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An Approach to Time-Frequency Analysis With
Ridges of the Continuous Chirplet Transform

Mikio Aoi, Kyle Lepage, Yoonsoeb Lim, Uri T. Eden, and Timothy J. Gardner

Abstract—We propose a time-frequency representation based
on the ridges of the continuous chirplet transform to identify both
fast transients and components with well-defined instantaneous
frequency in noisy data. At each chirplet modulation rate, every
ridge corresponds to a territory in the time-frequency plane
such that the territories form a partition of the time-frequency
plane. For many signals containing sparse signal components,
ridge length and ridge stability are maximized when the analysis
kernel is adapted to the signal content. These properties provide
opportunities for enhancing signal in noise and for elementary
stream segregation by combining information across multiple
analysis chirp rates.

Index Terms—Chirp, time-frequency, synchrosqueezing, ridges.

I. INTRODUCTION

T HE continuous chirplet transform (CT) [1] is a time-fre-
quency representation (TFR) that generalizes the Gabor

transform to represent signals with linear frequency modulation
[2], [3]. Since the quality of a TFR, reflected by such properties
as energy concentration and the variance of derived parameter
estimates, is dependent on how well-adapted the TFR is to the
signal, the CT offers more flexibility for parsimonious represen-
tation than traditional TFR’s with an unmodulated basis.
However, because many signals are formed by multiple com-

ponents, or display nonlinear frequency modulation, methods
that adapt a single CT to the whole signal may fail to represent
each component optimally. An improvement can be achieved by
taking many transforms, and adapting the representation across
these representations to each component separately by lever-
aging properties of the signal class of interest. One such prop-
erty is phase continuity.
Many physical signals display continuous phase advance-

ment that persists for several cycles (oscillations) or is coordi-
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nated across frequencies (fast transients). Such phase continuity
is reflected in the phase of a complex TFR that is continuous in
time and frequency. In spite of the ubiquity of phase-continuity
in natural signals, the most common discrete-time analyses of
frame-based TFRs treat each point in the time-frequency plane
independently of every other point, ignoring a priori infor-
mation regarding continuity of phase in time and frequency.
In fact, many sparsity-enforcing algorithms impose penalties
for the inclusion of correlated coefficients in a representation
[4]–[7].
The purpose of this paper is to propose a strategy for lever-

aging phase continuity of signal components to develop an
adaptive TFR in which each component in a signal is repre-
sented parsimoniously, relative to the chirplet basis family.
The work builds on a contour representation of sound derived
from the ridges of the Gabor transform [8], [9]. In the present
study, we generalize the contour representation of sound to a
derivation based on the ridges of the CT, and consider new
signal representation issues that arise in this context.
Using the CT-based approach, bias in instantaneous fre-

quency (IF) estimation of an amplitude-modulated component,
with approximately linear frequency modulation, is reduced or
eliminated when the analysis chirp rate matches the modulation
rate of the signal. For components with nonlinear modulation,
the bias reduction comes at the price of requiring the evaluation
of the transform at various modulation rates. Thus, ridges
that represent the same component, but were extracted using
multiple transforms, form complimentary estimates that need
to be combined to contribute all available information to a
given estimate. This approach of combining estimates across
transforms also reduces the need to search for a single analysis
parameter (such as a “best” window width [8], [10]).
The organization of this paper is as follows: In Section II we

will review the basic notation and concepts used in the rest of
the paper, including development of the theory of chirplet ridges
for both intrinsic-mode-type (IMT) [11] and click-like signals.
In Section III we conduct an analytic case study of the ridges ex-
tracted from a deterministic, noise-free chirp and compare the
properties of the proposed method with the previous method of
[8], [9]. In Section IV we demonstrate properties of ridges that
can be used to identify oscillatory signal components. We show,
consistent with the notion of physical signals displaying smooth
phase progression over extended regions of the time-frequency
plane, that the length of a ridge is a useful metric for signal
detection. We further show that the stability of ridge estimates
with respect to analysis parameters can be used to adaptively
enhance the representation of signal components on a per-com-
ponent basis. We illustrate these principles using both simulated
data and sample data from zebra finch vocalizations. Finally,
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in Section V we discuss some properties of the chirplet ridge
equations, provide several interpretations and perspectives on
them, and highlight the relationship with other ridge extraction
methods.

II. NOTATION AND BACKGROUND

The contour representation of sound developed in [8], [9]
is a generalization of methods known more broadly as ridge
and skeleton methods. Ridge and skeleton methods [12]–[14]
are invertible TFRs which define ridges as curves in the time-
frequency plane that represent the IF of a signal component.
The restriction of signal resynthesis to these ridges is called the
“skeleton”. Ridge and skeleton methods have been used for es-
timation of component IF, phase, and amplitude in fields such as
mechanical and civil engineering [15]–[17], analysis of chaotic
attractors [18], and neuroscience [19], [20]. These methods are
similar in spirit and application to high-resolution TFRs like
time-frequency reassignment [21], [22], synchrosqueezing [23]
and the Hilbert-Huang transform [24] in that they seek to iden-
tify, characterize, and decompose non-stationary, multicompo-
nent signals by the IF of localized components.
Ridges, in the context of [8], [9], are used to explicitly link

