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ABSTRACT

The dead-space carrier multiplication theory properly predicts the reduction in the excess noise
factor in a number of APDs. The theory is applied to measurements, obtained from J. C. Campbell and
collaborators at the University of Texas, for InP, InAlAs, GaAs, and AlGaAs APDs with multiplication-
region widths ranging from 80 nm to 1600 nm. A refined model for the ionization coefficients is reported
that is independent of the width of the device multiplication region of each device. In addition, in
comparison to predictions from the conventional multiplication theory, the dead-space multiplication
theory predicts a reduction in the mean bandwidth as well as a reduction in the power spectral density
of the impulse response. In particular, it is shown that the avalanching noise at high-frequencies is
reduced as a result of the reduction of the multiplication region width.

Keywords: Avalanche photodiode, dead space, impact ionization, excess noise factor, avalanche
breakdown down, frequency response.

1 Introduction

It is well known that for avalanche photodiodes (APDs) with thin multiplication regions, the con-
ventional (McIntyre) carrier-multiplication theory! does not correctly predict the reduction in the noise
characteristics. This reduced noise characteristic of thin APDs has been established by both experi-
ments and Monte-Carlo simulations.? ® The inadequacy of the conventional theory to explain the noise
reduction has been attributed primarily to the inability of the conventional multiplication model to
capture the dead-space effect. The dead space is the minimum distance a newly-created carrier must
travel before it is capable of effecting a new impact ionization.

Using excess-noise versus mean-gain data for thin GaAs, AlGaAs, InP, and InAlAs APDs, collected
by J. C. Campbell and collaborators at the University of Texas at Austin, it has been shown that the
dead-space multiplication theory (DSMT), developed earlier by Hayat et al.,” resolves the discrepancy
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between experimental data and the conventional-theory predictions.® Other researchers!’:!! have also
reached similar conclusions using a modified version of the original dead-space theory.”® In this paper,
the DSMT is used in conjunction with measurements of the gain and excess noise factor to establish
a refined width-independent model for the ionization coefficient of each carrier capable of effecting an
impact ionization. This refinement is accomplished by means of optimizing over the carrier threshold
energies. The model predicts the ionization coeflicients as a function of the electric field, within the
confines of a single set of parameters which is suitable for all multiplication-region widths.

In this paper, we use the above refined ionization coefficients in the DSMT model to provide excess-
noise-factor versus mean-gain curves that are in excellent agreement with those measured for each device,
regardless of the multiplication-region width. In addition, an extension of the DSMT is developed that
allows the computation of the autocorrelation function of the APD impulse response. This extension
involves developing six recurrence equations, which are derived according to the same renewal-theory
principles used in deriving the mean and the variance of the impulse response.!? The extracted width-
independent ionization coeflicients are then used in conjunction with the theory to predict the statistics
of the frequency response of thin APDs. Our results indicate that the application of the conventional
MclIntyre theory tends to overestimates the 3-dB bandwidth of thin APDs. Finally, the theory can
also be used to predict the breakdown voltage for thin devices. Preliminary results indicate that the
application of the conventional MclIntyre theory tends to underestimate the breakdown voltage in thin

APDs.

2 Dead-Space Multiplication Theory

In this section, we review the relevant aspects of the dead-space multiplication theory that will allow
the prediction of the excess noise factor, the statistics of the bandwidth, and the breakdown voltage.
Consider an electron-injected APD, and suppose that the multiplication region is of width w. The non-
localized impact ionization theory!3 assumes that each newly created carrier must travel a fixed distance,
called the dead space, within the high-field multiplication region before it is capable of impact ionizing.
The dead space for electrons and holes can be calculated aprior: through knowledge of the electric field
and the ionization thresholds. Moreover, threshold energies for various materials are available in the
literature. After traversing the dead space, a carrier may impact ionize with a probability rate which
is characterized by the ionization coefficients. Since these ionization coefficients are associated with
carriers that have traversed the dead space, they are the physical ionization coefficients. The physical
ionization coefficients are different from the effective ionization coefficients computed from conventional
localized models which do not account for dead space.

