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ABSTRACT

We present a new quantum cryptography implementation that uses frequency-correlated photon pairs to combine
one-way operation with an autocompensating feature that has hitherto only been available in implementations
that require the signal to make a round trip between the users. Furthermore, we describe a new scheme for
creating frequency-correlated photon pairs (auto-phase-matched spontaneous parametric down-conversion). The
new scheme offers several advantages over previous schemes, including the ability to generate frequency-correlated
photon pairs regardless of the dispersion characteristics of the system.
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1. INTRODUCTION

The idea of using quantum systems for secure communications originated in the 1970s with Stephen Wiesner’s
intuition that the uncertainty principle, commonly derided as a source of noise, could be harnessed to detect
unauthorized monitoring of a communication channel.1 The first quantum cryptographic protocol (BB84)
was published by Charles H. Bennett and Giles Brassard in 1984.2 While rigorous proofs of the security of
BB84 under realistic conditions have only recently emerged (cf. Ref. 3 and references therein), the “no-cloning
theorem”4 published in 1982 provides a one-line security proof applicable in ideal circumstances. Given the
obvious choice of light as a signal carrier, the path to practical quantum cryptography was clear: develop robust
experimental methods to create, manipulate, transmit, and detect single photons. For an excellent summary of
progress in the theory and practice of quantum cryptography, see Ref. 5.

The nascent field of quantum cryptography took an unexpected turn in 1992 when Artur Ekert published
a new protocol6 that derived its security not from the impossibility of cloning a quantum state, but rather the
seemingly distinct phenomenon of the violation of Bell’s inequality.7 The practical importance of this scheme
was immediately questioned by Bennett et al.8 They pointed out that the same hardware required for Ekert’s
protocol could be used to implement the more efficient BB84 protocol. This is accomplished by regarding the two-
particle source together with one detection apparatus as a single entity that produces a localized quantum state
(i.e., one of the four BB84 polarization states) to be detected by the other detection apparatus. Although not
described as such, their objection amounted to an application of the concept of advanced waves.9 This method,
pioneered by David Klyshko, establishes a formal equivalence between two optical constructs: 1) the propagation
of two entangled photons from a localized source to a pair of remote detectors, and 2) the propagation of a single
photon from one detector backwards towards the source, where it is reflected, and then forward to the other
detector. The advanced-wave method is a powerful tool for developing intuition about two-photon interference
experiments that demonstrate entanglement in time,10 space,11 and, trivially, polarization. For a discussion of
apparent backward-in-time processes in the more general context of quantum information theory, see Ref. 12.
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The strong interest in absolutely secure communications has fueled an ongoing effort to determine which
protocol leads to the best performance in practical implementations. In 1997, Muller et al. introduced autocom-
pensating quantum cryptography (AQC), in which the optical signal makes a round trip between the legitimate
users (commonly referred to as Alice and Bob).13 The scheme is described as autocompensating since it pro-
vides high-visibility interference without an initial calibration step or active compensation of drift in the optical
apparatus; these favorable properties led the authors to refer to their scheme informally as “plug-and-play quan-
tum cryptography.” While this scheme and its refinements14–18 represent substantial progress in the quest for
a practical quantum cryptography implementation, the requirement that the signal travel both directions along
the transmission line leads to non-trivial technical difficulties.

In this article, we describe one-way entangled-photon autocompensating quantum cryptography (OW-AQC)19

in which two photons travel one way (e.g., from Alice to Bob), instead of one photon traveling back and forth,
as in AQC. The formal association of OW-AQC with AQC follows directly from the advanced-wave view, just as
Ekert’s scheme follows from BB84. While Ekert’s scheme employs entanglement to allow an alternative space-
time configuration (signal source between Alice and Bob versus a source on Alice’s side), OW-AQC employs
entanglement to achieve immunity to interferometer drift within the original paradigm of a one-way quantum
channel from Alice to Bob. Thus, our result provides a new example of a capability afforded by quantum
entanglement.

