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Classical time—frequency analysis is based on the amplitude responses of bandpass filters,
discarding phase information. Instantaneous frequency analysis, in contrast, is based on the
derivatives of these phases. This method of frequency calculation is of interest for its high precision
and for reasons of similarity to cochlear encoding of sound. This article describes a methodology for
high resolution analysis of sparse sounds, based on instantaneous frequencies. In this method, a
comparison between tonotopic and instantaneous frequency information is introduced to select filter
positions that are well matched to the signal. Second, a cross-check that compares frequency
estimates from neighboring channels is used to optimize filter bandwidth, and to signal the quality
of the analysis. These cross-checks lead to an optimal time—frequency representation without
requiring any prior information about the signal. When applied to a signal that is sufficiently sparse,
the method decomposes the signal into separate time—frequency contours that are tracked with high
precision. Alternatively, if the signal is spectrally too dense, neighboring channels generate
inconsistent estimates—a feature that allows the method to assess its own validity in particular
contexts. Similar optimization principles may be present in cochlear encodin@005 Acoustical
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I. INTRODUCTION neous frequency analysis, without reference to any prior in-
formation about the analyzed signal. The method consists of
Time—frequency analysis is a general methodology fortwo phases: an expansive phase in which the input signal is
representing sound in two dimensions, time and frequencyplit through bandpass filtering into a highlsdundantarray
This is an intuitive representation, evinced by the evolutionof channels, and a contractive phase, in which the redundant
of the musical score, which since ancient times has showghannels are checked for agreement, or “consensus” and col-
time horizontally and pitch vertically. Time—frequency lapsed back togetheEonsensus between neighboring chan-
analysis is limited by the uncertainty principle: the resolutionnels indicates the quality of the local frequency estimates,
of frequency measurements is inversely proportional to theind is used to guide optimization of filter bandwidttighe
resolution of temporal measuremehtsso the time— signal is sufficiently sparse, the time—frequency representa-
frequency plane has a fundamental “granularity.” However,tion generated by the IFD will track the individual compo-
while this limit holds for signals drawn from arbitrary en- nents of the signal with high precision. If not, poor consen-
sembles, special classes of signals may have features permius measures signal the failure of the method.
ting a higher resolution analysis. While our purpose in this article is to describe a practi-
Many methods exist for the analysis of sparse signalsgal tool for the high-precision analysis of sparse sounds, it is
i.e., those composed of a number of well-separated tonegorthwhile to note its biological motivation. In one of the
with limited amplitude and frequency modulation rates. Forearliest views of cochlear function, frequency is determined
example, Greenewalt employed periodicity analysis to greaby the spatial, or tonotopic, position of active auditory nerve
success in his classic study of the acoustics of bird $ongfibers!-14An alternative form of frequency coding can be
One family of methodologies for the analysis of sparse sigfound in the phase-locked responses of auditory hair Cells;
nals is based on the calculation of instantaneousor frequencies below 4 kHz, auditory nerve fibers preferen-
frequencies—the phase derivatives of a complex filtetially initiate action potentials at particular phases of the
bank?~® Though these methods are capable of representingriving force. Licklider in 1951 suggested that the intervals
sparse signals with high precision, they require prior infor-between phase-locked spikes leads to a second representation
mation about the analyzed signal to choose the positions arst frequency that is independent of the spatial arrangement
bandwidth of the filters that contribute to the analysis’A  of auditory fiberst® This representation of sound has been
general method for optimizing these parameters remains agxperimentally and conceptually supported through
open problent neurophysiology/*® psychophysicd?-?* and functional
Instantaneous frequency decomposititD) provides a  brain imaging?>?® The method of instantaneous frequency
methodology for optimizing the parameters of an instantadecomposition is conceptually related to this spike-interval
based coding in the auditory nerve, and provides a rationale

