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Abstract

We develop a model of a device ecosystem to study how network structure affects

demand, pricing, and output for the underlying products. Prices depend on each

device’s Katz-Bonacich centrality in a network defined by the demand-side exter-

nalities linking devices. We show how the relevant network differs for an ecosystem

monopolist, a social planner, a regulator that sets Ramsey prices, or a “decentral-

ized” ecosystem where devices sell at marginal cost. Finally, we extend our base-

line model by adding complementary goods and allowing for imperfect competition

among downstream device producers.
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1 Introduction

Several of the world’s largest companies offer a group of inter-connected products and ser-

vices that industry observers have called ecosystems. The Apple ecosystem, for example,

consists of a set of devices (iPhone, iPad, Apple Watch, Macintosh computers) along with

the proprietary software and services (iOS, App Store, Apple Music, Apple TV) that run

on those devices. Google, Amazon, and Microsoft all have similar business models.

While the economic literature on multi-sided platforms (e.g., Caillaud and Jullien,

2003; Anderson and Coate, 2005; Rochet and Tirole, 2006; Armstrong, 2006) offers many

insights into ecosystems, it has not considered the importance of a device’s position within

the overall network. Conversely, the literature on social networks (e.g., Ballester et al.,

2006; Galeotti et al., 2010; Candogan et al., 2012; Bloch and Quérou, 2013) examines how

network structure mediates spillovers and externalities, but has not focused on device

ecosystems. This paper connects the two streams of literature by using a simple model

of a device ecosystem to study how network structure influences demand, pricing, and

output for the underlying products.

Our first set of results characterize optimal pricing by an ecosystem monopolist and

show that the relevant measure of a device’s position within an ecosystem is Katz-Bonacich

(KB) centrality. For the monopolist, device prices reflect a well-known trade-off between

internalizing externalities (subsidizing devices that generate larger positive externalities)

and extracting value. These forces are captured by a weighted average of all externalities

to/from all other devices, where the weights correspond to the Katz-Bonacich centrality

of each device. In equilibrium, moreover, the output of each device is proportional to its

KB-centrality.

The second part of our analysis, in Section 3, compares welfare under ecosystem

monopoly to several benchmarks. We show how the matrix used to compute KB-centrality

differs for a monopolist, a social planner, a regulator that sets Ramsey prices, or a “decen-

tralized” ecosystem where devices sell at marginal cost. Finally, in Section 4 we extend

our baseline model of a device ecosystem to account for either complementary goods or

market power in downstream device manufacturing.

This paper contributes to several strands of literature. First, there is a large literature

on pricing by platforms. In addition to the papers cited above, which mainly analyze

pricing by two-sided platforms under monopoly or competition, Weyl (2010) studies a

monopoly platform with many sides and highlights the role of a Spence distortion. More
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recently, Tan and Zhou (2021) analyze platform competition in a many-sided market,

characterize the symmetric equilibrium prices, and perform comparative statics to find

that an increase in the number of platforms can lead to an increase in the prices. Our

main contribution to this literature is to show how, for a many-sided platform, the KB-

centrality of each side/device plays a crucial role. By characterizing equilibrium pricing

in terms of centrality measures, we find that KB-centrality is a natural concept to use

in an ecosystem composed of multiple sides, because it captures both direct and indirect

cross-side network effects.1

Second, this paper is related to the literature on pricing in networks in the presence

of consumption and price externalities. Building on Ballester et al. (2006)’s approach to

network games with strategic complementarities among players, Candogan et al. (2012)

and Bloch and Quérou (2013) show that if network effects are symmetric and marginal

production costs are constant, a monopolist’s optimal prices do not depend on the network

structure even if the monopolist is able to price-discriminate. Bloch and Quérou (2013),

Chen et al. (2018), Zhang and Chen (2020) and Chen et al. (2022) show that this irrele-

vance result does not hold in a competitive setting. In that case, firms price-discriminate

consumers based on their network positions in terms of KB-centrality.2 While this litera-

ture considers network externalities among consumers, our paper focuses on externalities

among products. In that sense, we respond to Caffarra et al. (2023)’s call to bridge

network economics and industrial organization.

Finally, we contribute to a broad literature, with roots in both management (Adner

and Kapoor, 2010) and economics (Rochet and Tirole, 2003; Rysman, 2009), that explores

the relationship between platforms and ecosystems. Many authors use the term ecosys-

tem to describe a set of complementary products whose interactions are orchestrated by

a single firm (UK Competition and Markets Authority, 2020, p.57). For example, Hei-

dhues et al. (2024) analyze a multi-product firm’s ability to leverage market power in

an “access point” by steering customers to its other offerings. Rhodes et al. (2025) de-

velop a model where data-based scope economies provide a competitive advantage to an

ecosystem in competition with single-product firms. Other authors, particularly within

management, adopt a broader industry-level definition of an ecosystem that emphasizes

buyer-supplier relationships and the governance of investments that produce complemen-

1When there are more than two sides, even if direct externalities between side i and side j are zero,
there can be indirect externalities between the two through other sides.

