the event is created not only by pressing the control button, but also by pressing the Enter key in the text field with the index value.

In processInput(), retrieve the index value from the input text field and display the value of the array element at that index in the non-editable text field. If the index value is out of bound, display "Out of bound" instead. If the index value is not an integer, display "Not an integer".

b) Do modified Exercise 19.2: create a binary data file with values that describe sizes of triangles and rectangles.

First, use a text editor to create a text file with geometrical object data, one object per line. For a triangle, its line contains three integers, for a rectangle its line contains two integers. Your program should read this file line by line. For each line, it creates an array of two or three integers and writes it out to the binary (object) file.

Implement the application as three cooperating classes, TextFile (responsible for reading side lengths from the text file), BinaryFile (responsible for writing object data to the binary file) and the application class (e.g., Homework9b) that creates other objects and coordinates their work.

Class TextFile has a constructor with one parameter, for the name of the input text file. It creates a Scanner object for the text file. If the file is not found, the constructor prints a message that the text file is not found and terminates the program.

Other TextFile methods are getNextLine(), processInputLine() and closeFile(). Method getNextLine() reads the next line from the text file, trims it and returns as a String. Method closeFile() closes the Scanner object.

Method processInputLine() passes its String parameter to a local Scanner object which will retrieve tokens (triangle or rectangle sides) from this string. If the input file is corrupted, its lines might contain more than 2 or 3 tokens. This is why processInputLine() should create a large temporary array (e.g., 100 elements) to save the numbers into and should count the number of tokens in the line being processed.

In a loop, processInputLine() checks whether the String Scanner has a next token and the array is not full yet. If so, it retrieves the next token from the parameter (as a String), parses this token into an integer and saves it in the temporary array of numbers. If the token cannot be converted into an integer, it should print "Data in input file is corrupted" and terminate the program.

When all tokens in the line are converted into integers, method processInputLine() checks whether the number of tokens is 2 or 3. If not, it should print "Line in input file is corrupted" and terminate. If the number of tokens is 2 or 3, processInputLine() creates an array of integers and copies the temporary array values into it. After that it prints "Rectangle" or "Triangle", prints the values retrieved from the line and returns the array of 2 or 3 integers to its caller.

Class BinaryFile has a constructor with one parameter, for the name of the binary file to write binary data to. The constructor creates an ObjectOutputStream object for the binary file. If the file cannot be open, the constructor should print a message and terminate the program.

Other BinaryFile methods are saveObjectData() and closeFile(). Method saveObjectData() receives the array of integers with two or three sides and writes it as an object to the output binary file. If anything goes wrong, it prints "Failure to write to output data file" and terminates.

Method closeFile() closes the ObjectOutputStream object. If anything goes wrong with closing the ObjectOutputStream object, it prints "There was a problem closing output file" and terminates the program. This is unlikely but is required by the library close() method.

The application class has only one method, main(). It creates a TextFile object and a BinaryFile object passing the names of the files to their constructors as String literals. In an infinite loop, main() calls getNextLine() and breaks the loop if the line is empty. If the line is not empty, main() passes it to method processInputLine() that returns an array of integers found in the input line. Then main() passes the array to method saveObjectData() that writes data to the binary file. Finally, main() prints the count of lines read from the text file.

Make sure that you process each exception in your program and not simply say that main() throws them (as the textbook sometimes does). You should study the API of library classes you use, make sure that you understand what methods could throw exceptions and process these exceptions.

To make sure that you have valid input data for the next exercise, it might be a good idea to add to main() the code that opens the binary file for input, reads it until the End Of File exception is thrown, and prints each set of data read, e.g.:

Triangle: 10 20 20

Rectangle: 40 40

Triangle: 30 40 50

Read 3 lines

10 20 20

40 40

30 40 50

End of reading input data file
c) Do modified Exercise 19.7: restoring data from an object file. Use the abstract superclass GeometricObject and its subclasses Triangle and Rectangle from Homework 7. Simplify the design of this inheritance hierarchy by eliminating the filled flag and the operations expand(), equals(), compareTo(), sort() and colorReport().

In the Triangle constructor, check the validity of the triangle and throw an IllegalArgumentException if parameters are negative or the triangle is not valid.

In createList(), create an ObjectInputStream object for the binary file you created in the previous exercise. If anything goes wrong, print a message "Data file cannot be open for input" and terminate. In an infinite loop, read data into an integer array. If anything goes wrong, print "Failure to read input data" and terminate. When the End Of File exception is thrown, print "End of reading input data" and break the loop.