The dead-space multiplication theory (DSMT) is an analytical model that facilitates the computa-
tion of the gain, the excess noise factor, the impulse response statistics, and the breakdown voltage.
Furthermore, the DSMT can be used to extract the physical ionization coefficients from measurement.
This can be done by fitting the gain-versus-noise measurement to that predicted by the DSMT and
adjusting the ionization coefficients until a good fit is obtained. It has been shown? that these physical
lonization coefficients are material specific and do not depend on the the thickness of the multiplication
region. The effect of reducing the multiplication region on the device noise characteristics is accommo-
dated by the theory when these physical coefficients are used in conjunction with DSMT to determine
the APD noise and response-time characteristics.
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2.1 Gain noise

The gain and the excess noise factor can be calculated by solving the following set of recurrence
equations”:
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where h.(z) and hj(z) are the probability density functions (pdf’s) of random free-path lengths of the
electron and hole, respectively. Let « and 8 be the electron and hole physical ionization coefficients,
respectively. Then, a simple hard-dead-space model for the above pdf’s is given by’

he(z) = ae™ @ ddy(z — d,) (3)
hp(z) = Be PE—diy(z —dy), (4)

where u(z) is the unit step function. The solutions to (1) and (2) are in turn used to determine the
mean gain using
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The excess noise factor can also be computed using
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where z9(z) and y2(z) are the second-order moments which are governed by the following recurrence
relations”: '
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The recurrence equations (1), (2), (7) and (8) can be solved, for example, by means of a simple iterative
numerical technique.

2.2 Statistics of the Impulse Response

Recurrence equations have been previously developed by Hayat et al. for the mean and the variance
of the APD impulse response.!? These equations involve the electron/hole lifetime pdf’s and the carriers’
saturation velocities. However, to determine the power spectral density of the APD, which is the Fourier
transform of the autocorrelation function of the impulse response, a new set of recurrence equations are
needed. One of the main contributions of this paper is to report the development of such recurrence
equations and apply them to predict the power spectral density of actual thin devices.

We now review some of the basics of the technique. Following our earlier work,'? let Z.(t, ) be the
total number of electrons at time ¢ resulting from an initial parent electron at location = and time 0.
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Similarly, let Y, (¢,z) be defined similarly to Z.(¢,z) but with the initial electron replaced with a hole.
Now define Z,(t,z) as the total number of holes at time ¢ resulting from an initial parent electron at
location z and time 0, and finally, let Y}, (¢,z) be defined similarly to Zj(¢,z) with the initial electron
replaced with a hole. To see how these quantities can be used, consider an electron-injected device
(electron injected at z = 0) and note that the impulse response I(t) is related to Z.(t,z) and Zj(¢, )
through the simple relation

I(t) = q/w[veZ.(t,0) + v Zp(¢,0)]. (9)

The key idea that enables the development of the statistics of Z.(t, z), Z (¢, z), Ye (¢, z), and Y3 (¢, z)
is based on a renewal argument. For example, consider the quantity Z. (¢, z) and suppose for the moment
that an initial parent electron (at z) first impact ionizes at location £ > z. In this case, there will be
two newly created electrons and a hole at the location £. Each of the two electrons and the hole will
independently induce an avalanche process at the new location with a time equal to t less the electron
transit time from z to £. This type of renewal argument is also used to characterize the mean and the
variance of I(t).!? In this subsection, we show how this argument is used to derive the autocorrelation
function of I(¢). We present the key steps and defer the complete derivation and the detailed final
recurrence relations to a later time.

Let R(t1,t2) be the autocorrelation of I(t) defined as E[I(t1)I(t2)]. Clearly, in order to com-
pute the autocorrelation function, it is imperative to calculate the autocorrelations Cz, (t1,t2,2) =
E[Z.(t1,2)Z.(t2,z)] and Cgz, (t1,t2, ) = E[Z},(t1, ) Z),(t2, )] as well as the crosscorrelation Cz(t1,t2,z) =
E[Z.(t1,z)Z),(t2,)]. For brevity, we will present the recurrence equation only for Cz, (¢1,t2, ).