2See also Fainmesser and Galeotti (2016) and Fainmesser and Galeotti (2020).
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tarity (e.g., Gawer and Cusumano, 2014; Jacobides et al., 2018). The ecosystem in this

paper is formally equivalent to a multi-sided platform, but our emphasis on network

structure and KB-centrality justifies, we think, the change in label. And although we do

not analyze competition between ecosystems, we offer a tractable framework that repre-

sents a first step in that direction, as called for by various competition authorities and

commentators (Cremer et al., 2019; Furman et al., 2019; Scott Morton et al., 2019).

2 Ecosystem Monopoly

Consider a multi-product ecosystem with n > 1 devices managed by a monopoly platform.

Let pi denote the price charged for device i. This price can represent either a direct sale

to end-users or an access fee paid by downstream producers in a perfectly competitive

industry. For instance, most Apple devices are sold directly to users, but one could also

interpret the monopolist as a licensing platform, such as a patent pool, that charges

royalties to producers of various devices using the 5G communications protocol.3 We

normalize marginal costs to zero, so the final price of each device is pi.

Connectivity among devices creates externalities in demand. Specifically, demand for

device i is given by

qi = αi − βipi +
∑
j ̸=i

γijqj, (1)

where (αi, βi) parameterize the standalone demand for device i, and γij captures the

strength of the externality exerted by device j’s users on the users of device i. Appendix A

provides a micro-foundation for this demand system.

The literature on two-sided markets emphasizes that externalities, γij, emerge from

opportunities for interaction among different types of agents, such as buyers and sellers

on an exchange, or readers, publishers, and advertisers on a web site. Within a device

ecosystem, externalities can also arise because users of one device generate data that

improves the quality of other devices. For example, data from search engines might help

improve the quality of maps and shopping sites, or vice versa. Externalities also reflect

the idea that devices can access a shared pool of complements. Users of Android Phones

and Pixel Watches, for example, both access apps in Google’s Play Store and content on

YouTube Music. So, if the number of Android users encourages greater quality or variety

3Avanci, for example, manages a 5G “Internet of Things” patent pool (www.avanci.com/iot/).
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in app or music supply, that will also benefit Pixel users.4

Using matrices, the demand system (1) can be written as

q = a−Bp+Gq (2)

where q is an n× 1 vector of quantities qi, p is an n× 1 vector of prices pi, a is an n× 1

vector of intercepts αi, B is an n × n matrix of slopes βi with zero for all off-diagonal

elements, and

G =


0 γ12 ... γ1n

γ21 0 ... γ2n

... ... ... ...

γn1 γn2 ... 0

 .

Hence, if I−G is invertible, the demand system can be written as:

q = (I−G)−1(a−Bp).

If λG represents the largest eigenvalue of G, then a sufficient condition for existence

and non-negativity of (I−G)−1 is that λG < 1.5 The eigenvalue λG reflects the overall

strength of network effects in the ecosystem, and if they are too large then demand will

“explode” given the recursive nature of (2). This suggests that an ecosystem monopolist

will seek to increase λG by designing interoperability into its devices or leveraging data

harvested from various applications. In this paper, however, we take G as fixed and focus

on pricing decisions.

2.1 Monopoly Pricing and Device Centrality

To begin, suppose B = I. The monopolist maximizes ΠM= p′q, and its system of first-

order conditions can be written as

(I−G)−1 (a− p)− (I−G′)−1p = 0. (3)

4It is tempting to interpret γij as also capturing “ordinary” complementarities rooted in consumer
utility. However, both Nocke and Schutz (2017) and Amir et al. (2017) show that for multi-product
demand systems without network effects, complementarity implies symmetry (γij = γji), which we do
not impose.

5See Theorem III∗ of Debreu and Herstein (1953)
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where G′ denotes the transpose of G. Appendix B shows that the solution to (3), if one

exists, is given by:

pM =
1

2
a+

1

4
(G−G′)

[
I− 1

2
(G+G′)

]−1

a. (4)

Each element of the matrix (G−G′) measures the net externalities (“inbound” γij less

“outbound” γji) associated with an ordered pair of devices. That matrix is post-multiplied

by a vector of weights that is familiar from the literature on networks (e.g., Jackson, 2008,

Ch. 2). We take from that literature

Definition 1 The n×1 vector
[
I− 1

2
(G+G′)

]−1
a ≡ cKB measures Katz-Bonacich (KB)

centrality in the directed network (G+G′) with decay parameter 1
2
and device weights a.

