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ABSTRACT

The point process formed by the sequence of human heartbeats exhibits 1/f-type fluctuations arising from long-duration
power-law correlation. We obtain the normalized coincidence rate g®(t) of the underlying point process and demonstrate that the
correlation is stronger for patients with normal hearts than those with heart failure. This is consistent with the greater rate fluctuations
observed in the normal heart. A number of statistical measures are used to establish the existence and reveal the form of the
correlation, including rescaled range analysis (R/S), pulse-number distribution (PND), Fano-factor time curve (FFC), and power
spectral density (PSD). The normalized coincidence rate is obtained from the FFC. The long-duration, power-law correlation
observed in the sequence of heartbeats is similar to that observed at a number of neurophysiological loci in a variety of species.
We also obtain the box-counting estirate of the attractor’s fractal dimension from a phase-space reconstruction and analysis of
the trajectory of the number of heartbeat events. This approach reveals that the heartbeats of normal patients exhibit an attractor
of higher dimension than those of heart-failure patients. All of these measures have also been applied to normal and heart-failure
data for which the interbeat (R-R) intervals have been randomly shuffled. The results are substantially different from those of the
unshuffled data, demonstrating that long-duration correlation is not a subtle property of the heartbeat. The various properties we
have investigated suggest several conveniently calculated, quantitative indices that indicate to which group a particular data set
belongs. Of the 27 data sets examined, our indices correctly classified 25.

1. INTRODUCTION

Scale-invariant fluctuations and power-law correlations have been demonstrated in the time sequence of
heartbeats.>’**#%"% Different heartbeat power spectra are associated with various pathological conditions, such as diabetic
autonomic neuropathy,** uncomplicated essential hypertension, sudden infant death syndrome,"” potential for sudden cardiac
death,™®’ severe heart disease,” and myocardial infarction.? The studies that have been conducted focus, for the most part, on the
relative power in various spectral peaks as an indicator of health,

In this paper, we examine normal and heart-failure data in the context of new analyses designed to quantify power-law
fluctuations. We also present evidence for the presence of chaos on long time scales. Both of our approaches yield different results
for normal and heart-failure data, and, as such, may provide indices that are useful for characterizing the degree of health of the
heart.

It has previously been observed that long-duration, power-law correlation is present in the sequence of action potentials
generated by primary auditory (VIII-nerve) neurons in the cat,**’ chinchilla,” and chicken;* in lateral superior olivary” and
mesencephalic reticular formation' neurons in the cat; and in the descending contralateral movement detector of the locust.*® At
all these loci the correlation extends to long time scales, with the upper limit of observed correlation times imposed only by the
duration of the recording.

Fractal fluctuations, which give rise to 1/f-type power spectra, are readily apparent in estimates of the instantaneous heart
rate.**¥* In Fig. 1, an instantaneous rate estimate is formed by counting the number of contractions in successive counting periods
of duration T. Intuitively, one expects that the fluctuations exhibited in the estimate will decrease as T is increased, as is indeed
the case for the nonfractal signal shown in Fig. 1(a). Fractal signals, on the other hand, have the property of slow convergence of
fluctuations: as the counting time is increased, the fluctuations decrease slowly, as a power law function of the counting time, or
persist at the same magnitude, as is apparent in Fig. 1(b). For a true fractal signal, one would not be able to infer the counting time
from the appearance of a sample rate function. The data exhibiting the self-similar rate fluctuations presented in Fig. 1(b) are taken
from a long-duration recording of a healthy heart. The nonfractal signal in Fig. 1(a) has the same interval density function as the
data presented in Fig. 1(b), but each interval is independent of the others so that there is no long-term correlation, The statistical
measures we present have been developed to quantify this phenomenon.

The demonstration of chaotic behavior in the heart has been limited to short time scales'*"'® or special experimental
conditions.*'*** We present evidence for a low-dimensional attractor in the time series of heart rate data recorded over long time
scales. In particular, we find that the box-counting dimension obtained from the reconstructed phase-space trajectory ranges between
1.6 and 3.1 for the data examined, with normal hearts exhibiting larger dimensions.
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Previous studies'®***?' have, for the most part, focused on analyses based on the sequence of intervals between heartbeats,
in which the abscissa of the time series is the interval number. Our analysis is based on rate estimates constructed from the sequence
of heartbeats, which preserve time as the abscissa. This approach has the advantage of allowing a direct interpretation of the
observed correlation.

In Section 2, we present the theoretical background for the statistical measures we utilize. The results are provided in
Section 3, a discussion of the difference between normal patients and those with heart failure is presented in Section 4, and the
implications are considered in Section 5.
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2. THEORETICAL BACKGROUND AND STATISTICAL MEASURES

We treat the sequence of heartbeats mathematically as an unmarked point process, in which the occurrence time of each
contraction (R-phase) is taken to contain the relevant information in the sequence of beats. In this approach the focus is on the
long-term behavior of the sequence, allowing the complex waveform of an electrocardiogram-recorded heartbeat (QRS-complex)
to be replaced with a single number (the time of occurrence) thereby greatly reducing the computational demand. The occurrence
of a contraction at time ¢ is therefore represented by an impulse &(¢) at that time, so that the entire realization is given by

s@t)= Z & —1). M

In specifying a particular realization of a point process, then, one need only specify the set of occurrence times {¢;} of the events,
as illustrated in Fig. 2(a). To gain insight into the mechanism underlying the generation of the point process, we wish tocharacterize
it from the set of occurrence times {¢;} obtained from a single recording.

The amplitude distribution and correlation function of a stationary random process provide a partial characterization of its
general behavior. For a point process, the amplitude distribution is represented by the rate of occurrence of impulses, which is
readily obtained from the data, but the normalized coincidence rate g@(t) (equivalent to the correlation function of a continuous
stochastic process™**), is generally difficult to estimate. Because of this, alternative representations of the underlying point process
are used.