together associated points in the time-frequency plane resulting
in an “object-based” TFR. In this method, objects are defined by
the phase (alternatively, modulus [25]) of the Gabor transform.
From this perspective, the fundamental objects of representation
are not taken to be finer grain “atoms,” of the discrete trans-
form, but rather, the fundamental objects are the ridges them-
selves (although in practice, the continuous transforms are esti-
mated at discretely sampled times and frequencies). While the
method implies no constraints on the signal beyond integra-
bility, parsimonious component representations are possible for
signals containing sparse, separable components, such as brief
transients, or IMT [11] components with well-defined IF. While
“separability” of components traditionally refers to some notion
of discriminabilty in the frequency dimension, in the present
context we generalize separability to refer to discriminability
in some direction in the time-frequency plane.
In this section, we will define the ridges described in [8], [9]

and develop the associated ridge theory for the CT.

A. Directed Gabor Ridges

The contour representation of sound described in [8], [9] are
based upon the ridges defined by directional derivatives of the
Gabor transform phase. In this section we provide a formal def-
inition of these ridges and define the territories in the time-fre-
quency plane associated with these ridges.
The Gabor transform of any complex signal is defined as

where , and
is the unit

norm Gabor kernel, and denotes complex conjugation. The
parameter determines the width of the analysis window in
the time domain.

Commonly, the Gabor ridges are defined by

(1)

or, equivalently [25], [26] (see Appendix A),

(2)

where may represent either the Gabor or complex
wavelet transforms, and is the transform phase (for
examples see [12], [13], [23], [27], [28]). We will show in
Section III that ridges defined by (2) give biased estimates of
the IF of frequency- and amplitude-modulated components.
Furthermore, the ridges of (2) are not useful for the identifica-
tion of fast transients.
In [8], the ridges (their “contours”) of , with direc-

tionality are defined by a linear combination of the
derivatives of . These linear combinations can be
described as directional derivatives of . If we de-
fine the rotated coordinates , where

is the standard rotation ma-
trix, then we can define the directional Gabor ridges in terms of
points that satisfy

(3)

or, equivalently1

(4)

where , and
. Note that and , defining

the direction of the derivative as the direction with angle
from the axis. Thus, (3) is a generalization of (1), where (1)
is obtained from (3) by setting .
The directed Gabor ridges can be used to improve detection

and estimation of both types of components [9].
1) Gabor Ridge Territories: Let be the set of points which

satisfy (4), and be the subset of corresponding to
local maxima of with respect to the direction .
Suppose that, for a given there are ridges corresponding
to maxima, with respect to direction . We can define as
the points on the th ( ) ridge. Since ridges do
not intersect [8] each can belong to only one
ridge.
For each , we can define a unique territory containing

the th ridge;
Definition II.1: is the connected set such that

, and , the following
conditions are met :
1)
2) If then ,
3) If then
4) ,
where .

1While the definition of the ridges in [8] is given by the points satisfying
, we modified the definition for the pur-

poses of this paper to conform more closely with the notion of ridges as solu-
tions to equations with directional derivatives of and for to correspond to
the standard polar angle coordinate.
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The connectedness of ensures that each is not com-
posed of disjoint regions, and conditions 1)-3) thereby define
the boundaries of . only composes the entire time-fre-
quency plane in the special case that there is only one ridge
( ).
Each corresponds to a basin of attraction of the reassign-

ment procedure [26], [29] when reassignment is constrained to
displacement only along the axis. The set of all ’s forms
a partition of the time-frequency plane. Note that an equivalent
definition of can be formulated in terms of the phase of the
Gabor transform as well (Appendix A). Each ridge in corre-
sponds to a phase-continuous region of whose primary
influence in the time-frequency domain is constrained to .
A unique set of ridges exist for each and . The authors of [8]
suggested that the ridges and territories which best represent a
frequency-modulated (FM) signal are those for which the direc-
tion matches the local modulation rate of the signal, but this
was not explicitly demonstrated. In Section III-C we formalize
this assertion and show that this is approximately true for sig-
nals with linear frequency modulation, and is strictly true in the
limit of a constant-amplitude signal.
The above does not imply that and describe a single

component, or that they in fact represent signal components at
all (as opposed to noise), only that they are well-defined with
respect to a single value of and for each Gabor transform. In
the following sections we develop machinery which can be used
to distinguish ridges representing noise from ridges representing
deterministic signal components when applied to the CT.

B. Ridges of the CT

The ridge representation defined in the previous section seeks
to decompose a time series into time-frequency ridges and
territories that are defined by the data, but the decomposi-
tion is influenced by the transform kernel. Here we generalize
the approach of [8] to ridges derived from the CT.
The CT of is defined as

(5)

where , and

, with
. By analogy with (4) and (2), the chirplet ridges will be de-

fined as the points satisfying

(6)

where and
. We define the local maxima and associ-

ated territories of similarly to the ridges and
territories for in Section II-A. However, this representation
now depends on three parameters, , , and .
In what follows, we focus on ridges defined by corre-

sponding to the points satisfying

(7)

Fig. 1. Time-frequency resolution enhanced by variation in window orien-
tation. A comparison between the time-frequency uncertainty ellipses for the
Gabor transform for high frequency resolution, but low time resolution (A),
low frequency resolution, but high time resolution (B), and with the CT with
non-zero modulation rate (C). Time-bandwidth product is indicated by the area
of the rectangle bordering the ellipse.

and , corresponding to

(8)

We will show in Section III that the ridges track the IF
of brief chirp components when matches the modulation rate
of the component. In contrast, the ridges defined by can
resolve fast transients.
In principle, ridges derived from additional values of can

be used to compute the stability of time-frequency estimates
to variations in analysis, and this information used to further
enhance a component-wise TFR [9]. This extension, however,
is beyond the scope of the present work.