Katz-Bonacich centrality is a well-known measure of the influence exerted by each

node in a network. If G = (G+G′), then KB-centrality can be decomposed as cKB =

a+ 1
2
Ga+

∑∞
t=2(

1
2
G)ta. The term 1

2
Ga measures direct centrality: the total externality

of all 1-step links to a device, discounted by the decay parameter 1
2
(which we show below

relates to monopoly pricing) and weighted by a. The term
∑∞

t=2(
1
2
G)ta measures indirect

centrality: the total externalities from all t-step links to a device, discounted by 2−t and

weighted by a. Indirect centrality is a geometric sequence that will converge if λ 1
2
G < 1,

and the same condition guarantees that demand is well-behaved.6 Thus, we have

Proposition 1 If λ 1
2
G < 1, then there exists a unique vector of optimal monopoly prices

pM =
1

2

[
a+

1

2
(G−G′) cKB

]
. (5)

Candogan et al. (2012) derive equation (5) as the solution to a problem of price

discrimination of buyers influenced by their social network G. The individual prices can

be written in scalar form as

pMi =
αi

2
+

1

4

∑
j ̸=i

(
γij − γji

)
cKB
j , (6)

and for intuition it is useful to separate these prices into three parts:

6See theorem 10.28 of Zhang (2011).
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1. Baseline price: In the absence of demand externalities, the standard monopoly price

is given by pi = αi/2.

2. Value capture: The term γijc
KB
j reflects the inbound externality that (users of)

device i receive from device j. Increasing this externality increases the value of

device i, which leads the platform to raise pi to capture that value.

3. Externality internalization (or value creation): The term γjic
KB
j captures the out-

bound externality that (users of) device i exert on device j. An increase in this

outbound externality raises demand for device j and that leads the monopolist to

lower pi to internalize this positive externality.

Throughout the paper, we will say that device i is subsidized (respectively, exploited)

if pi is lower (respectively, higher) than its baseline price. When G is symmetric, equa-

tions (5) and (6) show that incentives for value extraction and externality internalization

are in perfect balance, leading to a corollary that is known in the context of social networks

and two-sided platforms (e.g, Candogan et al., 2012; Belleflamme and Peitz, 2018).

Corollary 1 For symmetric demand externalities, G = G′, when B = I a monopolist

charges the baseline prices pM = 1
2
a.

Finally, to solve for output, we can substitute the monopoly prices from (5) into the

demand system (2), which yields

(I−G)q = a− pM =
1

2
a− 1

4
(G−G′) cKB.

Adding 1
2
GcKB to both sides of the equation and using the definition of cKB, this equality

simplifies to

(I−G)q+
1

2
GcKB =

1

2
a+

1

4
(G+G′) cKB =

1

2
cKB

⇒ q =
1

2
cKB,

and we restate this result as

Corollary 2 For linear demand with B = I, the quantity of each device supplied by an

ecosystem monopolist is proportional to its KB-centrality.
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Corollary 2 says that a monopolist prices its ecosystem such that output is proportional

to the centrality of each device in the network defined by G. This helps to explain

the intuition that ecosystems often comprise a core product, such as a mobile operating

system, with many other devices and services built around that core.7 It may also explain

why large platforms heavily subsidize products like Smart Home devices (e.g., Amazon

Echo/Alexa or Google Nest/Assistant) that could form the core of a new ecosystem.8

2.1.1 Armstrong’s Formulation

Our results can be linked to the two-sided model of Armstrong (2006), which uses a change

of variable to express output in terms of utility for each device

ui =
∑
j ̸=i

γijqj − pi, (7)

so that quantities are given by qi = αi + ui. The platform’s profit is Π =
∑

piqi, and its

first-order condition with respect to ui (holding qj for all j ̸= i constant) is therefore∑
j ̸=i

γijqj − ui − qi +
∑
j ̸=i

γjiqj = 0. (8)

Rearranging the first-order condition gives the generalized Armstrong pricing rule

pi +
∑

j ̸=i γjiqj

pi
=

1

εi

where εi = − ∂qi
∂pi

/ qi
pi

= pi/qi. The appearance of demand externalities where we would

normally observe marginal costs in the Lerner markup rule highlights the marginal effect

of reducing pi on sales of other devices.

Substituting (7) into (8) yields a modified Armstrong pricing formula

pi =
αi

2
+

1

2

∑
j ̸=i

(
γij − γji

)
qj. (9)

7See, for example, the European Commission discussion of ecosystems in its notice on market definition
(European Commission, 2024, para. 140).

8The Wall Street Journal reports that Amazon’s “strategy to set prices low for Echo speakers and other
smart devices, expecting them to generate income elsewhere in the tech giant, hasn’t paid off.” (Alexa
Is in Millions of Households—and Amazon Is Losing Billions, Dana Mattioli, WSJ, July 22, 2024).
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Our characterization of monopoly prices in (6) takes the same shape, but expresses qj in

terms of centrality. Setting equations (6) and (9) equal reveals, again, that qi = cKB
i /2.

2.1.2 Demand Heterogeneity

Thus far we have assumed linear demand and equal slopes (B = I). Both assumptions

can be relaxed as long as we retain the assumption that network externalities can only

shift (and not rotate) the demand curve for each device. In particular, suppose demand

is qi(pi) with
∂qi
∂pj

= 0 for all i ̸= j. Demand for device i can then be approximated using

the first-order terms of a Taylor expansion: βi = q′i(pi) and αi = qi(pi) − q′i(pi)pi. The

monopolist’s system of first-order conditions in a neighborhood of any profit maximizing

price vector can therefore be written as

(I−G)−1[a−Bp]−B′(I−G′)−1p = 0

and Appendix B shows that the solution to this system is

pM =
1

2
B−1a+

1

4

(
B−1GB−G

′
)
cKB(B) (10)

for cKB(B) ≡
[
I− 1

2

(
B−1GB+G

′
)]−1

B−1a.