aCurrent address: MIT E19-528, Cambridge, Massachusetts 02139. ElefOr Combining tonotopic ?—nd phase inform_ation in a single
tronic mail: tgardner@mit.edu analysis, and for comparing frequency estimates from a re-
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dundant array of phase-locked channels. In this methodj signal of this form isseparableif the Gabor transform, at
cross-checks between tonotopic and phase information detezach time and frequency, receives significant energy from
mine which filters contribute to the analysis, and compari-only one tongone element of the sum in E(7)].2 Signals
sons among neighboring channels guide optimization of thanalyzed in this method must lseparable and must have
analyzing bandwidth. It is possible that similar computationdimited frequency and amplitude modulation rates. For sepa-

are made in the course of neural auditory proces¥irg. rable signals with sufficiently slow frequency and amplitude
modulations, instantaneous frequenciggt,f) of a well-
II. METHOD chosen bandwidth provide excellent estimates of the fre-

quency contours of the signd,(t). This is demonstrated in
the following sections.

The continuous Gabor transform, also known as the  We use the ternsparseto refer toseparablesignals that
short-time Fourier transform, is defined in terms of the signakre modulated slowly enough to be resolved thorough instan-
to be analyzed, a windowing functionw, time t, and fre-  taneous frequency analysis. Instantaneous frequency decom-

A. Definitions

quencyf?l: position provides a method for finding the optimum band-
width of analysis, and estimating,(t) and F(t), the
Gw(t,f):f s(rw(r—t)e2 (=t g, 1) amplitude and frequency contours of each component. If the
method is applied to signals that are not separable, or signals
Gaussian windows are used throughout this article: with frequency and amplitude modulations that are too fast,
o ttg)%e? the signal is not resolved, instantaneous frequencies do not
w=e o (2 track the signal frequencids(t), and the method signals its
The temporal spread of this functioht, defined in terms of Own error. The following sections illustrate what this means.
second moments, igm/20, and a complementary relation is One class ofest signalaused in this article consist of a
found for the frequency spread of its Fourier transfornfi; ~ sum of tones with periodic frequency modulations:
= (1/@)(1/0). Together, they define the uncertainty prin- el wotgi (Alw)cog wt). 9)

ciple Af At=1/2. For all other windowing functions, ) ) o
AfAt>1/2. Throughout the text, the terbandwidthrefers ~ 1hrough the Jacobi—Anger expansion, a periodically modu-

to Af. lated tone can be represented as a single frequency accom-
Each frequency of the Gabor transform provides one Panied by an infinite sum of sidebands:
“channel” in the IFD analysis. In polar form, i A
) i(Alw)coq wt) — in _ | ainwt
Gu(t,F)=ay(t, el @® ¢ 2 J“( w)e | 10
The instantaneous frequenaf each channel is defined as  whereJ,(z) are the Bessel functions of the first kind. This
1 agy(t,f) relationship is referred to in the following sections.
2w at @

B. Instantaneous frequency decomposition
For each channel, instantaneous frequency can be estimated

from the local period of oscillation, drawn from intervals . . T
between maxima of Zero crossings of the sianal. In this fOIrmcons|sts of a central processing structure, an outer optimiza-
9 gna. tion loop, and a final quality check. The central processing

Instantaneous frgquency is calculated from mform_atlon_ ho'structure computes instantaneous frequencies for channels of
mologous to the intervals between phase-locked spikes in the

. . a filter bank of fixed bandwidth and applies a cross-check
auditory nerve. Instantaneous frequency is calculated analth : . : . :
cally as follows: etween tonotopic and phase information to determine which

filters contribute to the analysis. The optimization loop com-

dpy(t,f)  aIm(In(G(t,T))) dG,(t,f)/at pares frequency estimates from neighboring channels to gen-
a Jt Gy(t,) } erate a measure that we catinsensusand uses this measure
) ) . , _to optimize the analyzing bandwidthf. The quality check

From this expression, a form,ula in ter7ms of the windowing,;ses the same measure of consensus to indicate specific re-
functionw and its derivativen” follows: gions of the time—frequency plane where the signal is well
Gy (t,H)] 1 resolved, and other regions where high spectral density leads
m}ﬁ (6)  to a failure of the frequency estimates.