C. Advantage of the CT

The CT permits resolution of closely spaced, FM components
which is not possible using monotone basis elements [30]–[32].
To illustrate this point, consider two FM components with IF’s
that are oriented in parallel in the time-frequency plane. If the
components are closely spaced in either time (Fig. 1(a) (or fre-
quency (Fig. 1(b)) then a large (small) analysis window width
parameter will make the analyzing Gabor kernel cover both
chirps and the two chirps will not be resolved . For components
closely spaced in both dimensions there may not exist any scale
for which the two chirps can be resolved using the Gabor trans-
form.
In the case of the CT, the orientation of the ellipse is deter-

mined by the chirp rate of the analyzing chirplet. If the el-
lipse is sufficiently rotated (Fig. 1(c)), and the scale permits
a sufficiently narrow ellipse, then each chirp can be resolved
without significant interference. In practice, data that display
multiple components, or nonlinear frequency-modulation, will
not be well characterized by a single value of and , requiring
us to use multiple values of .

III. RIDGE ANALYSIS OF CHIRPS

In this section we use the ridges defined by (7) and (8) to
conduct an analysis of IMT[11] and asymptotic components,
for which the IF is well-defined and the amplitude varies slowly
compared to the phase, and click-like non-IMT components, for
which the amplitude varies quickly compared to the phase. To
this end, we will consider a generalized mono-component signal
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To simplify our analysis we approximate this component with a
second-order Taylor expansion of the phase about ,

(9)

where , , and . The purpose
of this exercise is to demonstrate the usefulness of the CT ridges
as IF estimators when the signal component has approximately
linear FM over a time scale comparable to the analysis window
width, . Here then, represents the time scale on which the
frequency modulation of the component is approximately linear
and the IF is given by

(10)

We will use the intuition we gain here in Section IV to develop
heuristics based on ridge properties which will be useful for
methods of component detection. We will then compare the re-
sults found here with analogous results for the directed Gabor
ridges.
Punctate events such as pulses and clicks can be modeled as

special cases of (9) where the signal duration is very short rela-
tive to the analysis window width. When ,
where is any real, positive constant, this component has the
property that, in the limit as , , where

is the Dirac delta function centered at . This property
allows us to study the effects of discontinuities and fast tran-
sients in the signal by examining the behavior of the ridges in
the passage to this limit.

A. Chirplet Ridges of Oscillatory Components

We can identify the of the CT of (9)
by the formula given in (6) with . The resulting ridge
satisfies

(11)

where , ,
and . For , the
points correspond to

(12)

which is a line in the time-frequency plane whose slope is a
weighted average of and . When the analysis chirp rate and
the signal chirp rate match (i.e., ) this line reduces to

which reproduces (10), the IF of the signal, independent of the
signal width or the analysis window width . This indepen-
dence is advantageous as it allows us to identify the IF of the
signal in a regime where the estimate is insensitive to and .
Noting that reduces to when , we

find that the can be expressed as

Therefore, the ridges most commonly used for IF estimation
by the ridge technique only recover the IF (10) in the limit as

; i.e., as the amplitude of the linear IF regime becomes

constant with respect to the analysis window. This may not be
possible, even approximately, when there are multiple FM com-
ponents which are closely spaced in frequency (ex. modulated
harmonics with slow fundamental frequency), where making
too small will result in interference between components.

Thus, for most reasonable values of , the local maximum of
gives a biased estimate of the IF of components

with both frequency- and amplitude-modulation.

B. Click-Like Components

In practical data analysis conditions, due to limits on sam-
pling rate, there will be a lower limit on ( ) such that if

then (12) will be dominated by

Thus, as and the signal (9) becomes more click-like,
the becomes a function of only the
analysis chirp rate , and not the signal chirp rate.
Under these conditions, the amplitude modulation of the

signal is much faster than the phase progression, resulting in a
signal component that more closely resembles a fast transient
than a well-defined oscillation. We would like to be able to
characterize these components with a set of ridges that are not
as sensitive to the analysis parameters, analogous to the analysis
demonstrated for asymptotic components in Section III-A.
To this end, we consider the of ,

where, using (6) with

(13)

where and are defined as above and
. The points that satisfy ,

obey the relation

(14)

In the limit as , (14) becomes

giving a at all , independent of the anal-
ysis parameters and . Thus, signals that are sparse in time
are well localized by the and the rep-
resentation is less sensitive to the analysis parameters than the

.