One perspective, which is often used in long-duration heartbeat analysis, considers the sequence of intervals 1; between
adjacent impulses, as shown in Fig. 2(b), rather than the presence or absence of an impulse at each time. In this way the point
process s(¢) (a sequence of impulses distributed on a continuous time axis) is represented by a discrete-time random process {t;}
(a sequence of positive real-valued random variables).
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Fig. 2. Analysis schemes for a point process. (a)
The sequence of heartbeats is represented by a

SEQUENCE OF sequence of idealized impulses, forming a

POINT PROCESS COUNTS { N } stochastic point process. The complex underlying
( ) i waveform is thus reduced to a sequence of
a (C) impulse occurrence times {£}. For convenience

of analysis, several aliemative representations of

o 1 s the point process are used. (b) A sequence of
ﬂ l T j interevent times {7;} is formed from the time
T 1 T-TME t between impulses, resulting in a discrete-time,

y
—

Ll LI L owe - i ﬂ ¥ N positive real-valued stochastic process. All
Yt st s z 1 (information loat) information contained in the original point
—t3? count number process is preserved in this representation, but the
—ts? of wplhes discrete-time axis of the sequence of interevent
T Tx= ! l | l@mes is. randomly distorted relative to the real
2 §° 5 M time axis of point process. (c) The sequence of

2

dount'ioex | counts {N;}, a discrete time, non-negative
integer-valued stochastic process, is formed from

the point process by recording the number of

SEQUENCE OF S EEQ %%QCIEZ EODF COUNTS { X } events in successive counting windows of length
GEN L . T. (d) Higher resolution in the rate estimate can

INTEREVENT TIMES {Ti} ! be obtained by counting the fractional number of
(b) (d) intervals. The sequence of generalized counts
, X X, {X;}, a discrete-time, positive real-valued

PR l ~ ﬂ ﬂ stochastic process, is formed from the point
e 1 I nwe« Process by recording the fractional number of
T 21 31 4T intervals in successive counting windows of
length T. For both the sequence of counts (c) and
the sequence of generalized counts (d), the time

count fractional 2 _ €d €
number of intervale axis of the point process 1 is simply related to the
discrete time axis of the sequence of counts by
t =Ti, so that the correlation properties of the

point process can be inferred directly from the
correlation in the sequence of counts. In both
these processes, information is lost in mapping
the point process to the sequence. For the
sequence of counts (c), the amount lost can be
made arbitrarily small by reducing the size of the
counting window. The sequence of generalized
counts (d) does not have this property.

o "2 T'JT Ta L TIME t \

C

% (one—to-one mapplng)
v

|

2 3 4
INTERVAL INDEX i

¥ (information iost)

J

INTEREVENT TIME 7,

© pr———
+

P(T)
Py(%:T)
QO - N

NUMBER OF INTERVALS X,

1 2 3
COUNT INDEX 1

We employ three statistical measures to characterize the random process comprised of the sequence of interevent intervals
{1;}: the interspike interval (ISI) histogram, rescaled range analysis (R/S), and the power spectral density (PSD) of the sequence
of interevent times.

The IST histogram shows the relative frequency of occurrence of interspike intervals as a function of interval size; it is an
estimate of the probability density function of {t;}. It is, perhaps, the most commonly used of all statistical measures. The ISI
histogram readily provides information about the underlying process over short time scales, but all information regarding the order
of interval occurrence islost. Indeed, a reordered sequence of the same intervals will yield an identical ISI histogram since reordering
does not affect the relative frequency of occurrence. If no correlation exists among the interspike intervals then the process formed
by the sequence of interevent times {1} is renewal, and the point process is completely characterized by its ISI histogram.
Conversely, if the process is nonrenewal (i.e., correlation exists among its interevent intervals) then the ISI histogram does not
completely characterize the process. In this case, measures that reveal the nature of the correlation provide complementary
information to the ISI histogram.

The rescaled range analysis (R/S) provides information about correlation among imersPike intervals. It is particularly well
suited to processes that exhibit long-term correlation or that have large or infinite variance®**"*?**” but has previously not been
used in heartbeat analysis. For a block of & intervals, the difference between each interval and the average interval size is obtained
and successively added to a cumulative sum. The normalized range R(k) is the difference between the maximum and minimum
values that the cumulative sum attains, divided by the standard deviation of the interval size. R(k) is plotted against £. Information
about the nature and degree of correlation in the process is obtained by fitting R(k) by the function &*. If & > 0.5 then positive
correlation exists among the intervals, while 4 < 0.5 indicates the presence of negative correlation, so that an interval that is larger
than the mean tends, on the average, to be preceded by or followed by one smaller than the mean.

Fourier transform methods provide another approach to quantifying the correlation of a stochastic process. The periodogram
estimate S.(f) of the power spectral density (PSD) of the sequence of intervals (t,} is given by

1
Sh=31XO T, @

24/ SPIE Vol. 2036 Chaos in Biology and Medicine (1993)



where M is the number of samples and X.(f) is the discrete Fourier transform of the sequence of imervals.’”:’s Information can be
inferred about the correlation among intervals from the PSD since it is just the transform of the autocorrelation function (ACF) of
the interval process.

Since the {t,} provide a complete representation of the point process all information can, in principle, be obtained from
it. However, the mapping of the "real”, continuous time axis of the underlying point process to the discrete time index i of the
interevent-time process (1;} introduces an intrinsic random distortion: intervals that are close in absolute time may be substantially
separated in the sequence {t;} (there may be many short intervening intervals) and intervals close in the sequence (1;} may be
temporally distant in the point process (there may be one long intervening interval). This distortion is manifested by the presence
of artifacts in the frequency spectrum of the process.? Because of this some questions are more readily addressed using an approach
that estimates the rate of the point process, retaining time as the abscissa.

