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The Challenge 

Ø Firm A receives support from Source X 
l  Does the support boost Firm A’s performance 

above and beyond what its performance would 
have been in the absence of the support?  
(“treatment”) 

l  Or… is Source X simply good at picking winners? 
(“selection”) 

Ø Examples: 
l  Alliances 
l  Venture Capital 
l  Government Programs 



Most Common Approach 

Ø Compile a Matched Sample, but…  
l  Were firms in the counterfactual group even 

interested in being ‘treated’? 
l  How good are your observables?  
l  And a curmudgeonly reviewer might still insist that 

there are unobservable differences between the 
groups.  (But darn. You can’t observe them.) 

 



Is RDD an Option? 



Michigan Innovation Program 
 

•  Competitive R&D Loan Program, 2002-2008 
•  Fund allotment = pre-determined 
•  Sector and Location Requirements 
•  Multi-stage selection process 
•  Merit-based scores by external reviewers  

•  Typical applicant:  4-year old life science company 
 

•  Typical “treatment”: 
•  Financing:  $1 million loan that lasts 2-3 years  
•  Added services 



Our Study 
 

•  Benefits from… 
•  Access to the entire applicant pool (n=301), including external 

reviewer scores 
•  A useful institutional process 

•  Uses regression discontinuity approach to test “treatment” 
effect of public R&D financing on recipient startups 
•  Commercial viability (survival)  
•  Follow-on financing (VCs & SBIR) 
•  Broader business activity (proxy: news articles) 
•  Production of patents 
 

•  Finds a sizeable “treatment” effect – not simply explained by the 
picking of winners. 
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Intuition 

Distribution of scores centered on funding cutoff, round-2 firms only 
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Identifying Assumptions  

1.  Applicants are unable to manipulate the cutoff score 
2.  The cutoff score doesn’t move endogenously with quality 

3.  A breakpoint between the score and the probability of 
funding exists 

4.  Applicants characteristics (observed and unobserved) are 
comparable within the cutoff region 



RDD Pros/Cons 
Ø  Pros: 

l  “As good as random” if identifying restrictions are met (i.e, high 
internal validity) 

l  Is in a Renaissance Period in economics (Cook, 2008) 
l  Excellent “how to” guides now exist (see references at end) 

 
Ø  Cons: 

l  Must observe information about parties that didn’t win 
l  Must dig deeply into institutional context (is the cut-off 

predetermined? Where might strategic maneuvering kick 
in?) 

l  External validity can be difficult to establish 



Learn More! 



Thanks!  
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New Venture Survival (t+3) & Funding Cutoff 
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Plot = bins of 5-unit intervals 
Line = local linear means within 20-bandwidth sample   



Relationship between Normalized Score and Probability of Funded  
(2nd round sample)   
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Note: probability is calculated using Lowess smoother with 
bandwidth of 0.8  

Cutoff Score 