C. Chirp Analysis by Directed Gabor Ridges

We can assess the value of the chirplet ridge approach with
respect to the prior approach of [8] by examining the signal (9)
with the ridges defined in (4). Equation (4) can be written as

Using the phase – magnitude relations provided in Appendix A,
and expressions (11) and (13), we find that the phase derivatives
are given by

and
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Fig. 2. Histograms of ridge length at two analysis chirp rates Simulated chirps
in noise (- -) compared to noise only (-). The data were 50 sec longwith sampling
rate . The signal was a linear chirp as in (9) with ,

, , , and . Noise was Gaussian white
noise with zero mean and standard deviation = 1.

where is the same as in Section III-A and
, , , and
.We can identify the ridges of of the determin-

istic chirp, in direction angle by setting . The resulting
ridge representation of the signal in (9) is given by points
satisfying

where

(15)

In the limit as (locally constant amplitude), we have
, giving a ridge identical to (10), the IF of the component,

for all and . Similarly, as (click-like), for
all (except for , in which case, ), giving
a ridge defined by , which identifies the location in time
of the click. For , the ridge will match the IF of the
chirp ( ) when

(16)

Thus, in the limit as , the directed Gabor ridge estimate
of the IF of the linear FM signal is unbiased when , as
suggested in [8].
These results show that, as long as the component is suffi-

ciently isolated (with respect to the uncertainty window), the
directed Gabor ridges can identify the IF of the component or
the location of transients. However, even for this simple com-
ponent, in order to correctly recover the IF of the component,
both and must be chosen to satisfy (16), except in cases
where the signal either has approximately constant amplitude
( large), or where this signal is click-like ( small). In
contrast, the linear IF can be recovered by the chirplet ridges
while only having to satisfy .

IV. SIGNAL ENHANCEMENT BY RIDGE PROPERTIES

In this section we demonstrate the application of the chirplet
ridges to data and how their properties can be used to enhance
signal-to-noise ratio (SNR) for click-like and IMT components
by restricting the analysis to relatively long ridges. First, some
heuristics for discriminating between signal ridges and noise
ridges will be described. We then show that phase-continuous

components can be discriminated using the methods described
even when their IFs cross in the time-frequency plane.

A. Signal Amplification by Ridge Length

Sparse signals such as clicks or IMT components can intro-
duce long-range dependencies in the time-frequency plane in
the phase of . These dependencies correspond to stan-
dard notions of the phase evolution of physical signals, and are
therefore displayed as persistent phase continuity in the time-
frequency plane. Since white noise has random phase, this per-
sistent phase continuity of the signal may be exhibited as ridges
that are longer than the typical ridge length for white noise-only
data. Thus, we hypothesized that ridge length may be an effec-
tive metric for distinguishing between ridges formed by noise,
and those formed by the presence of signal components. For
simplicity, we defined ridge length simply as the number of
pixels belonging to a ridge and the ridge is defined as in (8)2.
We examined the distribution of ridge lengths in the presence

and absence of signal by simulating data with a single linear,
Gaussian modulated chirp as described by (9) in Gaussian white
noise and extracted the ridges at varying analysis modulation
rates . Repeating the analysis for 1000 trials, we compared the
estimated distribution of resulting ridge lengths between data
with signal+noise and data containing only white noise across
varying analysis parameters. Fig. 2 shows the histograms of
ridge length for (Fig. 2(a)) and

(Fig. 2(b)) for a single chirp in noise (- -), and for
noise with no signal (–). The parameters of the simulations are
provided in the caption of Fig. 2. At (Fig. 2(a))
the distribution of lengths from data containing signal does not
appear to differ from the distribution of lengths from data with
noise only. However, at (Fig. 2(b)) the distribu-
tion shows an additional mode at the right tail for the signal-
plus-noise condition. Noting that in this case, Fig. 2(b)
suggests the presence of consistently longer ridges when the
analysis and signal chirp rates match3. This result suggests that
by rejecting all ridges but those in an upper quantile of length we
can restrict our analysis to only those ridges most likely to corre-
spond to signal and that represent high-quality IF estimates. We
will demonstrate the usefulness of ridge length for improving
SNR in Sections IV-B, IV-C and IV-E by using the top 1% of
ridges by length.4

B. Signal Enhancement by Ridge Density

In Section III we showed that, as decreases, the ridge es-
timate of the IF will have decreasing bias and be less sensitive
to the value of . Thus, even for nonlinear modulation, if we
can set (provided this is possible with respect to the
sampling constraints discussed in Section III-B) then the ridge

2Because the phase of is smooth with respect to both and every-
where except at its zeros [33], [34] we reasoned that ridges never branch, since
branching would be associated with a discontinuity in the phase of . Thus,
the “length” of a ridge is unambiguous.
3Simulations were conducted for various values of , however, those results

were qualitatively similar to the results presented here.
4While this threshold was somewhat arbitrary, it is supported by the analysis

in Fig. 2 and the quality of the resulting representations across the examples
that we present here. However, the optimal threshold is likely to be dependent
on the data SNR and the amplitude modulation of the signal. Future studies
should include a more systematic study of how the ridge length distribution is
influenced by the data properties.
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Fig. 3. Sample ridges and territories for simulated data at two chirp rates.
. The exact IFs of the signal components are shown in blue and green.