The current method is designed for signals that tarel,

defined in terms of smooth, time-dependent frequencies In the first stage of the analysis3,(t,f)| is computed
Fi(t) and amplitudes(t) as follows: for each time and a dense set of frequencies, according to Eqg.

(1), for some initial choice of bandwidth. In this analysis, the

The method of instantaneous frequency decomposition

fl (t,f)=f—Im

1. Raw instantaneous frequency analysis

N
. distinct values of are referred to as “channels.”
= in 7 . .
S(t g‘l a(vsin((t), ™ Instantaneous frequency representation involves a
t remapping of the amplitudd$,,(t,f)| to new positions in
. i P
¢k(t):277f Fo(r)dr. (g the time—frequency plane, namelif,(t.f)), wheref,, is
=0 the instantaneous frequency of chanihat timet, calculated
J. Acoust. Soc. Am., Vol. 117, No. 5, May 2005 T. J. Gardner and M. Magnasco: Instantaneous frequency decomposition 2897

Downloaded 09 Aug 2011 to 128.197.37.243. Redistribution subject to ASA license or copyright; see http://asadl.org/journals/doc/ASALIB-home/info/terms.jsp



w
o
b
)

w
o
w
o

a
\(‘),/\,_/\,./

frequency [kHz]
frequency [kHz]

frequency [kHz]
|
frequency [kHz]

n
o
o
o

N
o
)
o

0 time [ms] 40 0 time [ms] 40 0 time [ms] 40 0 time [ms] 40

FIG. 1. Raw or unrefined IFD analysis for a two-tone sigf@land white ) . . . .
noise(b). The filter bank contains an independent filter every 10 Hz, each 01F|G' 2. The single channel tonotopic cross-check improves pitch tracking.

which has a frequency bandwidtf =220 Hz. The dimensions of the small Ihflgzme?r?aly5|s asr:n Fk'g' L afterfapplylng T‘. IOCkmgdW'n%b:Aff{fz
rectangle in pane{a) indicate this bandwidthAf, and the corresponding Z. This cross-check removes frequency lines produced by off-center

temporal resolution of the filter as determined by the uncertainty principle:ChanneIS'

At=1/2Af. Pixel intensity is scaled according to the logarithm of power,
and ranges over the top 20 dB of signal power. the redundancyof the filter bank, and in this manuscript

redundancies are on the order of 10, so every frequency re-

from Eq.(6). This first step, the raw instantaneous frequencygion is densely covered with similar filteys.
analysis, has been described in detail elsewhere. Figure 2 illustrates the effect of applying this criterion to

When applied to separable signals with slow modula-the signals analyzed in Fig. 1. Any instantaneous frequencies
tions, positions {,f) that are far from the signal tones are coming from outside the locking window=Af/2 are not
mapped onto the signal tones. This is illustrated in the fol-drawn in the figure. Each panel in this figure contains an
lowing figure. Figure 1 contains an analysis of two signalsequivalent number of channels, but in Fig. 2, pajagl most
according to this remapping rule. The first signal consists othannels are excluded by the locking criterion. Those that
two equal amplitude tones, each of which is frequencyremain in the analysis condense onto two frequency con-
modulated with a peak to peak modulation depth of 70 Hztours. In contrast, the spread of frequencies in the analysis of
over a period of 14 ms. The second signal is white noise. Théhe white noise signdpanel(b)] indicates a failure of agree-
frequency estimates generated from each channel provideent among neighboring channels, and thus a violation of
one continuous line in each figuldo avoid confusion, note the central assumption that the signal is sparse. Simple
that in panel(a), many lines overlap, leading to the appear-though it may be, this “blind” cross-check between tono-
ance of a continuous distributidrizor the white noise signal, topic and phase information significantly improves the analy-
each channel responds to a slightly different portion of thesis of rapidly modulated sparse signals.
white-noise spectrum, leading to a spread in frequency con-
tours estimated from neighboring channels. The structure of. Bandwidth optimization through consensus
this web of lines is sensitive to the bandwidth of the filter