To do so, we first condition on the location where the parent electron (created at z) first im-
pact ionizes. Conditional on this location being & (note that £ > z), then the conditional mean of
Ze(t1,2)Z.(t2,z) given &, can be written as

ElZu(t10) 202, 9lE] = E[ (20— (€= 2)/00s8) + Z0(01 = (€ — )/, + Yolta = (€ — 2} /w0s6))
x (2l = (€= D)0 ) + 202 = (€= 0)/u8) + Yalta = (€ = 9)/09) )|,

where Z!(t1 — (£ — z)/ve,€) and Z)(t1 — (£ — z)/ve, &) correspond to the regenerated and the newly-
generated electrons at £, respectively, and the term Y, (¢t — (£ —x)/ve, &) corresponds to the hole generated
at £. The delay term (£ — z)/v, is the parent-electron transit time between positions z and £. Since the
pdf of the electron lifetime is known, we can average (10) over all possible values of £. Note, however,
that the expression in (10) is only valid if both ¢; and t3 exceed the electron transit time to the first
impact lonization, given by t; < (£ — z)/v.. For example, if t; < t2 and t; < (§ — z)/ve, then we must
rewrite (10) as

B2, )., 0)lE) = E[(Zilt2 = (€~ 2)/0,) + 212 = (€ = )/ ) + Volta = (€~ 2)/w,8)) |

since in this case, Z,(t;,z) = 1. Other similar cases are also possible and must be carefully accounted
for. After a careful analysis of all the cases, the following recurrence equation is obtained: for ¢; < to,

OZ,_. (tl, ta, x) = ul(tg, :1})[1 — He(’vetg)]
min(z+uvets)
+ / {2z(t2 — A1,8) + ye(t2a — A1,8)} he(s — z)ds

min(z+vet1,w)
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min(z+uvcty,w)
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where A} = (s — z)/v,, and Aa = (z — s)/vp, and the functions z.(t,z) and z.(¢,z) are the mean
values of Z,(¢,z)Y.(t,z), respectively. They can be computed using the recurrence equation for the
mean impulse response function.!? Finally, the function H, is the cumulative probability distribution
corresponding to the pdf h.. A similar technique can be used to derive recurrence equation for Cy, (¢, z),

Cyz, (t,z), and Cz(t, ).

2.3 Breakdown Voltage

The avalanche breakdown voltage can be defined as the reverse-bias voltage at which the mean gain
becomes infinite. To characterize this condition, we undertake an analysis that relies on the asymptotic
exponential decay rate of the tail of the mean impulse response function of the APD.1? The basic idea
of the approach relies on the fact that an exponentially decaying tail of the mean impulse response
implies a finite mean gain. Our approach is therefore centered on the observation that the breakdown
voltage is precisely the voltage that yields a zero exponential decay rate of the tail of the mean impulse
response function. A closed-form expression for the decay rate has been previously developed by the
authors and is given by Equations (43) and (38) in.!? To find the breakdown voltage, the decay rate
must be plotted as a function of the applied reverse bias and the voltage at which the decay rate crosses
zero is identified as the breakdown voltage.

3 Discussion

The DSMT has been applied to the experimental results obtained from J.C. Campbell for GaAs and
AlGaAs and more recently for InP and InAlAs APDs. We were able to fit the ionization coefficients
associated with devices of various widths, as a function of the electric field, within the confines of a
single exponential model, as shown in Fig. 1 (for brevity, only the electron ionization coefficient for InP
is shown).