A,B: (Gabor). C,D: . A,C: . B,D:
. Shaded areas are ridge territories.

estimate of the IF will be close to the true IF in a neighborhood
of points where . If we obtain multiple ridge esti-
mates (with varying analysis parameters) and sum them, then
insensitivity to analysis parameters would result in a high den-
sity of ridges in regions of the time-frequency plan containing
signal. In this section, we develop this argument and identify
conditions in which such a procedure would be successful in
discriminating between signal ridges and noise ridges.
Consider the variation in the IF with respect to . Assuming

in the neighborhood of the analysis so that the modu-
lation is approximately linear and is determined from (12),
the variation in due to a small variation in , ( ) is

If we let be the resolution of the time discretization and
be a finite change in then, ( ) time steps from
we have the frequency distance equal to

Thus, for the discretized CT, a small change in ( ) will not
change the coefficients that a ridge occupies, time steps from
so long as satisfies

(17)

where refers to the discretization in frequency. Thus, when
this condition is met the representation of the ridges will overlap
for time steps.
Heuristically, if we note that white noise has random phase,

then the time scale of phase continuity for white noise is es-
sentially zero ( ). It stands to reason therefore, that
white noise would also not have a directionality preference in

the time-frequency plane. Thus, we can approximate the white
noise-only agreement condition as5,

(18)

Since we must have , we always have
. Thus, ridges formed by signal components are less sen-

sitive to variations in than ridges due to noise.
Similarly, we can determine the sensitivity of ridges to vari-

ations in . The variation in due to a small change in
( ) is given by

Therefore, for , there should be little to no difference in
ridge position at any due to a small change in .
Thus, insensitivity of the ridge to and indicates the pres-

ence of signal. This is similar in principle to the “stability” of
contours described in [9]. The above results suggest that signal
components can be identified by building a histogram in the
time-frequency plane of the ridges derived from different values
of and . If we estimate ridges formed over a range of ’s such
that , we are assured that ridges due
to signal components will tend to overlap in the time-frequency
plane more than ridges due to noise alone. A high ridge den-
sity associated with variations in therefore indicates regions
which contain signal components, and including variations in
can further amplify this result when . In practice, with a
course sampling of the frequency axis and large , condition
(17) turns out to be easy to satisfy. Points on the ridges of (7) for
click-like components can be similarly grouped, but the expres-
sion for this grouping is more complicated and less intuitive. We
use ridge density in Sections IV-C and IV-E to highlight salient
features of data with nonlinear frequency modulation.

C. Amplification of Nonlinear Signal Components

In this section we demonstrate signal amplification using
the methods described in Sections IV-A, IV-B of two,
closely-spaced signal components with nonlinear frequency
modulation in noise. We simulated noisy data with two signal
components

where and are cubic-phase components of the form

and is Gaussian white noise with , giving
a peak . Parameter values for the two components
are given in Table I.
Chirplet transform magnitudes and ridges are shown in Fig. 3

for two chirp rates. The quadratic evolution of the IF of the com-
ponents makes the linear modulation of the analysis window a
poor fit for the signal at any one value of . The Gabor trans-
form magnitude ( , ), shown in

5Condition (18) corresponds to our experience with simulated signals in white
noise and is corroborated by the noise ridges shown in Fig. 3.
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TABLE I
VALUES OF COMPONENT PARAMETERS

Fig. 4. Signal is amplified when the representation in restricted to the long,
stable ridges. A) Ridge density for the longest 1% of ridges from all chirp
rates, weighted by transform modulus. Darker regions indicate higher cumu-
lative weighted-ridge density. B) Coefficients with cumulative modulus (over
all transforms) in the highest 1%. C) Coefficients from A with highest 1% cu-
mulative modulus. D) Ridges of the Morlet wavelet transform.

Fig. 3(a) reveals that the close spacing of the signal compo-
nents and the nonlinear modulation combine in both the time
and frequency axes such that we observe significant cross terms
in all directions, indicating that there is no single pair of pa-
rameters ( , ) that will prevent cross terms from interfering
with the signal representation at some point in the TF plane.
For example, at a low analysis chirp rate (Fig. 3(A),(B),

) ridges break apart in response to cross terms near
the regions of the TF plane where the signals have fast mod-
ulation. Conversely, for the relatively high analysis chirp rate
(Fig. 3(C),(D), ) cross terms effect ridges at the
regions with slow modulation. Similar effects would be present
even for a mono-component signal due to the bias in the ridge
estimates described in Section III. Thus, there is no single best
, or that will allow us to characterize both signals simulta-
neously.
We can compare the ridges for the CT in Fig. 3 with another

multi-scale method, the ridges of the Morlet wavelet transform
for the same data, displayed in Fig. 4(d). Note that the ridges of
the Morlet wavelets transform lack the continuity and smooth-
ness of the chirplet transform. However, the central frequency
of the signal, the rate of change in modulation, and the scaling
factor of the wavelet scales all influence the quality of this rep-
resentation and better or worse representations are achievable.
The territories belonging to each ridge are outlined for each

component in Fig. 3(B),(D) and show a similar failure to per-
fectly segregate any one component. We defined these territo-
ries as in Definition II.1 where here, .
As predicted in Section IV-A the ridges corresponding to