Our approach is shown in Fig. 2(c), where the time axis is divided into equally spaced, contiguous counting windows of
length T, and the number of impulses in the i* window is counted and denoted N;. The sequence {N,} forms a discrete-time random
process of nonnegative integers. In general, information is lost in forming this process, although for regular point processes the
amount lost can be made arbitrarily small by reducing the size of the counting window T. The advantage of this representation lies
in the link, provided by the counting time T, between the discrete time axis of the counting process {N;} and the absolute, "real”
time axis of the underlying point process. With the -process-of counts {N;}, N; and N,,, refer-to the number of counts in windows
separated by precisely T(k-1) seconds, so that correlation in the process {N;} is readily associated with correlation in the underlying
point process s(f).

We now turn our attention to three measures of the random process formed by the sequence of counts, or equivalently the
rate.

In the same way that the ISI histogram provides an estimate of the probability density function of the amplitude of the
interspike interval process {1}, the pulse-number distribution (PND) provides an estimate of the probability mass function of the
amplitude of the sequence of counts {N;}. While the ISI histogram reveals the character of the underlying point process on short
time scales (on the order of the average interevent time), the PND reveals the character of the point process on time scales that are
of the order of the counting time 7. Since the counting time is not intrinsic to the process, but rather is specified externally, the
character of the process at arbitrary time scales can be examined. The Fano factor, F(T), defined as the count variance divided by
the mean, is a useful index of dispersion in this case since its value for the homogeneous Poisson point process (HPP), which plays
the role of the Gaussian process in continuous stochastic process theory, is unity for all T (see Appendix A). A Fano factor greater
than unity indicates that the underlying point process is more clustered than the HPP at the given time scale,”* whereas a Fano
factor less than unity indicates that the underlying process is more regular than the HPP, as with a dead-time-modified Poisson
point process (DTMP, see Appendix A).

In addition to the Fano factor, the shape of the PND provides information about the underlying process. A higher probability
of an even number of counts than an odd number in an interval of length T, for example, implies that events tend to occur in pairs,
separated by less than T seconds. In this way the PND at a particular counting time and the Fano factor provide information about
the correlation of the point process at that time scale.”

The Fano-factor time curve (FFC), which shows the functional dependence of the Fano factor on the counting time T,
provides additional information about the nature of the correlation. For example, an FFC with a fractional power-law dependence
on T results from a process with power-law correlation.***® The relationship between the FEC and the normalized coincidence rate
g?(7) is presented in Appendix B.

Finally, we use phase-space reconstruction and a box-counting algorithm® to show that the fractal fluctuations might be
accounted for by a low-dimensional attractor. This approach exploits the fact that the loBological properties of the attractor of a
gynamical system can be determined from time series of a single observable.”*' Briefly, an m-dimensional vector

X)) =x(@,). x@t, +1), ..., x(¢, + (m — 1)])] isformed from a discrete-time series x (¢,). The parameter m is the embedding dimension,
and [ is the lag (usually taken to be the location of the first zero crossing in the autocorrelation function of the time series). As the
time¢, elapses, the vector X, (¢,) traces out a trajectory in the m-dimensional embedding space. The box-counting algorithm estimates

the (fractal) dimension of the trajectory. For uncorrelated noise, the box counting dimension dj increases with increasing m. For
deterministic systems, in contrast, dy becomes constant as m becomes larger than the number of degrees of freedom in the system.

The sequence of counts provides an estimate of the instantaneous rate of the point process (after division by the counting
time), but it is an estimate that is constrained to take on discrete values. A generalization of this counting estimate is provided by
counting the fraction of infervals that fall in each counting window, as illustrated in Fig. 2(d). The use of this measure was initially
motivated by an integrate and fire model, where a rate function is integrated until a fixed threshold is reached, triggering an event
and resetting the integrator.? For statistical measures such as the FFC and the PSD, the two counting estimates are equivalent for
large T. However, analysis of the reconstructed phase space depends on the fine structure of the trajectory, and an integer count
estimate (the sequence of counts) would map all vectors of the generalized count estimate to nearby integer lattice points. For
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example, for m = 1 and T less than the refractory period, the trajectory given by the sequence of counts yields only two points in
the embedding space: zero and one. The generalized count estimate provides a continuum of real numbers in the reconstructed
trajectory. It is, perhaps, less useful than the usual count in other measures, however, in that it does not permit direct comparison
with the results for a homogeneous Poisson point process.

The point-process nature of the sequence of counts for short counting times results in a noise floor in the PSD, apparent
at high frequencies.” For this reason we prefer the sequence of generalized counts for spectral analysis. As with the sequence of
intervals, the periodogram estimate S,(f) of the power spectral density of the sequence of generalized counts {x;} is formed. The
quantity S,(f) is again given by Eq. (2), where M is still the number of samples, but now X,(f) is the discrete Fourier transform of
the sequence of generalized counts. With this PSD estimate, information can be inferred about correlation in real time, as opposed
to the interval-based PSD in which time is distorted.

An instantaneous rate estimate can be formed from either the sequence of counts or the sequence of generalized counts by
dividing the random variable by the counting time T; as a result, both of these measures are equivalvent to rate estimates. To
facilitate the interpretation of results, we carry this out for the sequence of generalized counts {X;}, forming a sequence of rate
estimates (x;}, before performing the box-counting and spectral analyses. However, neither the box-counting dimension dj nor
the form of the PSD are affected by this,

3. RESULTS

Twelve data sets recorded from healthy patients and 15 sets recorded from patients with heart failure were analyzed. Three
of the patients with heart failure also had atrial fibrillation. The data were supplied by Ary Goldberger and David Rigney of Beth
Isracl Hospital, Boston. The recordings were made with a Del Mar Avionics 445 Holter monitor, digitized at 250 Hz, and the
beat-to-beat (R-R) intervals were measured automatically with a computer program (Aristotle).” Information about the data sets
is summarized in Table 1. The heart-failure patients were all medicated with the drug Milrinone.

