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ABSTRACT

A quantum theory of photomixing is presented which applies to nonstationary as well as stationary fields
of an arbitrary statistical nature. The primary distinction from the classical theory is that double-frequency
and sum-frequency components do not appear in the heterodyne signal, to good approximation, when Ay » kT.
The simple conditions for optimum photomixing with a sinusoidal heterodyne signal are first-order spatial
coherence of the total incident field, and first-order temporal coherence and stationarity of the constituent
beams. In the limit v » kT, the heteodyne process may be interpreted as the annihilation of a single nonmono-
chromatic photon. The theory is valid for arbitrarily small photon numbers.

1. INTRODUCTION

Heterodyne or coherent detection has been
used in many regions of the electromagnetic
spectrum.®-» We present here a quantum theory
of coherent detection which differs from both
the classical and the semiclassical treatments
which have appeared in the literature. The
theory is valid in the region hv > kT, i.e. the
infrared and optical. It is shown to reduce to the
classical result in the limit of low radiation fre-
quencies (hyv < kT) and, for a certain class of
fields, to the semiclassical result for high radia-
tion frequencies (hv > kT). The main deviation
from the classical theory is that double-fre-
quency and sum-frequency components of the
heterodyne signal do not appear, to good ap-
proximation, when #hv » kT. The theory is
valid for fields of an arbitrary statistical nature,
and for arbitrarily low photon numbers.

2. THEORY

A generalized schematic for an optical or
infrared heterodyne receiver is given in Fig. 1.
Two plane parallel electromagnetic waves of
angular frequencies w; and w, impinge normally
on an ideal quantum-mechanical photodetector
in its ground state. It is assumed that the photon
energy hv is much greater than the thermal
excitation energy of the detector, £T. Glauber®:#
has shown that the average count-rate for such
an absorption detector (to good approximation),
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Fig. 1. The generalized infrared or optical hetero&yne
receiver.

at the space-time point xy =r, t, may be expressed
as the first-order correlation function G {3 (x, x),
where
G (6x) =tr{pE., (OE () (D)
Here, p is the density operator for the field,*»
and E- and E* are the negative- and positive-
frequency portions of the electric field operator
E respectively. The subscripts u, v label
Cartesian components, and the symbol tr
stands for the trace. For simplicity, only pro-
jections of the field along a single (possibly
complex) unit vector are considered at this
point, so that the correlation function above
may be written as a scalar quantity rather than
as a tensor.
Coherent detection experiments are fre-
quently performed using a given beam and a
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time-delayed form of the same beam® (so-
called homodyne detection), so that it is more
convenient to discuss time correlations of the
field relative to the radiation source rather than
to the detector.” That is, the output of a detec-
tor illuminated by a single beam is proportional
to GP(x',x"), where x' =r, +. When illumin-
ated by a phase-retarded form of the same beam,
the output of the detector ar time ' may be
written as G®{(x”,x") where x”" =r,¢" and
t” > t'. Thus, phase retardation is equivalent
to time-displacement at the detector. The detec-
tion of the total incident field (consisting of two
component beams) at the time ¢ is therefore
expressed in terms of two individual time param-
eters t; and £,.

For the heterodyne experiment, we may write
the total electric field operator as a superposi-
tion of the operators for the constituent waves.®
The positive-frequency component of the field
present at the photodetector, E*(r,t), may
therefore be written

Etr, 1) = METr, 1)+ MEYr, t,). 2)

The complex coefficients A, and A, contain the
relative strengths of the two waves, and are
taken to be independent of the properties of the
field. The count-rate R may then be expressed
as

R=1tr{pE (r,t) E*(r, 1)}

=tr{p[AME (x1) + ME (x2) ] (3)
X [}\1E+(X1) FAME ()]},

with x; =r, ;. Again, the quantity ¢, is taken
relative to the radiation source, and r represents
a point on the detector surface.

We now assume that the foral incident radia-
tion field would display maximum-contrast
fringes® in a hypothetical spatial interference
experiment performed with the radiation at any
two points on the detector surface, at an arbi-
trary time ¢. The first-order correlation function
GO(r't,r"t), contained in the interference
term, may then be written as

GO, 11 = tr{pNE~(r't) + ME (1) ]
X [MET(r" D+ ME (D]}
“)

Thus, at the detection time ¢, thlS function may
be written as

GO, 'ty = trp[|MZE-(F O E* (#'1)
FIE-(MDET (1)
+2Re {NAJE-(PDET (P ).
%)

But, for first-order coherence ar all times t, as
described above, the correlation function factors
into the scalar field product €*(r't)e(r't) so
that in this case,

GOt ") = [Afe*(r' ) + \Fe* (r'D)]
X [Melr" D+ Ner'n]. (6)
Therefore, from (5) and (6), we obtain

tr{p[IMPE-(FOE* (Y1) + NEE-(F ) E (#"1)
F2Re{AINIE-(FPOE (1)1}
= N2 (F1)e(Ft) + [N\ 2e* (F 1) e(#"1)
+2Re{AfA}e* (F)e(rt). N

Since this equation holds for abritrary )\1 and
Ay, it is seen that

tr{p|\MPPE=(FOE (1)} = Afer (r t)}\le(r"t) 8)
and

tr{pAFE-(FOEY (1)} = Me* (') he (F'ty).