Equation (10) resembles (5), but with two changes. First, the intercepts a (and hence,

the baseline prices) are scaled by B−1, reflecting the standard incentive to charge higher

markups when demand is less elastic. Second, the value capture matrix G is replaced

by B−1GB (with representative element γijβj/βi). Intuitively, GB are the marginal

inbound externalities from a change in pj (with j ̸= i), and 1
2
B−1 is the pass-through rate

from inbound externalities (which are equivalent to a demand shift) to pM .

One implication of (10) is that Corollary 1 no longer holds. An ecosystem monopolist

may deviate from baseline prices even if G is symmetric because externalities interact

with demand elasticity. This can also be illustrated by using Armstrong’s approach to

calculate an element-wise version of (10)

pi =
αi

2βi

+

∑
j ̸=i

(
γij

βi
βj − γji

)
qj
βj

2
=

αi

2βi

+

∑
j ̸=i

(
γij

βi
− γji

βj

)
qj

2
.
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The second part of this equality shows that the inbound externality from device j to

device i is discounted by βi whereas the outbound externality from device i to device

j is discounted by βj. So, even if all of the γij are identical, devices with relatively

large (small) βi will be subsidized (exploited). Moreover, comparing the first part of the

equality with (10) reveals that

c
KB(B)
j

2
=

qj
βj

.

2.2 Examples

One contribution of this paper is to document the link between network centrality and

ecosystem pricing. To illustrate, this sub-section provides two examples. For each exam-

ple, the externality between any pair of devices takes one of three values, γij ∈ {µ, η, 0}.
We set αi = 1 and βi = 1 for all i, and define two parameters c ≡ µ + η and d ≡ µ − η.

Figure 1 provides a graphical depiction of each example.

Figure 1: Star and Hierarchy Ecosystems

2.2.1 Star

A star network is defined by γ1j = η for all j > 1; γj1 = µ for all j > 1; and γij = 0 for

all i, j > 1. For this demand system, all externalities either originate from or terminate

at the “star” device (i = 1). One might think of the star as a smartphone that exhibits

bilateral demand externalities with a series of peripheral devices, such as watches, cars,

thermostats, etc. that do not interact with one another.
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Using (5) and the fact that all peripheral devices (j > 1) are symmetric, we can write

the monopoly prices as

pM1 =
1

2
− 1

4
d(n− 1)cKB

j

pMj =
1

2
+

1

4
dcKB

1 .

Because the KB-centrality of each device, cKB, is strictly positive, the star device will

be subsidized if and only if d > 0 (i.e., when its net externalities to each peripheral are

positive). Moreover, when the star device is subsidized, the peripherals are exploited, and

vice versa. When d > 0, the amount of subsidy to the star device is proportionate to

(n− 1) times the centrality of a peripheral device whereas the amount of exploitation of

a peripheral device is proportionate to the centrality of the star.

2.2.2 Hierarchy

Next, consider a “hierarchical” ecosystem, where γij = η for all i < j, and γij = µ for

all i > j. When µ > η, device 1 generates the most and receives the fewest externalities,

device 2 generates the second-most and receives the second-least amount of externali-

ties, and so on. This example might correspond to a set of integrated software tools or

applications: all devices interact with each other, but some produce more externalities.

For this demand system, every non-diagonal element in the matrix [I − G] equals

− c
2
, and because its inverse exhibits the same symmetry, all devices have the same KB-

centrality. Together with (5), this implies that monopoly prices for each device are

pMi =
1

2
− d

4
(n+ 1− 2i) cKB.

When d > 0, a monopolist will subsidize devices that are “higher” in the hierarchy

(i < n+1
2
) and exploit the devices that are “lower” in the hierarchy. For devices near

the middle of the hierarchy, which generate and receive similar amounts of externalities,

prices will be close to the monopoly baseline. It is also worth emphasizing that in this

example, all of the price distortions reflect the trade-off between value extraction and

externality internalization, as captured by [G−G′], given that every device has the same

KB-centrality.
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3 Welfare Benchmarks

We now compare output under ecosystem monopoly with three natural benchmarks: first-

best, marginal cost pricing, and Ramsey pricing. Because each case will depend on a

different type of centrality, it is useful to define the matrix

Ĝ(δ, κ) = δ [G+ κG′] . (11)

We have already seen, for example, that δ = 1
2
and κ = 1 in the case of an ecosystem

monopolist. The scalar δ is the KB-centrality decay parameter, which reflects the pass

through rate from increased externalities to prices and output. With linear demand and

monopoly pricing, this pass through rate is 1
2βi

. The scalar κ measures the weight placed

on outbound externalities, or value creation, relative to inbound externalities.