For each array that is read from the binary file, if its length is 2, add a red Rectangle to an ArrayList; if its length is 3, add a yellow Triangle to the ArrayList. Discard an invalid triangle with a message, e.g.:

10 20 20

10 20 30

Illegal triangle discarded

40 20 20

Illegal triangle discarded

10 20 30

Illegal triangle discarded

40 40

30 40 50

End of reading input data file
Triangle created on Tue Jun 23 00:36:55 EDT 2009

color: yellow

sides are 10 20 20 perimeter is 50

Rectangle created on Tue Jun 23 00:36:55 EDT 2009

color: red

sides are 40 40 perimeter is 160

Triangle created on Tue Jun 23 00:36:55 EDT 2009

color: yellow

sides are 30 40 50 perimeter is 120

Sum of perimeters is 330
There are a few subtleties that could impede your progress. Make sure that you implement these programs in SMALL increments and put a lot of debugging print statements while you go to verify your progress.

4. Submissions

Write a brief memo to explain

(a) For all instance data fields in your classes, explain why you defined them as data fields rather than local variables in one of methods. For all local variables in your methods, explain why you defined them as local variables rather than data fields.

(b) Compare the techniques of checking triangle validity in Homework 7 and in this homework. Which is better? Also, consider checking triangle validity before calling the Triangle constructor.

(c) Compare the use of anonymous inner classes for event processing with the use of inner classes, outer classes and the frame class.

Turn in the source code and the captured results of execution. Type all your work.

This assignment is due in one week, before the start of Lecture 11.
METCS232 Introduction to Computer Science with Java

Summer 2009

Prof. Victor Shtern

HOMEWORK 10 (due before the start of final exam, week 12)

1. Reading Assignment

Read chapters 21 and 22 of the textbook. Review the key terms and chapter summaries. Make sure that you can answer review questions. Review the solutions to programming exercises with even numbers. If you have questions, do not hesitate to ask them in class.

2. Programming Exercise.

Use naming conventions and commenting style as described in the text. Initialize only those variables whose values are used further in computations. Do not use unnecessary code. Define as constants those values that do not change during execution. Define as private or local or static everything that can be made private, local or static. Define variables closer to their use. Make code (and comments) easy to read. Process exceptions thrown by library methods closer to their origin.

Do modified Exercise 22.7: write a program that counts the occurrences of integers in a text file that contains integers. Several values per line and empty lines are allowed. Read data from the file until the data ends. Display the count of integers read, the number with maximum frequency and its number of occurrences (as in 9 30 3 9 3 2 4).
Design three cooperating classes to implement the program: AppFrame (responsible for GUI), DataFile (responsible for reading data from the text file), and DataMap (responsible for accumulation of frequencies and for display of results).

Class AppFrame creates a panel with a prompt label ("Enter file name") and a text field for file name and puts it at the top of the frame. It adds a text area (with a scroll pane) to display results (or error messages) in the middle of the frame (the text area is not editable). It also creates yet another panel with two buttons ("Display results" and "Exit") and adds it to the bottom of the frame.

The application should use anonymous inner listeners. If the user presses the Enter key in the text field or clicks the "Display" button, it calls method processFile() of a DataFile object. If the user clicks the "Exit" button, the program is terminated.

Class DataFile has only one method, processFile(), with two parameters – the file name to read from and a text area to be filled with feedback to the user. It uses a Scanner object for reading from the text file and clears the text area. If the file cannot be open, processFiles() appends an error message to the text area and returns so that the user could enter another file name in the text field.

If the file is opened successfully, processFile() reads the values from the file (as String tokens) and parses them into integers. If a value read from the file is not an integer, processFile() displays an error message in the text area, e.g., "Input file is corrupted" and returns so that the user could enter another file name.

If the value read from the file is parsed into an integer successfully, processFile() passes it to method addToMap() of a DataMap object. After the loop that reads the integers terminates, processFile() displays in the text area the number of values read and passes the text area object to method displayResults() of the DataMap object.

Class DataMap creates a map object (select an appropriate map type) and implements two methods mentioned earlier, addToMap() and displayResults(). Method addToMap() checks whether its integer parameter is found in the map object. If yes, it retrieves the accumulated frequency of this number, increments it and saves to the map. Otherwise, this is the first occurrence of the value, and addToMap() puts it into the map as a key with the frequency value of 1.

Method displayResults() has a text area as its parameter. It retrieves the set of frequency counts ("values") saved in the map and passes it to method max() of the library class Collections to find the maximum in the set data. Then displayResutls() retrieves the set of integers read from the file ("map keys"), creates an iterator and goes over this set in a loop.

For each value in the set of keys, displayResults() retrieves from the map a value (frequency) and checks whether this value equals to the maximum frequency count returned from max(). If yes, displayResults() appends to the text area a string that says that such a such number (the key in the set) occurred most and prints its frequency count.

3. Submissions

Write a brief memo to explain:

(a) For all instance data fields in your classes, explain why you defined them as data fields rather than local variables in one of methods. For all local variables in your methods, explain why you defined them as local variables rather than either data fields or anonymous objects.

(b) Comment on all instances of implicit or explicit autoboxing and unboxing.

Turn in the source code and the captured results of execution. Type all your work. This assignment is due in one week, before the start of the final exam. Because of the grade deadline, no late work is accepted.