In this section we focus on one recording from a healthy heart (data set 16265) and one recording taken from a patient
with heart failure (data set 6796). These two examples are typical of their respective classes of data. We also apply these same
measures to the point process formed by shuffling (randomly reordering) the intervals of these data sets. Such random reordering
destroys correlation among the intervals, while preserving the interval probability density function. It is equivalent to generating
arenewal point process with an identical interevent probability density function as the original, allowing the effects artsing from
long-term (rate) correlation, and effects arising from the form of the interevent probability density function, to be readily
distinguished. Data set 16265 and its shuffled version are the two point processes used in generating Fig. 1 above.

The ISI histograms of normal data (solid curve) and heart-failure data (dotted curve) are presented in Fig. 3. The narrower
width of the histogram for the heart-failure patient is consistent with the lower interval variance for data set 6796

[var(t) = 0.0081 sec?, as shown in Table 1. The healthy patient generates an excess of both shorter and longer intervals relative to
the patient with heart failure [for data set 16265, var(t) = 0.0291 sec? as shown in Table 1]. Since random reordering of the intervals
does not alter the relative frequency with which they occur, the ISI histograms of the shuffled data sets are identical to those of

the originals. 1 INTERSPIKE—INTERVAL (1S1) HISTOGRAM
10 . , . r .
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Fig. 3. The interspike interval (ISI) histogram for data from a healthy patient (solid curve) and a patient with heart failure
(dotted curve). The variance of the ISI histogram of the heart-failure data is substantially less than that of the normal data.
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File

Number

16265
16272
16273
16420
16483
16539
16773
16786
16795
17052
17453
c4

6796
7257
8519
8552
8679
8988
9049
9377
9435
9643
9674
9706
9723
9778
9837

(lower two curves) exhibit a dependence very close to &

NORMALIZED RANGE OF SUMS R(k)

Number of Duration
intervals (sec)
100460 80061.9
93177 84395.5
89846 74348.6
102081 77761.0
104338 76099.5
108331 84669.3
82160 78141.1
101630 84051.4
87061 74734.7
87548 76399.6
100674 74482.0
88140 71398.7
75821 71940.9
118376 71166.4
80878 71941.4
111826 71827.0
119094 71180.1
118058 71140.3
92497 71964.8
90644 71965.0
114959 71196.7
148111 72015.6
115542 71976.3
115064 71320.0
115597 71999.9
93607 71946.3
115205 71947.0

Mean Rate <> var(T) FFC Count PSD dy
(sec™) (sec) (sec?) exponent @ exponent f
NORMAL PATIENTS

1.255 0.7970 0.0291 953 0.93 2.66
1.104 0.9058 0.0202 872 1.21 2.64
1.208 0.8275 0.0212 872 1.20 275
1313 0.7618 0.0102 897 1.01 2.41
1.371 0.7294 0.0079 941 0.87 2.58
1.279 0.7816 0.0225 873 1.07 2.81
1.051 0.9511 0.0600 959 1.00 2.84
1.209 0.8270 0.0134 925 1.11 3.04
1.165 0.8584 0.0448 943 1.21 245
1.146 0.8727 0.0251 .843 1.19 2.98
1352 0.7398 0.0106 921 0.86 2.94
1.234 0.8101 0.0172 872 1.30 2.84

HEART-FAILURE PATIENTS

1.054
1.663
1.124
1.557
1.673
1.660
1.285
1.260
1.615
2.057
1.605
1.613
1.606
1.301
1.601

0.9488
0.6012
0.8895
0.6423
0.5977
0.6026
0.7780
0.7939
0.6193
0.4862
0.6229
0.6198
0.6229
0.7686
0.6245

Table 1

0.0081 .854 1.40 1.70
0.0013 878 0.93 244
0.0040 779 1.48 1.81
0.0039 773 1.76 1.99
0.0026 .944 1.35 237
0.0081 .940 1.28 2.44
0.0033 .958 1.35 2.44
0.0033 .868 124 2.13
0.0008 944 1.42 1.60
0.0002 917 1.44 2.03
0.0071 922 1.57 2.29
0.0103 955 1.21 2.53
0.0003 .909 1.75 2.19
0.0051 958 1.69 2.17
0.0043 947 1.62 237

Characteristics of the data sets investigated.

The rescaled range analysis for each data set is presented in Fig. 4. The circles correspond to the function £ for comparison
with the data. Positive correlation among interspike intervals is present since R(k) grows more rapidly than 2. This measure
indicates that data from healthy hearts (upper solid curve) has slightly stronger correlation for small numbers of interspike intervals,
and slightly weaker correlation for intermediate numbers than unhealthy hearts (upper dotted curve). On the whole, though, it
reveals no substantial difference between data from healthy patients and those with heart failure. The processes of shuffled intervals

o

o

(7]

N

1

RESCALED RANGE ANALYSIS (R/S)

, as expected for renewal point processes.
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Fig. 4. Rescaled range analysis (R/S) applied to the data from a healthy
patient (upper solid) and a patient with heart failure (upper dotted). Positive
correlation is present for both data sets. Small collecuions of intervals for
the healthy heart show slightly stronger correlation than those with heart
failure, but generally the R/S curves of the two groups of data were
essentially indistinguishable. The curves for the shuffled intervals (lower
two curves) fall along the curve k' (open circles), as will any sequence
of independent randomn varjahles.
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The averaged periodogram estimates of the PSD generated from the sequence of intervals {1;} are presented in Fig. 5(a).
The power-law form of S.(f) implies the existence of power-law correlation among the interspike intervals. The correlation is
somewhat greater for the normal data set (solid curve). The PSDs of the sequence of shuffled intervals [Fig. 5(b)] are flat, as
expected, since the intervals are then independent (i.e., the sequence of shuffled intervals forms a white noise process). This is in
contrast to the PSD of the point process, which is the Fourier transform of g®(t), and which is flat only for a homogeneous Poisson
point process. The PSD of a point process cannot, in general, be inferred from the PSD of a sequence of intervals. The variance
of the interval process, which is the integral of the interval-based PSD, is smaller for the heart-failure data, in accord with its
narrower ISI histogram (see Fig. 3).