3.1 Social Planner

For the utility functions in Appendix A that rationalize our system of linear demand

functions, we show in Appendix C that social welfare is equal to

W =
∑
i

(αiqi −
q2i
2
) +

∑
i

∑
j ̸=i

γijqiqj. (12)

Differentiating with respect to qi implies that at the social optimum

αi − qi +
∑
j ̸=i

(γij + γji)qj = 0. (13)

Substituting (1) for qi in this expression, and putting the result in matrix form, we have

the following relationship between welfare-maximizing prices and quantities

pW = −G′qW (14)

Finally, substituting equilibrium demand from (2) into this expression shows that

Proposition 2 If λĜ(1,1) < 1, welfare-maximizing prices are given by

pW = −G′[I− (G+G′)]−1a (15)

At first-best prices, the output of each device is qW = [I− (G+G′)]−1a, which is the
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KB-centrality vector in the network (G+G′) = Ĝ(1, 1). Compared to the monopolist,

a social planner allows more externality pass-through (δ = 1 > 1
2
) and places the same

relative weights on value creation and externality internalization (κ = 1). In Appendix C

we show that the different centrality measures reflect the fact that a social planner cares

about the social marginal surplus from expanding output, whereas a monopoly platform

cares about its marginal profit.

For intuition, it is helpful to compare the welfare-maximizing prices in (15) to the

monopoly prices in (5). The social planner’s “baseline prices” should equal marginal cost,

which we have normalized to zero. When externalities are present, the monopolist faces

a tradeoff between value capture and externality internalization, as reflected in the term

(G−G′) cKB. The social planner, on the other hand, cares only about externality inter-

nalization; extracting surplus is a pure transfer. Thus, only the externality internalization

matrix −G′ is multiplied by the centrality vector (qW ) in equation (14), which implies

that a social planner subsidizes all devices.

Our characterization of the monopoly and first-best prices can also be compared to

the four-part decomposition of monopoly price distortions in Tan and Wright (2021).

Specifically, combining equations (6) and (14) shows that

pM − pW =
1

2
a+

1

2
(G+G′)qM +G′(qW − qM). (16)

In their terminology, the first two terms are a markup distortion, and the third is a scale

distortion. There is no Spence or displacement distortion in our model, because there is

no consumer-level heterogeneity in G.

3.2 Marginal Cost Pricing

We have seen that a social planner sets all prices below marginal cost, whereas a monopo-

list may price some devices below marginal cost in order to capture value from others. This

raises the question of whether ecosystem monopoly could be preferable to decentralized

governance with all devices priced at marginal cost.

When all devices are priced at marginal cost, total output is qMC = [I−G]−1a,

which is equivalent to centrality in the network Ĝ(1, 0). Relative to a social planner, the

decentralized ecosystem has the same externality pass-through rate δ = 1, but places no

weight on outbound externalities (κ = 0 < 1). Compared to a monopolist, marginal cost

pricing allows for greater pass-through of externalities (δ = 1 > 1
2
) but places less weight
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on internalization (κ = 0 < 1).

To show that welfare under monopoly can exceed welfare under marginal cost pricing,

we use an example based on the star network. For this example, recall that η (µ) represents

the inbound (outbound) externality to (from) the star device from (to) a peripheral and

that d = µ− η. As a first step, we can show that9

Lemma 1 If αi = 1 for all i, and βj = 1 for all peripherals (i.e., j > 1), then a star

device (peripheral device) is subsidized (exploited) if and only if µ > η
β1
.

When d = 0 and β1 = 1, the ecosystem monopolist will choose the same positive

baseline price for every device, so welfare under monopoly must be lower than under zero

pricing. If we increase β1, however, Lemma 1 says that a monopolist will subsidize the

star device. (A larger β1 leads to a lower price on the star, and that in turn reduces the

marginal benefit of inbound relative to outbound externalities.) To see whether there is a

threshold level of β1, beyond which an ecosystem monopolist generates more welfare than

zero pricing, we fix d and use equation (12) to compute welfare at different values of β1.

These calculations are summarized in Figure 2.

(a) d=0 (b) d=0.3

Figure 2: Monopoly vs. Zero pricing

Welfare = Solid line, Consumer Surplus = Dashed Line

These calculations show that even when d = 0, so externalities are symmetric, monopoly

pricing can dominate zero-pricing if β1 is sufficiently large. When d increases from zero to

9The proof of this result appears in Appendix E.
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0.3, outbound externalities become relatively larger and the threshold value of β1 declines.

We summarize these findings as

Proposition 3 An ecosystem monopolist that internalizes downstream externalities may

produce more welfare and consumer surplus than marginal cost pricing of each device.

Proposition 3 suggests that when evaluating antitrust remedies for an ecosystem mo-

nopolist, it is important to consider incentives for internalizing externalities. This idea

is familiar from the two-sided platform literature, and has already been adopted in that

context by U.S. Courts.10 Proposition 3 also has interesting implications if one interprets

the ecosystem monopolist as a licensing platform. The standard argument for granting

temporary monopoly power to a patent holder is based on the trade-off between ex ante

innovation incentives and ex post market power. An implicit assumption behind this

argument is that each patent is associated with a single product. Proposition 3 suggests

that things could change dramatically when a patent (or a bundle of complementary

patents) is associated with a multi-product ecosystem. In that case, it is possible that the

usual dynamic trade-off no longer exists, because ecosystem monopoly generates higher

welfare (and consumer surplus) than the zero-price equilibrium that occurs without any

intellectual property.