This article is organized as follows. First, we briefly review the standard AQC scheme. Second, we introduce
OW-AQC and show that it combines one-way operation with the insensitivity to drift that is characteristic of its
predecessor. Third, we point out the formal equivalence of the two methods from the advanced-wave viewpoint
using space-time diagrams. Fourth, we discuss the relative merits of OW-AQC. Finally, we describe auto-phase-
matched spontaneous parametric down-conversion,20 a new method for creating the frequency-correlated photon
pairs which are required for OW-AQC.

2. ONE-WAY AUTOCOMPENSATING QUANTUM CRYPTOGRAPHY

Figure 1A contains a schematic of AQC. The protocol begins with Bob launching a strong pulse from a laser (L)
into a Mach–Zehnder interferometer via a circulator (C). This interferometer splits the pulse into an advanced
amplitude (P1) and a retarded amplitude (P2). The amplitudes travel through phase modulators (PM) on Bob’s
side and Alice’s side, and are then attenuated (AT) to the single photon level and reflected by Alice back to
Bob. Although both P1 and P2 will again be split at Bob’s Mach–Zehnder interferometer, by gating his detector
appropriately, Bob can postselect those cases in which P1 takes the long path and P2 takes the short path
on the return trip. Thus, the interfering amplitudes experience identical delays on their round trip, ensuring
insensitivity to drift in Bob’s interferometer.

The role of the phase modulators can be readily understood by examining the space-time diagram of this
protocol (see Fig. 1B). The eight boxes (A1–A4, B1–B4) refer to the phase settings on the two modulators as the
two amplitudes pass through each of them twice. For example, B2 refers to the phase acquired by the delayed
amplitude of the pulse that Bob sends to Alice, while B4 refers to the phase acquired by the same amplitude
as it travels back from Alice to Bob. It should be understood that B1–B4 refer to settings of the same physical
phase shifter at different times (and similarly for A1–A4). The probability of a detection at Bob’s detector is
given by

Pd ∝ 1 + cos[(B2− B1) + (A2−A1) + (A4−A3) + (B4− B3)]. (1)

From this expression we see that only the relative phase between the phase modulator settings affects the
probability of detection. Thus, by setting B1 = B2 and A1 = A2, Alice and Bob can implement the interfer-
ometric version of BB84 by encoding their cryptographic key in the difference settings ∆φA ≡ A4 − A3 and
∆φB ≡ B4− B3. Since the resulting expression

Pd ∝ 1 + cos (∆φA +∆φB) (2)

is independent of the time delay in Bob’s interferometer and the absolute phase settings in either modulator,
Alice and Bob are able to achieve high-visibility interference without initial calibration or active compensation
of drift.
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Figure 1. A) and C) depict schematics for AQC and OW-AQC, respectively. L is a source of laser pulses, S emits the
two-photon entangled state |Ψ〉 described by Eq. (3), C is a circulator, AT is an attenuator, PM is a phase modulator,
and (D, De, Dl) are detectors. B) and D) depict the associated space-time diagrams which indicate how the interference
condition between the two amplitudes is controlled by both Alice and Bob. The dotted space-time traces in B) are used
in the text to explain the relationship between the two methods from the viewpoint of advanced waves. In D), the four
rectangles at the point z = zD correspond to the four time intervals labeled at z = zA and z = zB . The unshaded boxes
indicate the two time intervals during which Bob’s detector is activated. The solid and dashed space-time traces depict
two interfering two-photon amplitudes, as described in the text.

Figure 1C contains a schematic of OW-AQC. Alice’s source (S) produces a specific two-photon state which is
transmitted to Bob and analyzed with a Mach–Zehnder interferometer and a single detector that is activated for
two distinct time intervals. As in AQC, Alice and Bob change the settings of their respective phase modulators
at specific time intervals in order to implement BB84. The two-photon state that Alice sends to Bob consists
of an early photon (which is emitted from Alice’s source in the time interval te ∈ [−2T, 0]) and a late photon
(which is emitted in the time interval tl ∈ [0, 2T ]). The joint emission times of the early photon and the late
photon are described by the state |Ψ〉 = ∫ ∫

dtedtl f(te, tl) |te〉 |tl〉, where

f(te, tl) ∝
{

δ(te + tl) −2T < te < 0
0 otherwise. (3)