signal components tend to be longer than the ridges due to noise

alone. Furthermore, as predicted in Section IV-B the component
ridges are strongly biased towards the IF of the corresponding
components (shown in blue and green), while the ridges corre-
sponding to variations due to noise alone are well-aligned with
the analysis chirp rate (Fig. 3(B),(D)).
A composite image of the longest 1% of ridges determined

from nine chirp rates (uniformly sampled from 0–4 Hz/sec) and
weighted by their modulus, enhances ridges corresponding to
high-energy signal components with good agreement between
ridges formed at different modulation rates (Fig. 4(a)). This
stage of signal enhancement is important as it restricts the de-
tection procedure to the points in the time-frequency plane most
likely to correspond to the IF of a signal component. If we were
to simply take the average modulus of the data over all trans-
forms and take only the largest 1% of coefficients, we obtain the
coefficients shown in Fig. 4(b). In contrast, when we take largest
1% of coefficients from the representation in Fig. 4(a), the repre-
sentation is reduced to the coefficients shown in Fig. 4(c), high-
lighting the IF of the components with greater precision than
thresholding the modulus alone.

D. Segregation of Crossed Components

The process of choosing the longest and most stable ridges
across a family of transforms can lead to a simple form of stream
segregation for components with IF’s that cross in the time-fre-
quency plane in which representations displaying phase conti-
nuity are favored.
To demonstrate this capability, we simulated three pairs of

components, one pair of sinusoids, one pair of clicks, and one
pair of linear frequency sweeps, with a background of white
noise. Simulation details are given in the caption of the Fig. 5.
Based on our analyses in Sections IV-B and IV-A, we used
ridge length to discriminate between noise ridges and compo-
nent ridges.
Figs. 5 and 6 show histograms of the longest 1% of ridges

from the and
, respectively. The ridges were generated using a

range of analysis parameter values and the colors reveal which
analysis parameters contributed to each pixel in the image.
In Fig. 5(a), each color corresponds to a specific value of ,
and the intensity of each color in a pixel indicates the density
of ridges over all values of . Fig. 5(b) shows the same his-
togram but with color indicating the value of and intensity
indicating the pixel density with respect to . The variations in
color reflect that this composite image is built from multiple
transforms that contribute differentially to the representation of
each component. If a component is represented in all angles or
all time-scales equally, it will appear white. If a component ap-
pears in a specific color range, then a narrow range of analysis
parameters contributed to the representation of that component.
Fig. 5 indicates that variations over of the

help to discriminate between components which have
different modulation rates. In particular, chirplet modulation
rates close to the modulation of a component, will uniquely
identify that component. We can see this in Fig. 5(b), where
the chirps are dominated by ridges with analysis chirp rate

, while the tones are dominated by ridges
formed by relatively low modulation rates ( between 1.87-.62
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Fig. 5. Stream segregation of crossed signal components. Histogram of the
99% longest for a multi-component signal. Colors
indicate ridges estimated from different values of the analysis parameters. A)
Colors indicate different values of the analysis window width , with color in-
tensity indicating overlap over different values of the modulation rate . B) The
same data as A, but the color indicates the chirp rates that contributed to each
pixel. C) Ridges formed from one set of analysis parameters which identifies the
tones. D) Ridges formed from one set of analysis parameters which identify the
chirps. -axes are in Hertz, -axes are in seconds. The data were simulated with
a sampling rate of 25 kHz. Chirps and tones had an amplitude of 1 in arbitrary
units. Chirp and click pairs were spaced by 0.1 kHz. Chirps had modulation rate
of 8 kHz/sec. Clicks were one sample in duration with amplitude of 40 and are
spaced 5ms apart. The noise was distributed .

kHz/sec). Fig. 5(C),(D) show that there exist specific parameter
combinations that bias the ridge estimates in favor of each set
of components without substantial interference from the other
signal components.
In agreement with our analysis in Section III, Fig. 5(A),(B)

show that the are insensitive to the pres-
ence of the click components with the exception of interference
terms crossing the chirps and tones for short window widths
and moderate modulation rates (at ). Fig. 6 shows the

of the same signal, with colors and in-
tensities corresponding to those in Fig. 5. Fig. 6(A),(B) shows
clear discrimination of the clicks by the
by varying over both and . The best click detection occurs
at small , and low modulation rates (Fig. 6(c)). At large and
, the do not identify any signal compo-
nents (Fig. 6(d)).

E. Analysis of Bird Song Data

Time-frequency analysis is common practice among scien-
tists and engineers studying acoustic data. Zebra finch vocaliza-

Fig. 6. Histogram of the 99% longest ridges for a multi-com-
ponent signal. Units and the meaning of the colors in A and B are the same as
those in Fig. 5(A),(B). C) Ridges formed from one set of analysis parameters
which identified the clicks. D) Ridges formed from one set of analysis parame-
ters which did not identify any of the signal components.