®

Equation (8) shows that first-order coherence
for the total incident radiation field implies
first-order coherence for the individual beams
as well. Equation (9) indicates that for such a
first-order coherent field, maximum fringe visi-
bility would, in addition, be obtained in an inter-
ference experiment similar to that described
above, but using the constituent waves instead
of the total fields.

Using this assumption, then, and the correla-
tion function identity [G®(xy, x)I* = G V(x,,
X1), the count-rate becomes

= })\1|2G(1)(X1, X1+ |)\2l2G(1)(X2, X2)
+2Re{ Afe*(x)he(x2)} (10)
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The first two terms on the right represent the
intensities which would be contributed by each
beam independently of the other. The last term
represents the interference for constituent fields
which are first-order coherent.

We now direct our attention to component
beams which are stationary. This condition,
coupled with individual first-order temporal
coherence for these fields, implies monochroma-
ticity of the individual beams. The function
e€*(x;) for a well-collimated, fully-polarized
beam of frequency o; may then be expressed
as(4)

* — (n 172 Jl@iti =k 1)

() =[G P, x)]'%e an
where the space-time point y; has its usual
definition. Inserting this into Eq. (10), a small
amount of algebra leads to a count-rate ex-
pressed as

R= |)\112G(1)(X1’ X1+ ])\zlsz(Xz’ X2)
+2[G (X1, X1)G P Xa» x2)]V?

X Re{ A \efer—wtigioar ) (12)
where the quantity w,7 = w,(t;—1,) may be
thought of as a phase difference between the
beams. The spatially dependent exponential
portions of € and €* have been supressed in
writing Eq. (12) because the first-order coher-
ence requirement for the total field, imposed
across the photodetector surface, insures parallel
constituent beams, and we have assumed normal
incidence.

Since we do not have advance information
about the phase of a particular beam in any
experiment, however, in using this theory we
should properly choose states which are aver-
aged over phase. Although the interference
term in Eq. (12) above will vanish through the
ensemble average in this case, the interference
would be present in any individual experiment.
We assume that we can select an ensemble by
considering only experiments with the same
phase difference. This permissible procedure is
entirely analogous to that used for spatial inter-
ference.” For convenience, we shall choose
the phase difference w,r in such a manner as to
precisely cancel the phase factors arising from
Af and A,.

The count rate for a restricted ensemble such
as that discussed above, and for a field posess-
ing first-order coherence with stationary and
temporally coherent constituent beams, may
therefore finally be written as

R= |)\1|2G(1)(X1» X1)+ ‘7\2|ZG(D(X21 X2)
+2[|M: PG P x1s X0 M2 |*G Plxas x2)1V2

X COS (wy — wy)l. (13)
The phase difference has been conveniently
chosen as described above, and the quantity
t, has been written as ¢ in the interference term.
We note that G P(x;,x;) and GP(xs, x») are
count rates which are constant in time and do
not possess any fluctuating components. In
terms of the classical intensities I; and I, for the
individual beams, this is equivalent to

R=1+1,+2V(l,1,) cos (w, —wy)t. (14)

This expression differs from the usual classical
result® in that it does not contain sum- and
double-frequency components of w; and w,. No
contradiction with experiment has been noted
by using the classical theory in the optical and
infrared, however.-® This is because although
these additional terms appear in the classical
theory, they are generally disregarded bécause
of the “inability of the detector to follow such
rapid fluctuations.” However, it is clear from
the quantum analysis that these rapidly varying
terms never appear for the usual absorption
detector when hv > kT, and therefore would
not be observed even with detectors of arbi-
trarily small resolving time.

In the low frequency limit, where hyv < kT,
the quantum theory for the heterodyne detector
reduces to the classical result, since in this
region photons are emitted as readily as they
are absorbed. The two processes, which are
described by E~ and E*, respectively, therefore
occur with equal magnitude and we must sum
the effects of both. The real field strength E is
obtained as a consequence, so that the classi-
cal result for the heterodyne detector, including
sum- and double-frequency components, is
recovered. The semiclassical theory,” which
makes use of the analytic signal, gives the cor-
rect form for the heterodyne signal only when
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the fields considered are stationary, possess a
positive-definite weight function in the P-repre-
sentation, and are in the realm hv > k7.

In the usual classical or semiclassical formula-
tion of optical or infrared heterodyne detection,
a separate requirement for optimum photomix-
ing is that the wave normals of the constituent
beams be aligned to within an angle A/a () is the
radiation wavelength and a is the detector aper-
ture).-® It is interesting that this requirement
need not be stated separately in the quantum
theory; rather, it may be seen to be a simple
consequence of the general condition of first-
order coherence of the total incident radiation
field over the detector aperture.