bank The previous section describes analysis at a fixed band-

width. To further optimize the analysis, particularly for a
. signal with unknown properties, this bandwidth must be ad-
2. Tonotopic cross-check justed to the signal. Figure 3 illustrates the result of various
The darkest lines in Fig. 1, pang@), fall on the correct bandwidth choices in the analysis of a two-tone signal. For
frequency contours of the signal. The lighter gray lines thathe standard representation of the signal, the optimum filter
deviate from the correct contour are generated by filtersvidth yields Fig. 3, panelb). For this signal, a range of filter
whose central frequencies are far from the primary frequenwidths around this optimum yield the same time—frequency
cies in the signal. A qualitative explanation of this is as fol- analysis(not shown. Much wider filter widths as in Fig. 3,
lows: for an unmodulated tone, off-center filters perfectlypanel(a), introduce interactions between the two tones, and
detect the true frequency, but for modulated tones, off-centemuch narrower filter widthg(c) and (d)] yield a gradual
filters distort the signal. Modulated signals have a broad fretransition from the modulated tone representation to the sum
quency spreadlEq. (10)], and off-center filters truncate this of sideband representation defined by Ed). In panels(a)
broad frequency representation more drastically than cerand(c), poorly matched filters lead to detailed structures of

tered filters. lines that are sensitive to the precise bandwidth of the
The signal representation is improved by establishing analysis—a “fragile” representation of the signal.
notion of “jurisdiction” for each channel. Whenever instan- Bandwidth is optimized by minimizing the linewidth, or

taneous frequencf/;,v(t,f) is far from the center of channel consensu®f the frequency estimates. This optimization can
(f), this estimate is discarded. That is, fét,(t,f)—f|>C, utilize a number of different objective measures of channel
the local estimaté, (t,f) does not contribute to the analysis. consensus. In this article, consensus is defined in terms of the
The constan€ we call thelocking window When this crite- interval between instantaneous frequency estimates from
rion is applied to a dense array of filters, discarding channelseighboring channels that are “in lockprevious section

that are not “in lock” is no loss, since for each portion of the Specifically, consensus is the median value df Xt,f,)
signal, there is some channel that is positioned correctly—f| (t,f,)|, where f, and f, are center frequencies for
(The number of channels locking onto a single pure tone isieighboring channels that are “locked” at tinte
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2 § I D. Quality checks through consensus
c
% % This analysis can be applied to sparse sounds—sounds
2 gL~ —~ whose tonal components are separable and modulated suffi-

ciently slowly. Fast modulations imply extended frequency

2.0 , P 2.0 0 - 10 representations, so modulated tones with separable center
0 fime [ 0 e fmie] frequencies may nevertheless have significant frequency
. ] overlap due to their modulations. To illustrate why fast
30 Bandwdith=80 Hz. 3.0 Bandwdith=10 Hz. modulations require wideband analysis, consider a pure tone
©. - i I NG o at frequencyw that is per_iod?cally modulated in gmplitgde at
) TN — — 3§ a lower frequencyn, . This signal, cosft)cos(wt) is equiva-
= -‘; lent to (1/2)cof(w— w,)t)+ (1/2)cof(w+ w,)t), and to ac-
§ e S curately represent it within a single band, a filter centered at
g § o must have a frequency bandwidth of at least,2
8 ; e Similarly, Eqg. (10) reveals that a single tone with peri-
***** odic frequency modulation involves a sum of sidebands with
2.0 : 2.0 an infinite extent in frequency. Any bandpass filtering will
0 time [ms] 40 0 time [ms] 40

involve truncations of the sum, and the severity of the trun-
FIG. 3. Instantaneous frequency analysis requires bandwidth optimization(.:_atlon depends on th? center frequency a_nd bandwidth of the
The analysis of a signal consisting of the sum of two frequency modulatedilter, as well as the time scale and amplitude of the modu-
tones. One tone is centered at 2.2 kHz, the other at 2.8 kHz. Each tone jations. If a signal is sparse by our definition, the truncation

modulated with peak to peak variations in frequency of 70 Hz, at a period of

14 ms. The filter bank follows the design used in Fig. 2, but the bandwidthOf frequency modulations at the optimum bandwidth is neg-