tions, for example, often include sequences of modulated har-
monics and repeated clicks. An example of of a zebra
finch vocalization is shown in Fig. 7(a) ( ).
Both and

were generated for ten chirp rates (uniformly sampled between
and 0.29 kHz/ms) and four windowwidths (uni-

formly sampled between 2–4.7 ms). Fig. 7(b) shows the super-
position of all ridges generated by the analysis. Salient signal
features are over-represented across analysis parameters but,
as predicted in Section IV-A, the most distinct signal features
are easily identified among the longest 1% of ridges shown in
Fig. 7(C),(D). Fig. 7(C) and (D) show the longest 1% of the

and , respectively. The
sum of Fig. 7(C) and (D) is shown in Fig. 7(e). The pixel in-
tensities are weighted only by the ridge density and not by the
CT modulus. Thus, points with high ridge density are brighter
while regions with no ridges are dark.
Signal features with less distinct time-frequency localization

are more poorly represented by the ridges. For example, the
ridge representation shows distinct epochs with transitions
from a series of clicks (0–75 ms), to a broad-band, noise-like
hiss (80–100 ms), to a distinct tone with highly organized
harmonic structure (125–175 ms). The broad-band hiss epoch
clearly has less organized phase structure, resulting in a less
distinct, and less stable (with respect to analysis parameters)
ridge representation. The transition from the hiss epoch to the
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Fig. 7. Chirplet ridge analysis of a zerbrafinch vocalization. A: Log modulus
of Gabor spectrogram of song at one time scale ( ). Dark colors
indicate higher intensities. (The contrast of this image has bemodified in order to
improve visibility of details at higher frequencies). B: Ridges averaged over ten
chirp rates and four window widths. C: Average of longest 1% of

, D: Average of longest 1% . E: Sum of C and
D. -axis scales are in kHz. -axis is in ms.

harmonic epoch shows the formation of narrow-band compo-
nents which are modulated in parallel bands, but in different
directions around 5 kHz.

V. DISCUSSION

In this paper we developed a method based on a contour
TFR of sound [8], [9] that identifies signal components by per-
sistent phase progression across time or frequency. The dis-
tinguishing features of the present approach is the use of the
CT at various chirp rates and time scales to extract multiple
ridges per component, and then select from this overcomplete
representation the longest, and most stable ridges; the ridges

that occur with low probability relative to noise. We demon-
strated the viability of this approach for signal enhancement
in noise, and elementary stream segregation of crossed compo-
nents. Quantifying the quality of signal denoising by resynthesis
of the chirplet skeleton, and characterization of ridge sampling
properties are the subjects of on-going work.

A. From Directional Derivatives to Ridges

Guillemain and Kronland-Martinet [35] and Lim et al. [8]
suggested the utilization of separate partial derivatives of the

in order to identify signal components that are either
horizontally- or vertically-oriented in the time-frequency plane.
Lim et al. [8] however, generalized this notion to suggest that
ridges could be defined as a linear combination of partial phase
derivatives. As we showed in Section III-C the best linear com-
bination to represent a component depends upon the orientation
of the component. This approach helps to correct for the bias in
IF estimates made by the alone as
suggested by others [12], [13].
In the present study, we used ridges defined by both (8) and

(7) in order to identify both IMT and click-like events, respec-
tively. Use of condition (7) allows the detection of the compo-
nents which have amplitude variations that are too fast to sat-
isfy the conditions of an IMT function [11]; a property that is
not shared with most ridge detection methods, although notable
exceptions are [35] and [8].
Although [35] and [8] were developed in the context of

derivatives of , there are relationships between the time and
frequency derivatives of and , allowing us to formu-
late equivalent definitions of ridges in terms of . This
suggests that the two types of ridges introduced in this paper,
defined by , also have equivalent formulations based
on . Indeed, it can be shown (Appendix A) that the partial
derivatives of with respect to and are equivalent to
linear combinations of the and derivatives of the CT phase.
According to (15) and (16), the approach proposed by Lim

et al. [8] suggests that the modulation rate of sufficiently iso-
lated components can be identified by a single transform, rather
than the multiple transforms required for the chirplet ridges de-
scribed in the present study. This is a distinct computational ad-
vantage of the directed Gabor ridges as compared to the chirplet
ridges. A further advantage of the directional Gabor ridges is
that both chirp-like and click-like ridges can be identified in a
single, unified framework. However, based on (16), these ridges
are likely to be best suited to use in regimes where amplitude
modulation of the signal is slow compared to the width of the
analysis kernel (i.e., ). Chirplet ridges have the advan-
tage of identifying linear frequency modulation, even for fast
amplitude modulated components and they have the potential
to discriminate between closely-spaced modulated components
without significant interference.

B. Contour Bias and Prior Knowledge

Classical ridge extraction methods using Gabor or Morlet
wavelet transforms produce biased estimates of the IF of signals
with finite duration and frequency modulation [12], [13]. From
the simple example of Section III when we find that this
bias becomes worse as the signal modulation rate gets larger and
the ratio becomes large. We showed that use of the CT can
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help to mitigate this bias if the modulation rate of the analysis
kernel approximates the modulation rate of the component. As

, the slope of the IF estimate is weighted in favor of
((12)), the modulation rate indicated by the data, and the bias
in the estimation is minimized. However, by using only a short
analysis window relative to the signal length (small ), we are
not making use of all available data and we risk increasing the
variance of the estimate in the presence of noise. On the other
hand, as , the slope estimate is weighted in favor of
, the modulation rate of the analysis kernel. Thus, we can view
the ratio as a parameter which reflects our a priori certainty
that or, more generally that, at time , on
a time scale commensurate with , where is the phase of
the th component.
While we expect the bias in the IF estimate to decrease as

, this will also imply an increasing lower bound for the
variance of IF estimates. This assertion is supported by the bias
and variance of ridge estimates of the IF using the short-time
Fourier transform [36] and it can be shown that this result holds
in general for short-time Fourier transforms of demodulated sig-
nals [37]. The size of will also influence the separability of
closely-space components (Fig. 1). Thus, for the more general
setting of nonlinear modulation and multiple components, such
as the signal components in Section IV-C, the optimal size of
for each component will be a function of the distance in the

time-frequency plane between components as well as the good-
ness of the linear modulation approximation.