INTERVAL—-BASED POWER SPECTRAL DENSITY (PSD)
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The PND generated with a counting time of T = 10.0 sec is shown in Fig. 6. The greater count variance (dispersion in the
PND) for the normal data (solid) indicates that there is greater variability in its counts than the heart-failure data (dotted) on this
time scale, which in turn implies that the rate exhibits greater variability. This variability cannot be entirely accounted for by the
interval variance, since the PNDs of the shuffled data sets show reduced count variance, indicating that the count variance of the
original process arises in part from long-term correlation.
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The FFCs are shown in Fig. 7 (top two curves). In the limit of small T, the sequence of counts becomes a sequence of
Bernoulli random variables because of the refractoriness of the heartbeat. With p the probability of observing an event in one of

the counting intervals, which goestozeroas T — 0, we have lim F(T) = lim L =1.Regions where F(T) < 1 correspond to time

T-0 T->0

scales over which the sequence heartbeats is more regular than the homogeneous Poisson point process. The FFC dips strongly
below unity on time scales where the effect of refractoriness is significant. The ringing in the FFC, particularly apparent in the
heart-failure data, is due to the clock-like regularity of the heartbeats on this time scale. The FFC dips to a very low value when
the counting time T is such that the number of beats per counting interval is almost constant. A slight increase in T admits an extra
count more frequently, resulting in a greater variance-to-mean ratio. The increase of the Fano factor above unity for counting times
greater than = 10 sec, as a fractional power-law function T, indicates that the underlying sequence of heartbeats has greater count
variability, and is hence more clustered, than a Poisson process on these time scales. The parameter @, given in Table 1,is constrained
to lic between 0 and 1.%7° The greater count variability arises from positive correlation that, for T greater than = 10 sec, overcomes
the negative correlation imposed by refractoriness. Since shuffling destroys this long-term, positive correlation, the FFCs for the
shuffled processes never rise to unity (bottom two curves).

FANO—FACTOR TIME CURVE (FFC)
1000 T T T T vy ~

—— NORMAL

100 oo HEART FAILURE 1 Fig. 7. The Fano-factor time curve (FFC) fornormal data (solid)
and heart-failure data (dotted). A departure of the FFC from
unity indicates the presence of correlation in the sequence of
counts. Regions where F(T) < 1 correspond to time scales where
negative correlation dominates. This negative correlation is
imposed in part by the refractoriness of the heart. Positive
correlation, reflecting rate fluctuations, causes the FFC to
assume values in excess of unity. The FFC appears to follow
fracuonal power law behavior for large values of counting ime
T.i.e., F(T)e=<T® implying than the underlying point process has
power-law correlation over the corresponding ume scales. The
larger magnitude of F(T) for the normal data indicates that the
healthy heart exhibits stronger correlation, and greater
fluctuations, than the sick heart. The difference in the FFCs may
~...SHUFFLED INTERVALS provide one way to assess the health of the heart. The FFCs of
0.01 F Ty WA the renewal processes (lower curves) remain below unity, since
‘ no long-duration correlation is present.
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The dramatic difference between the FFCs of healthy and sick hearts shown in Fig. 7 is typical of the data sets examined.
All the normal data sets exhibit the same relatively strong correlation shown in this Figure. The fact that the FFC for the heart-failure
data does not exceed unity until an order of magnitude later in time than the FFC for the healthy heart data indicates that some
mechanism, aside from simple refractoriness, is imposing regularity on the point process in the heart-failure case.

In Fig. 8(a) we present the averaged periodograms S,(f) generated from the rate estimate of the sequence of generalized
counts {x;} using a counting time of 7= 10.0 sec. The divergence of §(f) from a horizontal line indicates the presence of correlation

among the sequence of generalized counts. In particular, S,(f) is power law, obeying the form Af® over a range of frequencies.
This is consistent with the presence of power-law correlation indicated by the FFC, and reflects the self-similar fluctuations shown
in Fig. 1(b). These data therefore represent an example of 1/f~type noise (the medium-dashed line is inversely proportional to
frequency).

The PSDs S,(f) of the sequences of generalized counts formed after shuffling the intervals [Fig. 8(b)] are flat, indicating
that the counts are approximately uncorrelated. The sequence of counts at this counting time T, then, is a white noise process. The
PSDs S.(f) of the sequences of shuffled intervals (Fig. 5) were also flat, as they will be for any renewal process. The PSDs of the
sequence of counts is, in general, only flat for T much greater than the average interevent time. For smaller values of 7, the PSD
will reflect the correlation in the point process arising from the form of the interval probability density function, even though the
intervals have been shuffled. This is because in general (for all point processes other than the Poisson), an interval extending
beyond the counting window affects the numbers of counts in succeeding intervals. A white sequence of intervals does not imply
that the point process is white. This illustrates one of the dangers of assuming that spectral information obtained from the sequence
of intervals is equivalent to the spectral content of the point process. It is not: indeed S (f) in Fig. 5 has cycles/interval as its abscissa
whereas S,(f) in Fig. 8 has cycles/sec as its abscissa. Note that both PSDs of the heart failure data have less power at all frequencies
than the corresponding PSDs of the normal data. This reflects the lower count variances of the heart-failure data, as is clear from
the PNDs shown in Fig. 6.
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Fig. 8. (a) The averaged periodogram estimate S, (f) of the power
spectral density (PSD) for the sequence of generalized counts.
Periodograms with 1024 points were formed from successive
segments of data using a counting time 7 = 10.0 sec. The
periodograms of each data set were then averaged. The PSD of

the data shows power-law behavior, varying as S,(f) =Af ®, so

that with this counting time the sequence of counts is a 1/f-type
noise process. The function ' is included for comparison
(medium-dashed curve). (b) For the generalized counts of the
shuffled intervals, the PSDs are flat, indicating that the counts
are uncorrelated, as is the usual case for renewal processes with
T much larger than the average interevent time. This is not true,
however, for small T, even though the process is renewal. This
distinction with the PSD for the sequence of intervals illustrates
one of the dangers of attempting to infer correlation properties
of the underlying point process from correlation properties of
the sequence of intervals.