Af of the filtering (indicated by the gray rectangle in each figureries for  ligible, and n?ighbqring Channe!s produce very Sim"_ar re-
each panel as followga) 550 Hz;(b) 270 Hz;(c) 80 Hz;(d) 10 Hz.[Each  sults. Alternatively, if the signal is not sparse, truncation is
rectangle covers the area defined by Gabor uncertainty, though the rectangg@gniﬁcam Ieading to distinct frequency estimates in differ-
in panel(d) only covers half the actual time scale due to the limited dimen- ’ . . )
sions of the figurd. Filters that are too wide, as in panél), introduce ent channels. For thls_reason’ the magnitude OT the cross

interactions among signal components. Filters that are too ngpamels(c) channel consensus indicates the degree of error in the analy-

and (d)] lose temporal resolution. Sis.
Figure 5 demonstrates a correlation between cross-

This measure performs best when frequency estimateghannel consensus and frequency error for a family of test
with insignificant amplitude are excluded from the calcula-signals. Each signal in the set consists of two frequency-
tion of consensus. In practice, information is drawn on|ymodulated tones separated by a fixed interval, as illustrated
from channels whose instantaneous amplitude is greater than Fig. 3. For large intervals between tones and slow modu-
the median instantaneous amplitude over all channels.  lation rates, the signal is spectrally sparse and can be re-

Figure 4 demonstrates that this measure is maximized &olved with the IFD method. For small intervals between
the optimum bandwidth for the signal discussed in Fig. 3tones and fast modulation rates, the tones overlap and error
For the sparse signals analyzed in this paper the optimuri the analysis increases. To generate the figure, the optimum
bandwidth is found at a single, well-defined maximum ofbandwidth is first determined for each signal by maximizing
this measure of cross-channel consensus. Bandwidth optimgonsensus, as described in the previous section. At the opti-
zation through consensus can, in principle, be generalized t®um bandwidth, rms error between the known signal content
and the IFD estimate is plotted against the median consensus
value over the time—frequency plane. When modulation rates
are too fast to resolve, consensus measures decrease.

In addition to averaged quality measures, consensus
within local regions of the time—frequency plane can indi-
cate well-resolved signal components within a larger analy-
sis. (Even the white noise analysis in Fig. 2 displays what
appear to be “caustics,” or regions of high agreement be-
tween nearby filters, though the overall analysis is character-
ized by low consensus.

N In summary, consensus between redundant channels is
0 100 200 300 400 500 used to guide bandwidth optimization, and to signal the qual-
bandwdith [Hz.] ity of the final analysis. In principle, local consensus mea-

FIG. 4. The optimum bandwidth is derived from the consensus maximum.Sures can be used to find SpeCtra”y sparse components within

The cross-channel consensus is plotted as a function of the filter bank banf'OT€ complex signals, or to adapt a bandwidth separately for
width, for the two-tone signal analyzed in Fig. 3. different regions of the time—frequency plane.

eof -~ "~ T T

consensus [1/Hz.]
o
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FIG. 6. A comparison of general time—frequency precision based on spec-

g tral derivative pitch trackingSD) with IFD estimates. The rms error in pitch

= ok 1 tracking is plotted as a function of the modulation rate of the test signals.
] The analyzed signal contains modulated tones centered on 1100, 2000, and
% 2900 Hz. Each tone is independently modulated with fast frequency
2 modulations—200 Hz peak to peak in pari@l and 40 Hz peak to peak

3 modulations in(b). The optimum time scale of the windowing function in

the Fourier analysis was determined and used in this compafoms.