C. A Per-Component Adaptive TFR

While there are a number of adaptive TFR methods, prior
methods tend to either adapt the representation to the en-
tire recording [38], or adapt the window parameters on a
per-time and/or per-frequency basis (for examples, see [2],
[30], [39]–[45]). Other methods adapt the representation at an
atomic level, choosing “best” individual members of a highly
redundant dictionary while actively suppressing correlation
between coefficients [4], [6], [46].
The prospect of a per-component adaptive TFR was, perhaps,

first suggested by Huang at al. with the development of em-
pirical mode decomposition and the Hilbert-Huang transform
[24]. More recent methods have been proposed which try to di-
rectly address the issue of per-component analysis using syn-
chrosqueezing [37], [47]–[49], but these methods are developed
for the “well-separated” IMT components [11] for which the
IFs of the components do not cross. Indeed this is feature that
is directly exploited for the method developed in [49]. Another
problem with other per-component approaches is that adapta-
tion is in terms of a single analysis kernel per component (with
the exception of [49] which seems to be able to mitigate bias
associated with kernel parameters), rather than aggregating in-
formation across multiple values of analysis kernel parameters,
as in the present study.
Our approach displays the ability to resolve components

that have IF laws that intersect, a direct violation of the
“well-separated” condition. While techniques such as the syn-
chrosqueezed wavelet transform can successfully reconstruct
crossed components in the resynthesis process (see [11, Fig 9]),

synchrosqueezing does not represent the components as sepa-
rate on its own. The analyst must decide when two components
are different signals prior to reconstructing them independently.
In contrast, our approach displays the potential for the repre-
sentation itself to help distinguish among crossed components,
prior to the resynthesis step.
The assumption of phase continuity of the signal is an impor-

tant factor in the performance of our method. Phase continuity
has been recognized by other adaptive TFR methods as well.
For example, [50] expressed this importance through the total
variation norm, that is, the method sought to decompose a time
series into IMF-like functions that were smooth enough at each
iteration to minimize a third-order total variation norm.
Phase continuity influences our method in two ways. First,

this property is essential to the length and ridge density metrics
for signal amplification discussed in Section IV. Figs. 5 and 6
support the analysis of Sections IV-B and IV-A by showing that
the longest ridges correspond to good matches with signal com-
ponents and that ridge stability can be used to identify separate
signal components, even when they cross in the time-frequency
plane.
Second, phase averaging helps to explain how the chirplet

ridges can achieve ridge detection in spite of crossed compo-
nents. We conjecture that crossed-component discrimination
works in the following way: The filter kernel has contributions
from the signal which are determined by the Heisenberg-Gabor
uncertainty ellipse (Fig. 1). When we orient the kernel to match
a given component, the coefficient estimate is a weighted
average of contributions from the time-frequency support of
the analysis kernel. When the kernel matches the modulation
rate of a component in Fig. 5, the phase of the coefficients near
the crossing point will be dominated by contributions due to the
components with matched modulation rate, thereby biasing the
phase evolution of the transform coefficients to more closely
resemble the matched components. Likewise, when the analysis
kernel is mismatched, the phase of the coefficients, and their
relationships among each other, are dominated either by contri-
butions by noise, or by the mixing of nearby components. This
is demonstrated by the matched kernel ridges in Figs. 5(C),(D)
and 6(C). Kernels mis-matched to all components will have
contributions from multiple components, or will have a large
share of the phase estimate be influenced by noise, making the
phase estimates less likely to display continuous variations on
length scales any larger than that determined by the kernel.

VI. CONCLUSION

The ridges of the chirplet transform magnitude may be used
as per-component, adaptive time-frequency representations for
both IMT signal components and click-like components. Ridges
formed using multiple chirp rates can be combined to form indi-
vidual component estimates in order to reduce the bias inherent
in Gabor/Morlet wavelet ridge extraction methods.

APPENDIX
PHASE-MAGNITUDE RELATIONS OF THE CONTINUOUS

CHIRPLET TRANSFORM

Distinct relationships are evident between the phase andmag-
nitude of the Gabor transform [25], [26] which allows one to
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define the phase derivatives in terms of the derivatives of the
log-modulus of the transform, and vice versa. For the Gabor
transform (given by (5) with ) the phase-magnitude rela-
tions are given by

(19)

(20)

Analogous phase-magnitude relationships can be derived for
the CT as well. However, in contrast to (19) and (20), the cou-
pling takes the form of linear combinations of time and fre-
quency derivatives where the gradient of can be ex-
pressed as

(21)

where
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