3.3 Ramsey Pricing

Ramsey pricing provides an alternative second-best benchmark based on maximizing so-

cial welfare subject to a profitability constraint. The first-order condition to this con-

strained optimization problem combines the social planner’s optimality condition (13)

and the monopoly first-order condition (3). Specifically, the Ramsey first-order condi-

tions are

a− q+ (G+G′)q− ρ[a− 2q+ (G+G′)q] = 0 (17)

where ρ < 0 is the Lagrange multiplier.

In Appendix D we solve for Ramsey prices and output, and show that the latter is

given by

qR =

(
1− ρ

1− 2ρ

)[
I−

(
1− ρ

1− 2ρ

)
[G+G′]

]−1

a (18)

10In Ohio vs. American Express (138 S Ct 2274), the U.S. Supreme Court held that, “Evidence
of a price increase on one side of a two-sided transaction platform cannot, by itself, demonstrate an
anticompetitive exercise of market power.”
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Thus, centrality for Ramsey pricing is defined by the network Ĝ(δ, 1), where 1
2
< δ =

(1−ρ)
1−2ρ

< 1. Ramsey prices internalize externalities while reducing the monopoly prices to

increase externality pass-through.

Table 1 summarizes how the centrality network, Ĝ(δ, κ), differs across the four sce-

narios we have analyzed: first-best, Ramsey, monopoly and marginal cost.

Externality Externality
Pass-Through (δ) Internalization (κ)

First Best 1 1

Ramsey (1
2
,1) 1

Monopoly 1
2

1

Marginal Cost 1 0

Table 1: Centrality Network Ĝ(δ, κ)

4 Extensions

This section generalizes our model in two dimensions: adding complementary goods and

allowing for imperfect competition among downstream device producers.

4.1 Complementary Devices

In practice, products not supplied by an ecosystem monopolist can still generate external-

ities that influence demand for monopolized devices. Google’s Android operating system,

for example, runs on a wide variety of smartphones. Smart Home devices, such as the

Amazon Echo or Google Nest, connect to wireless routers produced by various manufac-

turers. To capture this idea, we now add third-party complements to the ecosystem and

evaluate their impact on the “core” products sold by an ecosystem monopolist. We as-

sume the third-party products are sold in competitive markets, and therefore their prices

are zero.11

11In our model, it does not matter whether the monopolist supplies a particular complement. If the
monopolist enters and subsidizes a device, then competitors will exit and that device becomes one of the
k core ecosystem components. If the device is not subsidized, the monopolist earns zero profit because
of Bertrand competition. In practice, platform entry into complementary markets is a strategic decision
that has received considerable scholarly attention (e.g., Farrell and Katz, 2000; Gawer and Henderson,
2007).
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Suppose the ecosystem sponsor monopolizes the first k < n devices, and Bertrand

competition drives prices to zero for the remaining m = n− k devices. We can partition

the demand system into

q =

[
q̃

q

]
, p =

[
p̃

0

]
, a =

[
ã

a

]
,

where q̃ is the k-element vector corresponding to monopolized devices, and q is the m-

element vector for competitively supplied devices (and likewise for p and a). It is also

useful to decompose the externality matrix

G =

[
G1 G2

G3 G4

]

so that G1 is a k × k matrix of externalities among monopolized devices, G2 is a k ×m

matrix of externalities from competitive to monopolized devices, and so on. We can then

apply formulas for the inverse of partitioned matrices to show that

(I−G)−1 =

[
M1 M2

M3 M4

]

where M1 = [I−G1 −G2(I−G4)
−1G3]

−1 and M2 = M1G2(I−G4)
−1.12

Equilibrium demand is given by equation (2), and the monopolist maximizes Π = p̃′q̃.

The solution to its system of k first-order conditions can be written as

p̃M = [M1 +M′
1]

−1M1(a+G2(I−G4)
−1a) (19)

To simplify, we define two new terms. First, G̃ = G1 +C, where C = G2(I−G4)
−1G3

represents externalities among the k core devices that are mediated by complementary

products. Second, â = (a+G2(I−G4)
−1a) are a set of adjusted demand intercepts for

core products that reflect the impact of complements.

Substituting M1 for (I−G)−1 in (3), and using the definitions of G̃ and â, Proposi-

tion 1 implies that

p̃M =
1

2
â+

1

4
(G̃′ − G̃)

[
I− G̃′ + G̃

2

]−1

â (20)

12For details, see Minka (2000, p.12).
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and Corollary 2 says that core devices’ equilibrium output will be half their KB-centrality.

Thus, we have

Proposition 4 In an ecosystem with competitively supplied complements, the optimal

monopoly prices for core devices are given by (20), and the relevant measure of centrality

is c̃KB ≡
[
I− G̃′+G̃

2

]−1

â.