S Y (In the spectral derivative analysis, the windowing functions are prolate
spheroidal sequencesThe fixed bandwidth IFD analysis uses Gaussian
windows of duration 1.6 ms. The IFD analygigke many other methods
FIG. 5. The consensus measure indicates the degree of error in frequenéglapted to sparse signaischieves a pitch tracking precision that can be
estimates. Test signals consist of two rapidly modulated tones similar t@rders of magnitude sharper than the resolution of general Fourier analysis.
those illustrated in Fig. 3. The peak to peak modulation depth varies in

uniform steps from 100—-400 Hz, modulation rate from 20-300 Hz. The L

interval between the tones is varied in uniform steps from 1200 Hz to 180@3- Precision

Hz. The analysis employs 500 uniformly spaced channels from 0-3 kHz. A
The bandwidth is first optimized for each signal, according to the automated As for other methods specialized for sparse sounds, IFD

procedure described in the text. At the optimum bandwidth, the mediaff@n achieve high precision in both time and frequency
value of consensus is plotted against the median error of frequency estivhereas general Fourier analysis is limited by the uncer-

mates, based on the known signal content. For the most rapidly modulateﬁiiinty principle For example frequency errors for the sig-

signals(3 ms modulation perigd the rms error in frequency estimates is . .
only 10 Hz. This precision can be compared with the frequency uncert'clintyp"’lIS analyzed in Fig. 5 range from less than 1 Hz to 10 Hz,

of standard Gabor analysis that must be roughly 300 Hz to accommodate th#hereas the time scale of modulations in these signals imply
temporal responses that would resolve 3 ms features. a classical frequency uncertainty as high as 300 Hz.

Figure 6 contains an explicit comparison with classical
frequency uncertainty for a family of test signals. To produce

RMS error  [Hz.]

IIl. RESOLUTION AND PRECISION

Understanding the limits of the method requires intro- 5 3 3.3
ducing a distinction betweemsolutionand precision a dis- (a) : (b)
tinction well developed in, e.g., microscopy. Precision is the § ',H&' § W
accuracy with which the position of a given object can be . | # =3
computed, while resolution is the smallest distance at which cc>>’ f cc>>‘ |
two objects may be discriminated as distinct. 2 o
o p (on
A. Resolution 2 i ey 2 \/\[. A
The IFD analysis requires that the bandwidth of the fil- 1.0 ¥ : 1.0 "
ters be narrower than the separation between adjacent fre 0 time [ms] 250 0 ime [ms] 250
guency components. Since the time accuracy of the analysi3.0 J 3.0 r
is inversely proportional to bandwidth, the IFD resolution is © i~ (d)
constrained by a variant of the Fourier uncertainty relation: E_‘ i
5 9
1 5 g
AT Af = =, (11 S =)
min 2 g g
whereAf i, is now the minimum separation between adja- o 5K

cept frequency components, aAd the effective time reso- 0 time [ms] 60 0 time [ms] 60
lution with which frequency changes can be tracked.
The resolution limit of the IFD method can also be de-FIG. 7. Vocal illustrations: analysis of a whistle in a canary song. Pael

. . - . ontains a windowed short-time Fourier analysis or sonogram with the fol-
scribed in terms of the maximum modulation rates that carl?oWing parameters: analyzing window 23 ms, 80% overlap. Péveton-

be resolved for a given separation of frequency componentgajns an IFD analysis with channels of bandwidth=600 Hz, spaced 20
One example of this limit is as follows: for frequency modu- Hz apart. The locking window for this analysis A€ /2. Panels(c) and (d)
lations that are faster than the depth of modu|ati9ﬁg@) c_o_ntain close-up views of a frequency instability in the whistle. Pix_el inten-
in Eq. (10), Af/2 must be greater than the modulation rate sities for all four pane!s were scaled from yvhiﬁﬂ dB below Fhe maximum

