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The conditions required for spontaneous parametric downconversion in a waveguide
with periodic nonlinearity in the presence of an unguided pump field are estab-
lished. We find that counterpropagating beams exhibit narrow bandwidth per-
mitting the generation of quantum states that possess discrete-frequency entangle-
ment. Such states may be useful for experiments in quantum optics and technolo-
gies that benefit from frequency entanglement.

1 Introduction

Entangled photons, which may be generated through the process of sponta-
neous parametric downconversion (SPDC) in a crystal with x® nonlinearity,
have long been in the spotlight for quantum-optics experiments.!> SPDC suf-
fers from low conversion efficiency, on the order of 10~ entangled-photon
pairs per mode per pump photon, which ultimately limits their use for many
practical applications. Quasi-phase matching in crystals with periodic non-
linearity, however, offers the promise of increased photon-pair production.®
Furthermore, with the integration of a waveguide structure, it is possible to
control the spatial characteristics of the downconverted photons while still
maintaining a substantial increase in conversion efficiency.* It turns out that
the waveguide structure imparts yet another critically important feature: the
possibility of generating counterpropagating signal and idler photons. We
compare the crystal tuning characteristics and spectral properties of counter-
propagating beams to those for copropagating beams under typical experi-
mental conditions.

2 Conditions for counterpropagating SPDC

We consider the specific example of a PPLN waveguide, with a x(*) nonlin-
earity that is modulated as a square wave in the z-direction. Because in a
series expansion of this nonlinearity, the dominant Fourier components are of
order m = *1, the PPLN waveguide tuning characteristics tesult primarily
from the m = £1 curves, as shown in Fig. 1.

If we consider an example in which the pump-beam angle is 80°, there
are signal-idler wavelength combinations of approximately 880 nm/1350 nm
(m = —1, dashed curve, open circles) and 930 nm/1240 nm (m = +1, solid
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Figure 1. Tuning curves for perfect QPM with various values m: (a) Signal and idler
wavelengths versus pump-beam incidence angle 8 for grating vector orders m = 0, +1, +2,
and +3 with a poling period A = 6.8 pm. (b) Subset of tuning curves in (a) for m = =1
with the poling period A = 6.8 um. The signal photon propagates in the positive z-direction
and the idler photon counterpropagates in the negative z-direction as shown by the inset.
The pump wavelength is Ap = 532 nm in both (a) and (b). Circles in (b) indicate the two
signal-idler combinations possible for a pump-beam incidence angle of 80°: 880 nm/1350
nm (m = —1, dashed curve, open circles) and 930 nm/1240 nm (m = +1, solid curve, solid
circles).

curve, solid circles). This ciuantum state can be represented by
[#®) ~ c1(880,1350) + c2/930, 1240), (1)

where the constants c; and c¢; are determined mainly by the pump properties.
By simply selecting the pump-beam incidence angle to be 74.6°, for example,
the two-photon quantum state given above can be readily tuned to new signal-
idler wavelength combinations of 810 nm/1550 nm and 860 nm/1380 nm.

3 Spectral properties of counterpropagating SPDC

We also consider effects on the spatio-temporal distribution of downconverted
light imparted by the finite crystal length and the modal structure of the
waveguide. In a comparison of the tuning curves and spectral properties of
counterpropagating beams to those for copropagating beams under typical
experimental conditions, we find that the counterpropagating beams retain a
narrow bandwidth across many signal-idler wavelength combinations, unlike
the results shown in Fig. 2(a) for copropagating beams. This finding supports
the claim that a superposition of two counterpropagating nondegenerate pho-
tons pairs occurs naturally within the PPLN waveguide structure.
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Figure 2. (a) Calculated signal and idler spectra versus pump-beam incidence angle for
copropagating beams in a 1-mm PPLN waveguide with a poling period A = 7.4 pm and
positive grating vector K, (m = 1). The pump wavelength is A, = 532 nm. (b) Calculated
signal and idler spectra versus pump-beam incidence angle for counterpropagating beams
in a 1-mm PPLN waveguide with a poling period A = 6.8 gm and m = 1. The pump
wavelength is A\p = 532 nm. Although this plot includes all the information pertaining
to the spectra of the downconverted light, it is visually indistinguishable from the plot
presented in Fig. 1(b).

4 Application to quantum communication

Copropagating entangled photons generated by SPDC have previously been
observed in periodically poled silica fibers (PPSFs) by directly coupling of
the pump beam.® If the pump beam is coupled to the core medium in a
scheme analogous to that of a cladding-pumped fiber laser, it would be pos-
sible to generate counterpropagating signal and idler photons directly in the
poled fiber. Due to the inherent narrow bandwidth of the counterpropagating
beams, a dispersion-free quantum communication apparatus could be realized
as illustrated in Fig. 3.

5 Conclusions

It is possible to control the superposition of two or more counterpropagating
nondegenerate photon pairs by tuning the pump-beam incidence angle, by
appropriately changing the pump field profile using, e.g., a superposition of
pump angles, and by engineering the periodicity of the nonlinearity. Such a
quantum state cannot be generated in bulk nonlinear media, nor in media
with periodic structures, but they are generated naturally in media with both
periodic nonlinearity and a waveguiding structure. Although we primarily
discussed theoretical results for a PPLN waveguide, the results are general
and will also apply, for example, to a periodically-poled cladding-pumped
fiber with x(? nonlinearity.
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Figure 3. Application to quantum communication. The pump beam (which is guided in
the fiber cladding) couples to the core medium as it propagates. Since the core medium
has a modulated nonlinearity (illustrated as striations), counterpropagating entangled pho-
tons can be generated directly within the communication fiber to provide dispersion-free
quantum communication between Alice (A) and Bob (B).
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