This particular entangled state entails perfect anti-correlation in the time of emission of the two photons; thus,
while the difference in emission time of the two photons is uniformly distributed over the interval [0, 4T ], the sum
of the emission times is fixed at t = 0 for each emitted pair. By Fourier duality, the two photons are correlated
in frequency. While the typical configurations for practical sources of entangled photon pairs produce frequency
anti-correlation, the frequency-correlated case has been discussed in several papers.20–25

Figure 1D presents a space-time diagram of the OW-AQC protocol. The two-photon entangled state is sent
through Alice’s phase modulator at position z = zA where she sets the phase shifts (A1–A4) for the four time
intervals indicated in the diagram. Next, the two-photon state is transmitted along the channel to Bob, where
it is sent through Bob’s phase modulator (z = zB). A Mach–Zehnder interferometer (z = zM ) then delays a
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portion of the radiation by a time τ . Finally, Bob’s detector (z = zD) is activated for two time intervals of
length T that correspond to the second halves of the early and late photon wave packets. Gating Bob’s detector
in this way postselects the cases in which the advanced (delayed) portion of each photon takes the long (short)
path. This postselection reduces the photon flux by half and obviates the need for rapid switching of optical
paths. Since the time intervals are non-overlapping, we may consider that Bob is using two detectors that are
distinguished by the ordering of their respective time windows. Thus, for the rest of the letter, we refer to two
detectors on Bob’s side, De and Dl, which correspond respectively to the early and late activation intervals of
Bob’s single physical detector.

The two-photon interference can be seen by examining the space-time trajectories of two specific two-photon
amplitudes. In Fig. 1D, the solid space-time traces entail emission times (te, tl) = (−3T/2, 3T/2) and the
dashed traces entail emission times (te, tl) = (−T/2, T/2). For delay τ = T , the portion of the solid and
dashed amplitudes leading to a coincidence are indistinguishable after Bob’s Mach–Zehnder interferometer. This
indistinguishability brings about quantum interference that varies continuously between completely constructive
and completely destructive, depending on the joint phase settings A1–A4, B1–B4.

By activating detectors De and Dl for a duration T at times zD

c −T and zD

c +T , respectively, Bob establishes
the following relation between the electric-field operators Êe,l at his detectors and the annihilation operator â(t)
associated with |t〉,

Êe(t1) ∝
{

ei(A2+B2)â(t1 − zD

c − τ) + ei(A1+B1)â(t1 − zD

c ) −T < t1 − zD

c < 0
0 otherwise

(4)

Êl(t2) ∝
{

ei(A3+B3)â(t2 − zD

c − τ) + ei(A4+B4)â(t2 − zD

c ) T < t2 − zD

c < 2T
0 otherwise,

(5)

where τ is the delay in Bob’s Mach–Zehnder interferometer, and c is the speed of light. Substituting into the
expression for the probability of a coincidence Pc ∝ ∫ ∫

dt1dt2 |〈0|Êe(t1)Êl(t2)|Ψ〉|2, we obtain

Pc ∝ Λ
(

τ − T

T

)
[1 + cos (∆φA +∆φB)] +

1
2

[
Λ

(
τ − T/2

T/2

)
+ Λ

(
τ − 3T/2

T/2

)]
, (6)

where Λ(x) = 1− |x| for −1 < x < 1 and 0 otherwise. When τ = T , this equation reduces to the expression for
the probability of detection in AQC [see Eq. (2)]. To implement the interferometric version of BB84, Alice and
Bob hold the settings of their respective phase modulators constant for the first two time intervals depicted in
Fig. 1D (i.e., A1 = A2 and B1 = B2), and manipulate the difference terms, ∆φA ≡ A4−A3 and ∆φB ≡ B4−B3.
The crucial point is that the interference condition is independent of the absolute setting or drift in either of
the phase modulators. This demonstrates that OW-AQC achieves the insensitivity to absolute phase settings
characteristic of AQC, while requiring only one pass through the optical system.