. . . owen to black (maximum power according to the logarithm of signal
otherwise sidebands of the modulated signal are severefpwer. The fundamental resolution of classical time—frequency analysis

truncated. (AfAt>1/2) is indicated by the gray rectangle in patel
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FIG. 8. Vocal illustrations: analysis of a fragment of operatic voice. Panel bandwdith [Hz.]
(a) contains a windowed short-time Fourier analysis using a 42 ms sliding
window. Panel(b) contains the instantaneous frequency decomposition,FIG. 10. Consensus properly guides bandwidth selection of the human vocal
Af=70Hz. Pixel intensities for both panels are scaled from w8t dB signals. The cross-channel consensus is plotted as a function of bandwidth,
below the maximum powgrto black (maximum power according to the  for the fragments of human voice in Fig. 8 and Fig. 9. The optima corre-
logarithm of signal power. As in previous figures, the resolution of the spond to bandwidths chosen in the previous figures.
uncertainty principle is indicated by the gray rectangle in the figure.

C. Analysis of voice signals

this figure, frequency contours of the test signals are esti-

mated based on either IFD or a short-time F?\‘;ngr methoghethod to the analysis of vocal signals. Figure 7 illustrates a
(zero crossings of multitaper spectral derivativeS). The comparison with general time—frequency analysis for a syl-

rms error in frequency contour estimation was then calcuigpie in a canary song. The syllable consists of a sum of

lated. Over a range of modulation rates, the IFD analysis at §)yag of very narrow spectral definition. The frequency in-

fixed bandwidth achieves a precision of frequency estimatio . ijities of the whistle, expanded in pan&s and (d), are

one or two orders of magnitude sharper than the resolution qhgo|yed in detail. The fine structure revealed in tonal bird

general Fourier analysis. _ _ __ song is useful for generating more accurate studies of vocal
Enhanced resolution for sparse signals is not surprising, o qyction and perception. In a variety of experiments, birds

Any method specialized for sparse sounds will outperform 4,,ye demonstrated great acuity for distinguishing fast modu-

more general time—frequency analysis. For specific signgkions of high-frequency signals, and thus the structure re-

ensembles, specializgd .applications of Fourier analysis C&kaled in a higher resolution analysis is likely to be percep-
also outperform the limits of the general method. For ex'tually relevant?3L

ample, in the analysis of sparse signals, frequency contours Figure 8 contains an analysis of vibrato from an opera
can be more precisely localized by interpolating the Fourie%inger's exercises, and Fig. 9 contains an analysis of the
estimates between frequency bfﬁs’;omparisons have been o “woman” spoken by a female speaker. The relatively

made among methods of Fourier interpolaffohand mea- |, frequency of human voiced sounds results in narrow

sures of instantaneous frequency. In the vicinity of a Specnaépacing between the overtones, requiring the use of filters

peak, instantaneous frequency measures meet or exceed {ig iy tuned in frequency to separate the components, and

precision 059 7pitch tracking achieved through Fourier 5 5 corresponding loss of temporal definition. Even so, in

interpolationt many cases as in Fig. 9, the instantaneous frequency and

Relative to other specialized methods, the primary adympjityde for most harmonics can be reliably extracted with

vantage of the IFD method is the generality conferred byhigh definition. In general, the applicability of the new

redundancy and cross-check. No information is needed aboyahqq to speech analysis is limited to those portions of the
the analyzed signal to apply the method. If the signal is Sufgjgna that are spectrally sparse. Figure 10 illustrates cross-
ficiently sparse, an optimized analysis is found without ref-

' channel consensus as a function of bandwidth for the human
erence to the signal character. vocal signals. In both cases, there is a distinct maximum
consensus at the optimum analysis bandwidth.

This final section illustrates three applications of the IFD

3.0
AN
= [ & IV. CONCLUSION
z 5\\\ N . - .
= IFD represents sparse signals in time and frequency with
o / \ - .. . . .
S Fa 2\ high precision through a self-optimized instantaneous fre-
% » o N qguency analysis. Two aspects of cross-validation are em-
= WE_ /& ployed to optimize the analysis. The tonotopic cross-check
e — compares tonotopic and phase information within each chan-

0.0 . : . .

0 time [ms] 900 0 time [ms] 900 nel. A filter contributes locally to the analysis only if its

center frequency and instantaneous frequency match. In a
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