To consider the case where the incident radia-
tion field is not fully coherent (to first-order),
or the constituent beams are non-stationary, we
write Eq. (10) in its more general form

R= “‘1]2G(D(X1’ X0+ I)\ZIZG(D(Xz: Xz)
+21}\1f |)\2} |G(1)(X17 Xz)l

X cos {(x1: x2) T 0}, (15)
where ¢(x;, x2) is a phase function derived from
G Y(xy, x2)- The phase angle 6 depends on the
geometry of the experiment.

Using the correlation-function equality® for
radiation with maximum visibility fringes

}G (1)(X1: Xz)l = [G(l)(Xla Xl)G(l)(Xzs X2)]1/25 (16)

we obtain another expression for R,

R= ]MIZG(D(Xn X0+ i)\zlzG(l)(Xzs X2)
+ 2[|}\1120(l)(X1’ X1) |}\2|2G(1)(X2, x2) 112
Xcos {¢(ty, b}, an

which is equivalent to Eq. (10) except for the
(unimportant) suppression of 4. This result is
valid for a general first-order coherent field
(nonstationary as well as stationary) with arbi-
trary statistical properties (since only first-order
correlation functions appear).

It is observed from Eq. (17) that for non-
stationary beams with a first-order coherent
field, the intereference term exists but is nor
sinusoidal. The result in Eq. (15) is valid even
when there is not maximum fringe contrast

(first order coherence). In tha; case, however,
the equality in Eq. (16) no longer holds, and
must be replaced by the inequality“"

|G P(x1s x| < [GP(x1 X1)G Plxas x)IV2 (18)

From this, it is evident that the photomixing
term will be reduced below its maximum value
when there is a departure from precise first-
order coherence of the incident radiation. There-
fore in the quantum theory, optimum photo-
mixing with a sinusoidal beat signal arises from
the simple conditions of first-order coherence of
the total incident field, and monochromatiticy of
the constituent fields. The count-rate is seen to
be independent of the statistical properties of the
radiation in that only first-order correlation
functions enter the equations. If, however,
knowledge about information other than count
rates is desired, e.g. the frequency spectrum or
the statistical properties of the beat signal, then
knowledge about correlation functions higher
than first order would be necessary.1®

It is, perhaps, worthy of mention that a con-
sideration of the tensor properties of the cor-
relation functions® shows that orthogonally
polarized beams normally incident on a photo-
detector will not give rise to a photomixing
signal. This has been experimentally confirmed
some time ago by Javan, Ballik and Bond.™

3. CONCLUSION

If the radiation incident on the detector
possesses precise first-order coherence, two
interesting consequences follow. The first re-
lates to constraints on the correlation func-
tions,”® and has provided us with the magnitude
of the heterodyne signal. The second concerns
the density operator for the radiation field,®
and allows a physical interpretation for the beat-
ing process.

Titulaer and Glauber'® have generalized the
definition of a mode to include nonmonochrom-
atic solutions to the wave equation, and have
thereby derived a density operator for the most
general type of field possessing first-order
coherence. This operator may be obtained by
replacing the creation operator g, in the single-
mode density operator by a more general crea-
tion operator bt. This latter quantity creates a
photon in a particular superposition of modes
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which may be considered as specifying a par-
ticular type of photon wave packet. Therefore,
a field which has first-order coherence may be
regarded as consisting of photons of only a
single (in general nonmonochromatic) variety.
It has also been shown that if a field possesses
such a density operator, it is first-order coherent.
Since any field expressible in Glauber’s P-
representation may be separated into a coherent
and an incoherent portion, it may be seen that
for this type of field only the coherent portion
will contain photons of the variety that give
rise to a heterodyne signal.

The heterodyne detection process may then
be considered as the annihilation of a single
photon of this variety. Thus even in the pres-
ence of a single one of these photons, a hetero-
dyne signal may still be observed. Dirac’s"®
well-known comment, ... Each photon inter-
feres only with itself. Interference between two
different photons never occurs,” therefore
applies to the heterodyne experiment, as it
applies in the case of spatial interference ex-
periments.® This is not surprising since we are
considering a type of interference experiment
which is a one-quantum process. For multiple-
photon processes, such as two-quantum photo-
detection'”'® or the Hanbury Brown-Twiss
effect, however, this is not necessarily true.®

The uncertainty principle also shows that it
is not useful to consider the photons of the
constituent beams separately. In fact, in a
heterodyne experiment, we are unable to deter-
mine from which beam a photon is absorbed
in a given time interval. Consider a description
in which there are two alternate ways in which
the system can evolve from its initial state to
the final state: by absorption of a photon from
beam 1 or by absorption of a photon from beam
2. In order to ascertain which beam gave rise
to the ejection of a particular photoelectron,
its energy would have to be measured to within
a value AE given by AE < f|w, —w,]. From

the uncertainty principle,

AEAT > h, (19)

the time Ar required for such a measurement
would be
3
A72E=|w1‘*w2|>1. 20)

The required measurement time is greater than
the period of the beat frequency and such a
measurement would therefore wash out the
time interference. Thus, one cannot ascribe a
detected photon to one or the other of the con-
stituent beams. An analogous argument has
been applied by Pfleegor and Mandel®® to
independent-beam spatial interference at the
single-photon level.
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