It is instructive to compare the space-time diagrams in Figs. 1B and 1D. Reflecting the dotted traces in
Fig. 1B around the line t = 0 results in the exact space-time arrangement of Fig. 1D. This construction also
provides a clear explanation of why the two-photon state described by Eq. (3) is chosen to possess frequency
correlation instead of the more common frequency anti-correlation. A device that creates pairs of photons with
coincident frequencies (S in Fig. 1D) is nothing more than a mirror (as required by Fig. 1B) when analyzed from
the advanced-wave viewpoint. Thus, Klyshko’s advanced-wave interpretation provides an intuitive justification
for the equivalence between the probability of single-photon detection [Eq. (2)] and the probability of two-photon
coincidence [Eq. (6)] with respect to the phase modulator settings A1–A4 and B1–B4.

Here we provide a qualitative comparison of AQC and OW-AQC. While AQC requires that only one photon
travel the distance between Alice and Bob after Alice attenuates Bob’s signal to the single-photon level, OW-
AQC requires that two photons travel the same distance. Thus, the loss incurred in OW-AQC is approximately
twice that of AQC for the same distance. However, the use of a strong pulse on the first leg of the round
trip in AQC also contributes to a disadvantage relative to OW-AQC. Specifically, backscattered light from the
strong pulse is guided directly into Bob’s detectors and can lead to unacceptably high bit-error rates. Another
advantage of OW-AQC is immunity from the “Trojan horse attack”,5 in which Eve sends an optical signal into
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Figure 2. A schematic of auto-phase-matched SPDC, a new method for generating entangled-photon pairs with con-
trollable frequency correlation. The z-polarized pulsed pump beam initiates counter-propagating y-polarized SPDC in
the single-mode nonlinear waveguide. The joint spectrum of the down-converted beams is controlled by the spatial and
temporal characteristics of the pump beam, as described in the text.

Alice’s lab and measures the state of the reflected light in order to infer the setting of Alice’s phase modulator.
While an optical isolator can subvert this attack in the case of OW-AQC, the bidirectional flow of optical signals
in AQC prevents this defence. In AQC, the probability of detection is independent of the delay τ in Bob’s
interferometer [see Eq. (2)], while in OW-AQC, the interference condition is independent of τ , but the visibility
of this interference is not [see Eq. (6)]. Thus, while drift in the absolute values of the phase modulations will
not affect the performance of OW-AQC, drift in the optical delay must be minimized to maintain high-visibility
interference.

It is important to note that OW-AQC requires the frequency-correlated two-photon entangled state described
in Eq. (3). This state has been investigated theoretically,21 and several experimental methods for creating the
state have been proposed.20, 22–25 However, the state has not yet been experimentally demonstrated. While
frequency-anticorrelated photon pairs are naturally generated when a monochromatic pump beam impinges on
a nonlinear crystal, frequency-correlated photon pairs are only generated when a broad-band pump is used, and
constraints on the phase and group velocities of the pump, signal, and idler are satisfied. These constraints can
be satisfied in a collinear setup by exploiting the birefringence of the nonlinear crystal.22, 23 Enhanced flexibility
in satisfying these constraints can be achieved by imposing a periodic modulation of the crystal’s nonlinear
coefficient.25 A second approach to satisfying these constraints is to exploit the inherent symmetry of a configu-
ration in which a nonlinear waveguide is pumped at normal incidence such that the down-converted photons are
counter-propagating.20 The primary advantage of this auto-phase-matched method is that frequency-correlated
photon pairs can be generated regardless of the dispersion characteristics of the nonlinear material.

3. AUTO-PHASE-MATCHED SPONTANEOUS PARAMETRIC
DOWN-CONVERSION

The transverse-pump, counter-propagating geometry depicted in Fig. 2 has been noted as a promising source of
entangled-photon pairs for both type-I26 and type-II27 SPDC. The most obvious advantages of this geometry over
a collinear geometry pertain to the separation of the three interacting beams. In a transverse-pump, counter-
propagating geometry, all three beams are traveling in different directions. Thus, the usual techniques for
filtering the pump beam from the down-conversion and separating the down-converted beams at a beamsplitter
are unnecessary.