The method for calculating the physical ionization coefficients is described as follows: (i) Given
the knowledge of the electric field (from the reverse-bias voltage) and the width of the multiplication
region along with the ionization threshold energies, the electron and hole dead spaces are computed.
(i) For each measured gain and excess-noise factor pair, appropriate values for @ and 3 are determined
from the recurrence equations for the gain and the excess noise factor. This step is done by selecting
initial values for the ionization coefficients in the recurrence equations and subsequently varying them
until the correct (i.e., in agreement with measurement) gain and excess noise factor are obtained. (iii)
The previous procedure is repeated for other measured values of the gain and excess noise factor. (iv)
When all gain-noise data points are exhausted, the resulting ionization coefficients are fitted in the
standard exponential model and the parameters of the exponential model (three for each carrier) are
calculated using a least-square-error fit. This completes the first-round calculation of the model for
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carrier ionization coefficients. At this point, one can use the models for the electron and hole ionization
coefficients to predict the dependence of the excess-noise factor on the gain. (v) The last step is to
repeat all the previous steps (i)-(iv) while slightly adjusting the electron and hole ionization thresholds
until the best excess-noise versus gain prediction is obtained. For example, for the case of InP, the
initial values for the electron and hole ionization energies were selected according to'4 and!® as 1.84 eV
and 1.64 eV, respectively, and the optimized values were found to be 2.05 eV and 2.20 eV, respectively
for electrons and holes. This last step optimizes the model for the ionization coefficients and has
significantly improved the accuracy of predicting the noise-gain behavior.

Figure 2 shows the DSMT predictions and the experimental results for InP APDs of varying thick-
ness. It is clear that the DSMT correctly predicts of the reduction in the excess noise factor in thin
devices. Moreover, in conjunction with the width-independent ionization coefficients presently avail-
able, the DSMT characterization of the statistics of the APD impulse response can be used to predict
the statistics of the frequency response. Our results show that as the multiplication-region thickness
decreases, the DSMT estimate of the 3-dB bandwidth becomes significantly lower than that obtained
from the conventional multiplication theory estimate (which uses the ionization coefficients for bulk
material), as shown in Figs. 3 and 4. For example, as seen in Fig. 4, a reduction of about 30% in the
3-dB bandwidth is predicted for a 100-nm GaAs device. As expected, the discrepancy between the
DSMT and the conventional theory becomes negligible when the thickness of the multiplication region
large (e.g., in excess of 500 nm).

Fluctuations in the frequency response can also be estimated. This is done by computing the power
spectral density of the impulse response. Figure 5 shows the DSMT prediction of the power-spectral
density for a thin APD overlayed with the mean frequency response. Further analysis indicates that the
relative spectral fluctuations become smaller as the thickness is reduced. This added property of thin
APDs alludes to improved APD performance in high-speed detection applications. It must be noted,
however, that the conventional theory does not predict such an improved spectral performance. This is
akin to the inability of the conventional theory to predict the reduced excess noise factor in thin devices.

Finally, to predict the breakdown voltage, the exponential model for the ionization coefficients for
each material is used in the DSMT to determine the decay rate of the tail of the mean impulse response.
The decay rate must be plotted as a function of the applied reverse bias. Our preliminary calculations
indicate that for thin devices, the DSMT-prediction of the breakdown voltage is higher than that
predicted by the conventional theory.

4 Conclusion

We reported an improved technique for calculating models for the electron and hole ionization
coefficients in GaAs, AlGaAs, InP, and InAlAs APDs. For each material, these models were shown to
be independent of the width of the multiplication region of each device. The improvement in the model
is achieved by means of optimizing the model parameters over the theoretical ionization threshold
energies. Using these models in conjunction with the dead-space multiplication theory, we correctly
predicted the gain-noise characteristics of the above APDs for a variety of multiplication-region widths.
The frequency response and the power-spectral density were also computed in the confines of the dead-
space multiplication theory. It is clear that for thin APDs, the effect of dead space is significant on
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both the gain-noise characteristics as well as the fluctuations of the frequency response, especially at

high frequencies. This latter effect may have an impact on reducing intersymbol interference (and hence
improving the bit-error rate) in high-speed applications.
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