In Fig. 9 we present the results of a phase space reconstruction and the estimation of box-counting dimension dg. The value
of dg increases with the embedding dimension m until m exceeds the number of degrees of freedom of the system. The behavior
shown in Fig. 9 is typical of the other data sets, with curves from normal data reaching an asymptote at a higher value of dj (in
this case =~ 2.6) than curves from the heart failure patients (in this case ~ 1.7). The values of d; for the shuffled intervals are higher
and appear to continue to increase with m even at the highest values of m considered. Stochastic systems have an infinite number

of degrees of freedom; consequently dy increases indefinitely.

BOX—COUNTING ANALYSIS OF RECONSTRUCTED PHASE SPACE
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Fig. 9. The box-counting fractal-dimension estimate dj of the
attractor obtained from the sequence of generalized counts,
shown as a function of the embedding dimension m. The data
presented here are representative of their respective classes, with
a larger value attained for the normal data (lower solid curve)
than for the hearnt-failure data (lower dotted curve). For both
normal and heant-failure data, dy reaches its maximum at m =
5. The upper two curves show that dj for the shuffled data
increases more rapidly than for the original point process, and
continues to rise even for the largest embedding dimensions
available given the finite set of data.

The relationship between the FFC and the normalized coincidence rate ¢®(1) is presented in Appendix B. We can also
forge a connection between the behavior of the FFC with increasing counting time and the box-counting dimension dg. This is
illustrated in Fig. 10, where the reconstructed trajectories for a two-dimensional (m = 2) embedding space are shown for a range
of counting times. Data from a normal heart (data set 16265) was used in the lower panels, while its shuffled version (equivalent

renewal point process) was used in generating the upper panels.
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For the renewal point process, the phase space contracts dramatically with increasing counting time, while for the unshuffled
data its spatial extent remains largely independent of counting time. This is a direct consequence of the convergence properties of
the rate estimates shown in Fig. 1, and quantified by the FFC in Fig. 7.

For a particular value of T and m, dj provides a measure of the fractal dimension of the set of trajectory points. The Fano
factor F(T), on the other hand, provides a measure of the spatial extent of the trajectory in phase space. This spread is independent
of the embedding dimension. To generate F(T) from a reconstructed trajectory, as shown in Fig. 10, one would project all points
of the trajectory onto a single axis, multiply each of those scalar values by T (since for F(T) the count is the random variable, rather
than the rate), and then calculate the variance-to-mean ratio. For a time series to have the property that its reconstructed phase
space does not contract (or contracts slowly in power-law fashion) with increasing counting tiine, or equivalently that its FFC has
a power-law dependence on the counting time, it must have long-duration power-law correlation. This correlation may well be
manifested by evidence for a low-dimensional attractor in the reconstructed phase space. The lack of such an attractor would imply
the lack of long-term correlation, and therefore convergence of the rate estimate with 7. In short, then, the appearance of a
low-dimensional attractor is a necessary condition for a power-law FFC and self-similar rate fluctuations.

PHASE—SPACE RECONSTRUCTION IN 2—DIMENSIONAL EMBEDDING SPACE

T =1 sec T = 10 sec T = 100 sec
2.5 : T T T T T Y T T
Fig. 10. An example of the reconstructed trajectory for a
2.0 b 1t 1L ) two-dimensional embedding phase space (m = 2),
’ T e showing the relationship between the FFC and dg. The
box-counting algorithm operates on the set of points
1.5F ¢ 1r 1t § {X_(1.)}, having nothing to do with the order in which
- * they occur, so that the trajectory is a discrete dust in the
1.0 - 1F 4t 4 phase space. For the nonfractal renewal process (normal
< ok N data, shuffled intervals, shown in the upper panels), the
+ 0.5 2 2 s . : : L N . trajectory contracts with increasing T, while for the
e normal unshuffled data, which exhibit fractal fluctuations
- (lowerpanels), the spatial extent of the trajectory is largely
25 — —— —— p
[ unaffected by increasing T. The FFC measures the rate of
contraction with increasing 7. The box counting
2.0 1F 41F - E dimension dp measures the dimension of the dust in the
¢ phase space.
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z(t,)
4. COMPARISON OF DATA FROM HEALTHY AND HEART-FAILURE PATIENTS

The variance of the intervals, var(t), is shown graphically in Fig. 11(a). The variance of the intervals for data from
heart-failure patients is generally less than that for healthy hearts, so that the reduced variability so apparent in heart-failure data
on long-time scales is also seen in the interval statistics. However, the reduced interval variance alone is not sufficient to account
for the differences in long-term variability shown in the FFC, the count-based PSD, or the box-counting dimension (Figs. 7, 8, 9,
respectively). This is evidenced by the dramatically different results for the corresponding renewal point processes obtained by
shuffling the intervals.

SPIE Vol. 2036 Chaos in Biology and Medicine (1993)/ 31



T T T T

NORMAL

Fig. 11. (a) Graphical presentation of the variance of interspike
000 OO O o o 00 O 0w O

intervals for data from healthy hearnts (open circles) and those with
heart failure (filled circles). The heart-failure datatend to exhibit lower
hanere (a) o0 e esemosee b variance. (b) The box-counting dimension dy is typically larger for

HEART FAILURE (b) the normal data (open circles), with two normal sets falling among
the hean-failure data (filled circles). The PSDs obtained from the

- ! - . ! — sequence of generalized counts were fit by the power-law function
0.00 0.02 0.04 2 0.06 1.5 2.0 2.5 3.0 SH=Af?. The nommal data (open circles) generally have a lower
Var(r) (sec”) BOX—COUNTING DIMENSION dg value for the power law exponent B (c), while having a larger value
for the coeffiecient A (d).
00000 ® © (e) ®ao om 00
L] 00 O @e o0 0O L ] o0 O amDOI ™ [ ] (d)

0.8 1.0 1.2 1.4 1.6 1.8 10—510—410—310—210—1 100
RATE PSD EXPONENT g RATE PSD COEFFICIENT 4

A power-law function S,(f) = Af ® was fit to the PSD obtained from the sequence of generalized counts [Fig. 5(a)] over

the region 0.0002 < f < 0.05Hz (cycles/sec) for normal data and 0.0002 < f < 0.01Hz for heart-failure data. The best fitting
parameters,  and A, are shown in Figs. 11(c) and (d), respectively, for all the data sets. The PSDs for the healthy data generally
exhibit a smaller magnitude of the power-law exponent than for the heart-failure data, and a greater coefficient A, but there is a
significant degree of overlap between the two types of data.