The investigations in Refs. 26, 27 were limited to the case of a monochromatic pump beam. There are
two primary advantages of pumping with a broadband beam perpendicular to the waveguide and arranging for
type-I down-conversion. First, the dispersion relation for the pump beam plays no role in the phase-matching
analysis, since the waveguide ensures phase-matching in the transverse direction. Thus, we refer to the method
as auto-phase-matched. Second, the counter-propagating, identically-polarized signal and idler fields will be
phase-matched in the long-crystal limit only if they have equal and opposite propagation vectors, a condition
which entails equal frequency. Thus, the bandwidth of the pump determines the allowable range of the sum
frequency of the signal and idler, and the longitudinal length of the illuminated portion of the crystal determines
the allowable range of the difference frequency.
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Figure 3. The Franson interferometer (A) and the two types of indistinguishability it can bring about (B and C). B)
depicts the indistinguishability in time of creation of the photon pair, and C) depicts indistinguishability in position of
creation of the photon pair. These two cases are shown in the text to correspond to frequency-anti-correlated photon
pairs and frequency-correlated photon pairs, respectively.

We assume that the nonlinear coefficient and the propagation constants vary sufficiently slowly with fre-
quency that they may be taken outside any frequency integrals in which they appear as integrand prefactors.
Furthermore, we assume that the waveguide is long compared to the width of the pump beam such that the
interaction length is controlled by the pump beam profile along the z-axis (see Fig. 2). Following the derivation
in Ref. 26 of the quantum state of a counter-propagating photon pair, we have

|Ψ〉 ∝
∫∫

dωl dωr Ẽt(ωl + ωr)f̃z [∆β(ωl, ωr)] |ωl〉l |ωr〉r, (7)

where Ẽt(ω) and f̃z(∆β) are the respective Fourier transforms of the temporal and spatial functions describing
the pump beam Ep(t, z) = Et(t)fz(z), ∆β(ωl, ωr) = β(ωl)−β(ωr) is the difference in the waveguide propagation
constant evaluated at ωl and ωr, and |ω〉l(r) denotes a single photon at frequency ω moving to the left(right).

To investigate the dependence of |Ψ〉 on the characteristics of the pump, we choose Gaussian profiles in space
and time for the pump pulse, such that Ẽt(ω) ∝ e−

1
2 (ωτ)2 and f̃z(∆β) ∝ e−

1
2 (∆βW )2 , where τ and W are the

duration and width (along the z-axis in Fig. 2) of the pump pulse, respectively. In the limit of a monochromatic
pump (τ → ∞) with finite spatial extent, Ẽt(ωl + ωr) is sharply peaked around the pump center frequency.
Thus, the sum frequency of the signal and idler is fixed. This is the familiar frequency-anti-correlated case that
is readily achievable in thin bulk crystals. In the limit of a finite-duration pump pulse of infinite spatial extent
(W → ∞), f̃z [∆β(ωl, ωr)] is sharply peaked around ∆β = 0. Thus, photon pairs for which ωl ≈ ωr predominate.
This is the frequency-correlated case that has hitherto only been achieved by imposing a group velocity matching
condition.

The efficiency of this geometry in an GaAs-based waveguide of length 1 mm and transverse dimension 3 µm is
calculated in Ref. 27 to range between 10−9 and 10−11 depending on the transverse profile of the waveguide. These
figures compare favorably with the SPDC efficiencies achieved in more conventional bulk-crystal configurations
(e.g., 10−13 in Ref. 28), though they are still several orders of magnitude less than that achieved in periodically
poled lithium niobate waveguides (e.g., 10−6 in Ref. 29).