With complementary devices, the prices charged by an ecosystem monopolist take

the same general form as (5). However, centrality is defined on an adjusted network G̃

that combines direct externalities among the core devices (G1) with externalities that

are mediated by complements (C). Moreover, the weights in the new KB-Centrality

measure combine standalone demand for monopolized devices (a) with the externality

from complements (G2(I−G4)
−1a).

4.2 Downstream Market Power

Returning to the monopoly case, suppose that for each device there are li ≥ 1 symmetric

downstream producers that compete à la Cournot. Each downstream firm sells a single

device.13 To distinguish the upstream input prices from the downstream device prices,

let ri be the price (royalty) charged by the platform to device i. We continue to use pi to

denote downstream prices.

Given ri and the output of all other devices, q−i, each producer of device i selects its

output. For instance, firm i1 chooses a quantity qi1 to maximize (pi − ri)qi1, where

pi =

αi +
∑
j ̸=i

γijqj − (qi1 +
∑
k ̸=1

qik)

βi

.

From the first-order condition, and using symmetry, we find that each firm’s equilibrium

output qi1 = ... = qili = q̃i is given by

αi +
∑
j ̸=i

γijqj − liq̃i − βiri − q̃i = 0.

13If downstream firms produce multiple devices, they can also engage in platform pricing to internalize
externalities among devices. This is an interesting topic for future research.
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This implies that

qi = liq̃i = Li

[
αi − βiri +

∑
j ̸=i

γijqj

]
(21)

where Li ≡ li
li+1

. Note that as li goes to infinity for all i, the demand system (21) converges

to (1), the input demand under perfect downstream competition. We can therefore state

Proposition 5 If each device i is produced by li ≥ 1 symmetric downstream firms that

compete à la Cournot, then the unique vector of optimal prices for an ecosystem monopolist

are given by (10) after replacing
(
αi, βi, γij

)
with

(
Liαi, Liβi, Liγij

)
.

5 Conclusions

We develop a tractable model of a device ecosystem and use it to study a number of

questions. Our first set of results generalizes Armstrong’s two-sided platform to show

how a monopolist prices its ecosystem of inter-related products. We show that prices

and output are a function of Katz-Bonacich centrality, and use examples to show how

ecosystem pricing responds to the structure of demand externalities. Next, we show how

the relevant network (and hence, centrality measure) changes if prices are set by a social

planner, at marginal cost, or by a regulator that sets Ramsey prices. When externalities

are present, a monopolist that internalizes those network effects may outperform marginal

cost (zero) prices: a result that has interesting implications for patent licensing of platform

technologies.

Our theoretical framework might be extended in several directions. A key simplifying

assumption throughout the analysis is linearity of both demand and network externalities.

We show how the former assumption can be relaxed, but have not considered a more

general (nonlinear) specification of the network effects. One promising extension is to

analyze ecosystem competition. In particular, future research might characterize the link

between pricing and network centrality measures when two or more ecosystems compete

in the market for one or more devices.
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Appendices

A Micro-foundations for demand

Consider a unit-mass of heterogeneous consumers indexed by θ ∈ [0, 1]. Denote pi the

price of device i and Ni the mass of consumers buying device i. We assume that the

utility of consumer θ ∈ [0, 1] is given by

uθ =
∑
i

uθ
i

where

uθ
i = aθi − pi +

∑
j ̸=i

γijNj

is the utility obtained by the consumer from using device i. The parameter γij ≥ 0

captures the network externality exerted by the users of device j on the users of device i.

For the sake of simplicity, we assume that aθ1, a
θ
2, ..., a

θ
n are not correlated for any

θ ∈ [0, 1] and that aθi is uniformly distributed over an interval [ai, ai] where ai < ai. The

assumption that aθ1, a
θ
2, ..., a

θ
n are not correlated for any θ ∈ [0, 1] implies that there are no

complementarities between the devices at the individual level. In other words, network

externalities are the only source of complementarities.

For given expectations Nj, j ̸= i, the demand for device i is

qi = Pr[uθ
i ≥ 0]

= Pr[aθi ≥ pi −
∑
j ̸=i

γijNj]

=
ai − pi +

∑
j ̸=i γijNj

ai − ai

over the range of prices for which this expression is between 0 and 1.

It is sufficient to define αi ≡ a
ai−ai

and βi ≡ 1
ai−ai

, so that we obtain

qi = αi − βipi +
∑
j ̸=i

γijNj

which in a fulfilled expectation equilibrium, where qj = Nj, is identical to the the demand

system in equation (1).
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Importantly, the above microfoundation can be extended to the case in which each

consumer may only be interested in a subset of devices. This follows easily from our

assumption that aθ1, a
θ
2, ..., a

θ
n are not correlated for any θ ∈ [0, 1].