The FFC, in contrast, provides a strong distinction between normal and heart-failure data. As shown in Fig. 12, aside from
two data sets, the FFCs for healthy and sick hearts are separated, and this separation persists over three decades of counting time.
Fitting the FFCs obtained from the data to Eq. (B3) in Appendix B allows us to determine both the underlying coincidence rate
¢?(1) and a quantitative index that can be used to predict with which of the two groups a particular data set is associated.

FANO—FACTOR TIME CURVE (FFC)
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Fig. 12. The FECs of all data sets presented in a single plot. Except for two curves for heart-failure patients, the two groups of data are well
separated. The FFC, then, provides a possible measure for determining the state of health of the heart.
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The parameters that provide the best fit Eq. (B3) to the data (u, a, 1., 8, and 1) were obtained and are presented graphically
in Figure 13. The values corresponding to data sets from healthy hearts are shown as open circles while those from sick hearts are
shown as filled circles. None of these parameters, individually, separates the two classes of data, but since the shape of the FFC
is implicit in them, some combination of them would provide a quantitative index that separates the two groups (save for the two
heart failure sets that fall among the normal ones in Fig. 12).

COMPARISON OF PARAMETERS FROM FFC
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OO0 -1 00 0 OOD
b (sec ) «
HEART FAILURE
® scmme . hd 0% = o Fig. 13. Graphical presentation of the five parameters describing the
L L L N FFC of a general stationary point process, obtained by fitting Eq. (B3)
1 2 3 0.7 0.8 0.9 1.0 to the FFC of each data set (see Appendix B). In addition, T, the
: : . . counting time at which F(T) = 1, and F(10 sec) are presented for all
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The underlying normalized coincidence rates were obtained, using the best-fitting parameters provided by Eq. (B3), and
are presented in Fig. 14. Aside from the two heart-failure data sets whose FFCs fell among those of healthy hearts, the two groups
of data are well separated. The coincidence rates of healthy hearts show stronger correlation than those of sick hearts, indicating
that the healthy hearts undergo greater {luctuations of the heart rate. This excess correlation can be quantified by calculating the
integral of g®(7), taken between 1 and 1000 sec, which is shown in the lower left-hand panel of Fig. 13. Also shown in Fig. 13
are T3, the counting time at which the FFC exceeds unity, and F(10), the value of the Fano factor at a counting time T = 10 sec.
Any one of these three indices [the integral of g®(t), T}, or F(10)] can be used with some confidence 10 predict whether the
corresponding patient is healthy or might be suffering from heart failure. Of the 27 data sets, these three indices misclassify only
two heart-failure data sets as healthy.
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Fig. 14. The nommalized coincidence rate g¥(t) for all data sets.
Aside from the two heant-failure data sets that fall among the
normal data in the FFC (see Fig. 12) the two classes are well
separated. The healthy hearts exhibit stronger correlation, which
implies greater variability in the heart rate.

The indices used to classify the data exploit the greater correlation present in the underlying point process of normal hearts.
This correlation is revealed in greater rate fluctuations. The two heart-failure data sets that were misclassified as normal (9674 and
9706) have relatively large interval variances (see Table 1). The misclassification of these data and their larger interval variances
both suggest that these sets exhibit larger fluctuations in rate than the other heart-failure data sets.

The estimated box counting dimension dj, as a function of the embedding dimension m is presented in Fig. 15. The estimates
for all data sets appear to attain their maximaat m =5 or m =6, suggesting that sufficiently high dimensionality have been examined.
The normal data exhibit a higher fractal dimension (2.4 < di < 3.1) than the heart-failure data (1.6 < d < 2.5). The values of dg
are presented graphically in Fig. 11(b). Because of this separation, dy, like the FFC, may provide a useful index of the degree of

health of the heart.

BOX—COUNTING ANALYSIS OF PHASE—SPACE RECONSTRUCTION

3.5
| NORMAL

b

[}
o

N
1)

BOX—COUNTING DIMENSION dg
g
o

T T

| HEART FAILURE:---------

EMBEDDING DIMENSION m

34/ SPIE Vol. 2036 Chaos in Biology and Medicine (1993)

Fig. 15. Box-counting dimension dy shown as a function of
embedding dimension m for all data sets examined. The two
classes of data are separated, except for two normal sets that fall
among the heart-failure sets for all values of m. The two
heart-failure sets that fell among the normal data in the FFC
analysis here lie in the middle of the group of heart-failure data,
suggesting that different aspects of the underlying point
processes are causing the two classes to separate in the FFC and
box-counting analyses. Like the FFC, the box-counting
dimension dj provides a possible measure for determining the
state of health of the heart.



5. DISCUSSION

Using the statistical properties of point processes and dynamical systems analysis, we have investigated the long-duration
correlation in normal and heart-failure patients. The correlation in the underlying point process revealed by count-based analysis
is considerably stronger for normal data, and the associated attractors have higher dimension. Indices derived from these analyses
may be useful as diagnostic tools for clinically distinguishing between the two groups of patients.

We examined three measures generated from the sequence of intervals obtained from the point process. The ISI histogram
of the interbeat (R-R) intervals is generally narrower for heart-failure data. The rescaled range analysis indicates that there is strong
correlation in the sequence of intervals, but does not reveal differences in the degree of correlation between the two classes of data.
The interval-based PSD also shows strong correlation in the sequence of intervals. Using this measure, the normal data appears to
have stronger correlation for intermediate frequencies.