The Franson interferometer30 is a natural tool for distinguishing frequency correlation and frequency anti-
correlation. When the two delays (τ1 and τ2) are equal to within the reciprocal bandwidth of down-conversion,
coincidence detections can be associated with indistinguishable pair-creation events (see Fig. 3A). If the down-
converted photons are correlated in time (anti-correlated in frequency), the short-short two-photon amplitude
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Figure 4. The probability of coincidence when frequency-anti-correlated (A) and frequency-correlated (B) states are
analyzed with a Franson interferometer (see Fig. 3). The down-converted beams have center frequency ωp/2 and bandwidth
ωp/10. τ1 and τ2 are in units of optical cycles at the center frequency of downconversion.

interferes with the long-long amplitude (see Fig. 3B). If the down-converted photons are anti-correlated in time
(correlated in frequency), the short-long amplitude interferes with the long-short amplitude (see Fig. 3C). The
duality between these two cases can be seen by comparing the loci of indistinguishable pair-creation events in the
spacetime diagrams of Fig. 3B and Fig. 3C. The frequency-anti-correlated case depicted in Fig. 3B arises from
the coherent superposition of pair-creation events at a fixed position over a range of times, while the frequency-
correlated case depicted in Fig. 3C arises from the coherent superposition of pair-creation events at a fixed time
over a range of positions. Note that while the interference visibility decreases in both cases as τ1 − τ2 approaches
the reciprocal bandwidth of down-conversion, the relative phase between the interfering amplitudes depends on
τ1 + τ2 in the frequency-anti-correlated case, and on τ1 − τ2 in the frequency-correlated case.

In Fig. 4 we plot the probability of coincidence in the Franson interferometer for the aforementioned limiting
cases of the two-photon source: perfect frequency anti-correlation (τ → ∞, W →finite), and perfect frequency-
anti-correlation (τ →finite, W → ∞). The finite values of τ and W are chosen such that the bandwidth of
downconversion is ωp/10 in each case. The fourth-order fringes in the τ1 ≈ τ2 � 10/ωp region show that the
Franson interferometer clearly distinguishes the two cases. The modulation is in the ∆τ1 = ∆τ2 direction the
frequency-anti-correlated case and in the ∆τ1 = −∆τ2 direction in the frequency-correlated case.

By establishing the signature of the perfect frequency-correlated state (the fourth-order fringes in Fig. 4B),
we are able to compare the performance of experimental methods designed to produce this state. Specifically, the
visibility of the fringes in Fig. 4B provides a measure of the quality of the frequency-correlated state. In Fig. 5
we plot a numerical calculation of the visibility achieved by the source described in Ref. 25 (thin line) and that
achieved by our auto-phase-matched method (thick line) in a GaAs-based waveguide, for a range of interaction
lengths. In the method of Ref. 25 the interaction length is the thickness of the crystal, while in our method
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Figure 5. Numerical calculation of the fourth-order fringe visibility seen in a Franson interferometer when the perfect
source of frequency-correlated photon pairs is approximated by the method described in Ref. 25 (thin line) and by the
auto-phase-matched method described in the text (bold line). The plot depicts the effect of changing the interaction
length of the nonlinear process while holding the bandwidth of the pump fixed.

the interaction length is the width of the pump beam in along the z-axis (see Fig. 2). In order to minimize the
complicating effect of second-order interference, the visibility is calculated at the delay offset (τ1, τ2) = (4/σ, 4/σ)
where σ is the bandwidth of down-conversion.

4. CONCLUSIONS

We have described a new quantum cryptography implementation that exploits quantum entanglement to achieve
the favorable stability of AQC without requiring a round trip between Alice and Bob. This work represents
the first demonstration that quantum entanglement can offer practical advantages with respect to noise in
quantum cryptography implementations. The next step in evaluating the promise of this approach for practical
quantum cryptography involves explicit experimental proposals for creating the source described by Eq. (3) and
quantitative performance analysis.

Both this work and Ekert’s landmark paper6 linking quantum cryptography and Bell’s theorem describe
two-photon interference effects that employ novel space-time configurations to perform tasks previously achieved
with single-photon interference. These constructions can be seen as applications of Klyshko’s theory of advanced
waves, which provides a formal equivalence of one- and two-photon interference experiments.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation; the Center for Subsurface Sensing and Imaging
Systems (CenSSIS), an NSF Engineering Research Center; and the Defense Advanced Research Projects Agency
(DARPA).