B Optimal Monopoly Pricing

Let V = I−G. The monopolist’s profit is given by

Π= p′V−1 (a−Bp)

and the first-order condition associated with the maximization of Π with respect to p is

V−1 (a−Bp)−B′ (V−1
)′
p= 0.

which (after some matrix manipulation) leads to

p∗ =
[
V−1B+B

′
(V−1)′

]−1

V−1a

=
[
B+VB′(V−1)′

]−1
a

Pre-multiplying each side of this expression by B and rearranging yields

Bp∗ =
[(
B+VB′(V−1)′

)
B−1

]−1
a

=
[
I+VB′ (BV′)

−1
]−1

a

=
[
2I+ (VB′ −BV′) (BV′)

−1
]−1

a

Applying the formula (X+Y)−1 = X−1−X−1
(
X−1+Y−1

)−1
X−1, this becomes

Bp∗ =

[
1

2
I− 1

2

(
I+ 2BV′ [VB′ −BV′]

−1
)−1

]
a

=
1

2
a− 1

2

(
[VB′ −BV′ + 2BV′] [VB′ −BV′]

−1
)−1

a

=
1

2
a− 1

4
[VB′ −BV′]

(
VB′ +VB′

2

)−1

a
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Finally, by substituting V = I−G, we can solve for the vector of prices

Bp∗ =
1

2
a+

1

4
(GB−B′G′)

(
B− GB′ +BG′

2

)−1

a

p∗ =
1

2
B−1a+

1

2

(
B−1GB−G

′
)[

I− B−1GB+G′

2

]−1

B−1a (B.1)

When B = I, equation (B.1) simplifies to the monopoly pricing formula in Propo-

sition 1. For a monopoly with demands having different elasticity (i.e., B ̸= I), equa-

tion (B.1) is equivalent to (10), given the definition of cKB(B).

C Social welfare

Let qi denote the demand for device i and denote p̃i = pi −
∑
j ̸=i

γijqj =
∑m

k=1 p
k
i −

∑
j ̸=i

γijqj

the “externality-adjusted” price of device i. Recall that qi = αi − p̃i.

Aggregate consumer surplus is given by

CS =
∑
i

∫ αi

p̃i

(αθ
i − p̃i)dα

θ
i

=
∑
i

(∫ αi

p̃i

αθ
idα

θ
i − qip̃i

)
.

Since ∫ αi

p̃i

αθ
idα

θ
i =

1

2
(α2

i − p̃2i ) =
1

2
(αi − p̃i)(αi + p̃i) =

qi
2
(2αi − qi)

we get

CS =
∑
i

(αiqi −
q2i
2

− qip̃i) =
∑
i

(αiqi −
q2i
2
− qipi) +

∑
i

∑
j ̸=i

γijqiqj.

Therefore, social welfare is given by

W =
∑
i

(αiNi −
q2i
2
) +

∑
i

∑
j ̸=i

γijqiqj

which is equivalent to equation (12) in the paper.

The welfare maximizing prices, as shown in the paper, are

pW =−G′[I− (G+G)′]−1a
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The matrix to compute the centrality measure used by the social planner is different

from the one used by a monopoly platform. While the social planner cares about the

social marginal surplus, a monopoly platform cares about its marginal profit. The social

marginal surplus can be expressed by rewriting (13) in a matrix form as

G− [I− (G+G′)]Q︸ ︷︷ ︸
social marginal surplus

= 0,

while the marginal profit is obtained from the first-order condition of the monopolist’s

profit, ΠM=[G− (I−G)Q]′Q, with respect to Q:

G− 2

[
I− (G+G′)

2

]
Q︸ ︷︷ ︸

marginal profit

= 0

Comparing the social marginal surplus and the marginal profit shows why the matrix

to compute the centrality measure used by the social planner is different from the one of

the monopolist.

D Prices and Output Under Ramsey Pricing

The Ramsey pricing first-order condition is

a− q+ (G+G′)q− ρ[a− 2q+ (G+G′)q] = 0 (D.1)

where ρ < 0 is the Lagrange multiplier. Rearranging terms yields

[(1− 2ρ)I− (1− ρ)[G+G′]]q = (1− ρ)a

Pre-multiplying yields the following expression for output at Ramsey prices:

q ≡ qR =

(
1− ρ

1− 2ρ

)[
I−

(
1− ρ

1− 2ρ

)
[G+G′]

]−1

a
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which is equation (17) in the paper. And finally, substituting into (2), we have

pR = a− (I−G)qR

= a− (I−G)[(1− 2ρ)I− (1− ρ)(G+G′)]−1a(1− ρ)

E Proof of Lemma 1

Recall that η (µ) represents the inbound (outbound) externality to the star device. Let

αi = βi = 1 for all peripheral devices (i > 1), while maintaining the general notation

(α1, β1) for the star device. Denote λ = µ − η
β1

and σ = µ + η
β1
. Let k be a generic

indicator for a peripheral device. Calculations show that the monopoly prices are given

by

p1 =
1

2

α1

β1

− 1

4
nλck (E.1)

pk =
1

2
+

1

4
β1λc1. (E.2)

where c1 (ck) is the centrality of the star (peripheral) device, which is strictly positive. It

follows immediately that the star is subsidized if and only if λ > 0 ⇔ µ > η
β1
.
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