Allof the count-based measuresappear toreveal differences between the two classes of data. The PND, taken ata sufficiently
large counting time, indicates that there are greater rate fluctuations in the normal data than in the heart-failure data. The FFC
shows power-law correlation in the sequence of counts for both classes of data, but with substantially stronger correlation for the
normal group. The two groups (except for two heart-failure data sets that fell among the normal group) remain separated in the
FFC plot for three decades of counting time, It appears that this property may be able to be exploited to conveniently distinguish
between the two groups. The fractal dimension of the attractor, estimated via the box counting dimension dj of the reconstructed
phase space, is also generally larger for the normal data. The count-based PSD reveals the same kind of power-law correlation and
difference in degree of correlation between the normal and heart-failure groups seen in the FFC, though the region of overlap
between the two groups is greater than for the FFC or for dj.

A number of parameters characterizing the FFC appear to successfully predict the health of the heart. The area under g (1)
(given by a combination of parameters fundamental to the FFC), T, {the counting time at which F(T) = 1], and F(T;) (for T,
sufficiently large) all properly separate the data (25 of 27 data sets) into healthy and heart-failure classes. Similarly, dj separates
all but two of the data sets into two classes (the two sets that are misclassified by dg are different from the two misclassified by
the FFC).

The FFCisrelated to the correlation function g¢®(t) of the point process through an integral transformation, so that correlation
over a range of times contributes to the value of the Fano factor at a particular counting time. Because of this, the FFC is a robust
statistical measure of correlation in the underlying process. It therefore also provides a convenient route to estimating g@(t).

The analysis of physiological data has traditionally been based on the sequence of intervals of an idealized point process
obtained from the data. In general it is difficult to associate correlation exhibited in the sequence of intervals with correlation in
real time. The association is more readily made, however, for relatively regular point processes where the refractoriness is large,
and the average interevent time is small compared to the temporal scale of the fluctuations. These properties appear to apply for
the sequence of heartbeats. However, a relationship between correlation in the sequence of intervals and correlation in the sequence
of counts cannot be formulated in a general manner since it depends on the details of the underlying point process, which remains
to be determined for the heart rate data.

The analyses presented here were based on the entire duration of each of the 27 recordings (ranging from 20 to 24 hours).
It will be of interest to determine how the results depend on the duration and local variations in the data, and we expect 1o carry
out such a study in the near future.
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7. APPENDIX A: THE POISSON POINT PROCESS

The homogeneous Poisson point process (HPP) is ubiquitous in point-process theory, playing the role that the Gaussian
process plays in the study of continuous time stochastic processes.” The HPP is memoryless: the occurrence of an event at time
t, is independent of the presence or absence of events at any other time ¢ # t,. Because of this property both {t;} and {N;} form
sequences of independent, identically distributed (iid) random variables. These processes are completely characterized by their

respective amplitude probability density and mass functions. For the process {1;} generated from an HPP, the interevent-time
probability density function is the exponential function
pm)=2e™, (A1)

where A is the average number of events per unit time. The interevent-time mean and variance are < >= 1/A and var(t) = 1/A%,
respectively. The probability mass function py(N;T) of the amplitude of the process of counts {N,} is the Poisson distribution

) (U)Ne -AT
Py(N;T) = T .

For all counting times T, the mean is equal to the variance of the number of counts, so that <N >=var(N) =AT.

(A2)

The dead-time-modified Poisson point process (DTMP) results from the imposition of absolute refractoriness (dead time)
on the HPP. The probability density function of the interevent times p,(t) retains its exponential form, but is truncated due to the
dead time,

-~
%0 <1,

p0)= (A3)
2 Ae T 121,

where 1, is the dead time and A is the rate before dead time is imposed. The process remains renewal; the interevent times are
independent and indentically distributed. However, the possible overlap of the refractory period across the boundary between
adjacent counting intervals results in correlation between the two counts; the counts {N;], therefore, are no longer independent.
Furthermore, refractoriness imposes regularity on the point process, thereby reducing var(V) relative to <N>. This is easily seen
by considering the limit of large initial rate A; the imposition of dead time produces a regular, periodic series of impulses with very
low count variance. The count variance-to-mean ratio, or Fano factor, provides a convenient measure of the degree of regularity
of the underlying point process.

8. APPENDIX B: RELATIONSHIP BETWEEN THE FANO-FACTOR TIME CURVE AND THE NORMALIZED
COINCIDENCE RATE

The normalized coincidence rate g®(t) is defined as

@ _ Pr{®E(t,t+d) and T +T,i+T+Al)}

870 = AP (BTt T d)]
where Z(x, y) denotes the occurrence of an event in the interval (x, y). The function g®(7) for a point process is analogous to the
autocorrelation function for a continuous shochastic process. For an HPP, g@(t) = 1 for all 1. Teich*** discusses connections among
the FFC, the normalized coincidence rate (1), and the power spectral density for a general stationary point process with constant
rate.

(B1)

A normalized coincidence rate of the form

e

S 0 tl < 1,
¢%m =/1 T, < Rl <7 (B2)
8 IT] a-1
1+;L(T/j [t)> T

incorporating both refractoriness and power-law correlation in a simple way,* corresponds to an FFC of the form
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In these equations L is the rate of the observed point process (after refractoriness modification), 1, is the refractoriness (dead time),
7,is the fractal (power-law) onset time, o is the dominant long-counting-time fractional power-law exponent in the Fano factor,

and § is the excess coincidence rate. Since the FFC appears to be a robust statistical measure, this connection provides a convenient
way of estimating g®(t), which is difficult to obtain directly from the data because of the sparseness of events in very short counting

times. In particular, a Fano-factor time curve with a power-law dependence F(T) ~ T* implies that the underlying point process
has a power-law coincidence rate g(t) ~ | T |*~'and power spectral density that behaves as S(f) ~ f™
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