REFERENCES
1. S. Wiesner, “Conjugate coding,” SIGACT News 15, pp. 78–88, 1983.
2. C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” Pro-

ceedings of the IEEE International Conference on Computers, Systems and Signal Processing, , pp. 175–179,
1984.

3. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, “Security of quantum key distribution with im-
perfect devices,” quant-ph/0212066 , 2002.

4. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, pp. 802–803, 1982.

Proc. of SPIE Vol. 5161     339

Downloaded from SPIE Digital Library on 02 Nov 2010 to 168.122.67.73. Terms of Use:  http://spiedl.org/terms



5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, pp. 145–
195, 2002.

6. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, pp. 661–663, 1991.
7. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N.Y.) 1, pp. 195–200,

1964.
8. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell’s theorem,” Phys.

Rev. Lett. 68, pp. 557–559, 1992.
9. A. V. Belinsky and D. N. Klyshko Laser Phys. (Moscow) 2, p. 112, 1992.
10. D. N. Klyshko, “On the theory for two-photon light interference,” Laser Phys. (Moscow) 2, p. 997, 1992.
11. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon

quantum entanglement,” Phys. Rev. A 52, pp. R3429–R3432, 1995.
12. N. J. Cerf and C. Adami, “Negative entropy and information in quantum mechanics,” Phys. Rev. Lett. 79,

pp. 5194–5197, 1997.
13. A. Muller, T. Herzog, B. Huttner, W. Tittel, H. Zbinden, and N. Gisin, ““plug and play” systems for

quantum cryptography,” Appl. Phys. Lett. 70, pp. 793–795, 1997.
14. G. Ribordy, J. D. Gautier, N. Gisin, O. Guinnard, and H. Zbinden, “Automated ’plug & play’ quantum key

distribution,” Electron. Lett. 34, pp. 2116–2117, 1998.
15. M. Bourennane, D. Ljunggren, A. Karlsson, P. Jonsson, A. Hening, and J. P. Ciscar, “Experimental long

wavelength quantum cryptography: from single-photon transmission to key extraction protocols,” J. Mod.
Optics 47, pp. 563–579, 2000.

16. D. S. Bethune and W. P. Risk, “Enhanced autocompensating quantum cryptography system,” Appl. Opt.
41, pp. 1640–1648, 2002.

17. T. Nishioka, H. Ishizuka, T. Hasegawa, and J. Abe, ““circular type” quantum key distribution,” IEEE
Photon. Tech. Lett. 14, pp. 576–578, 2002.

18. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, “Quantum key distribution over 67 km with
a plug & play system,” quant-ph/0203118 , 2002.

19. Z. Walton, A. F. Abouraddy, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “One-way entangled-photon
autocompensating quantum cryptography,” Phys. Rev. A 67, p. 062309, 2003.

20. Z. D. Walton, M. C. Booth, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Controllable frequency en-
tanglement via auto-phase-matched spontaneous parametric down-conversion,” Phys. Rev. A 67, p. 053810,
2003.

21. R. A. Campos, B. E. A. Saleh, and M. C. Teich, “Fourth-order interference of joint single-photon wave
packets in lossless optical systems,” Phys. Rev. A 42, pp. 4127–4137, 1990.

22. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-
conversion driven by a narrow pump pulse,” Phys. Rev. A 56, pp. 1534–1541, 1997.

23. R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled
photons produced by ultrashort pulses,” Phys. Rev. A 62, pp. 53810–53823, 2000.

24. Y.-H. Kim and W. P. Grice, “Generation of pulsed polarization entangled two-photon state via temporal
and spectral engineering,” J. Mod. Optics 49, pp. 2309–2323, 2002.

25. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating entangled two-photon states
with coincident frequencies,” Phys. Rev. Lett. 88, pp. 183602–183605, 2002.
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