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 Abstract 

Diabetes affects almost one million Australians, and is associated with many other conditions 
such as vision loss, heart failure and stroke. Any improvement in early diagnosis would 
therefore represent a significant gain with respect to reducing the morbidity and mortality of the 
Australian population. In this study we apply signal processing and automated machine 
learning to analyse heart rate variability measures. These data are well suited to the diagnosis 
of cardiac dysfunction, but here we use the same measures to detect diabetes. By applying 
appropriate methods we were able to select the most relevant features to use as input to a 
variety of classifier algorithms. We compare sensitivity and specificity results obtained from 
these classifier algorithms. Results suggest that the detection of diabetes is feasible from heart 
rate variability measures.  
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Abstract 
Diabetes affects almost one million Australians, and is associated with many other conditions 
such as vision loss, heart failure and stroke. Any improvement in early diagnosis would 
therefore represent a significant gain with respect to reducing the morbidity and mortality of the 
Australian population. In this study we apply signal processing and automated machine 
learning to analyse heart rate variability measures. These data are well suited to the diagnosis 
of cardiac dysfunction, but here we use the same measures to detect diabetes. By applying 
appropriate methods we were able to select the most relevant features to use as input to a 
variety of classifier algorithms. We compare sensitivity and specificity results obtained from 
these classifier algorithms. Results suggest that the detection of diabetes is feasible from heart 
rate variability measures.  
 
1.  Introduction 
 
Both the NSW Department of Health and Commonwealth Government have identified diabetes 
to be a significant and growing global public health problem with the expected incidence in 
Australia to increase from 4% to 10% by 2010 [1].  In Australia approximately 1 million people 
are affected by diabetes and health care costs associated with treatment of complications 
amounts to approximately $7 billion dollars [2]. Vision loss, heart failure and stroke contribute 
significantly to the morbidity and mortality of the Australian population. Diseases of the 
circulatory system such as coronary heart disease and stroke were listed as the underlying cause 
of death in 55.7% of deaths in 2000 where diabetes was an associated cause [3]. In addition 
some form of nervous system damage such as cardiac autonomic neuropathy (CAN) that affects 
the function of the heart and blood vessels, occurs in up to 60-70% of people with diabetes [4]. 
 
Diabetes may lead to subtle changes in heart rate variability that become increasingly more 
compromising, manifesting in arrhythmia and cardiac failure in the majority of individuals with 
diabetes. Early detection of this pathology would allow timely intervention and thus lessen 
morbidity and mortality. This would improve the quality of life for people with diabetes and at 
risk for heart failure and stroke, as well as contributing to a substantial saving to the health care 
system [5]. 
 
To assess CAN the variation in the interval length of the ECG between successive beats can be 
analyzed in terms of heart rate variability (HRV). From this sequence of intervals, many 
secondary measures may be derived, making use of fractal and wavelet analysis techniques. It is 
well known as a tool for detecting cardiac dysfunction [6, 7].  
 
Discrimination of various categories or classes (such as “cardiac dysfunction” or “normal”) is a 
well-studied class of machine learning problems. Here the key is to determine some relationship 
between a set of input vectors that represent stimuli, and a corresponding set of values on a 
nominal scale that represent category or class. The relationship is obtained by applying an 
algorithm to training samples that are 2-tuples <u, z>, consisting of an input vector u and a 
class label z. The learned relationship can then be applied to instances of u not included in the 
training set, in order to discover the corresponding class label z [8]. A number of machine 



learning techniques including genetic algorithms [9], and neural networks [10] have been shown 
to be very effective for solving such problems. 
 
In evaluating the performance of any classifier, the accuracy is the most common measure used. 
In order to avoid bias in reporting this figure, it is necessary to report the accuracy on data not 
seen by the classifier during training. This requires splitting the available data into two sets, the 
training set and the holdout set. The classifier is trained on the first dataset then evaluated by its 
performance on the holdout set. Obviously the holdout set must be chosen carefully to prevent a 
source of bias here. The most popular way of testing involves the cross validation method [11] 
where the dataset is divided into a number of subsets. A number of tests are performed where 
each subset in turn becomes the holdout set. In this way the classifier is tested against all 
available data. 
 
In order to apply these techniques to real problems, it is usual to obtain a number of measures, 
or features, which can form the input vector u, and to obtain the corresponding class label z. In 
this case of medical diagnosis the class label is usually supplied after clinical evaluation by a 
specialist. It is to be expected that of the many measures available, some are better than other at 
discriminating between the classes. Methods for choosing the best feature set for detecting 
cardiac dysfunction have been demonstrated by Teich and co-workers [7]. However, in this 
study we are concerned with detecting diabetes with respect to the occurrence of CAN, which 
can precede the identification of hyperglycaemia by many years. 
 
It is well known that using too many features can actually degrade accuracy of the prediction, so 
optimising the accuracy of such methods involves a choice not only of classifier algorithm, but 
also of the appropriate features. Kohavi [12] has studied the automatic selection of features and 
concluded: 
 

• The optimum feature subset will depend on the classifier model chosen 
• Therefore the subset may be considered a parameter of the model 
• The evaluation of feature subsets will be biased in a favourable direction unless it uses 

independent data. 
 
In addition, Kohavi suggests a wrapper approach where the actual classifier algorithm is used to 
evaluate the features selected, and perform a search for the set of features that maximises 
classifier accuracy. 
 

2. Machine Learning Algorithms 
 
A number of automated classifier algorithms are available using the excellent Weka toolbox [13]. 
These are briefly discussed below and include the Decision Table, Nearest Neighbours, Decision 
Tree Induction, Kernel Density and Naïve Bayes algorithms. We also used an implementation of 
the CMAC neural network, which is not included in the Weka toolbox. 
 
The Decision Table algorithm divides the dataset into cells, where each cell contains identical 
records. A record with unknown class is assigned the majority, or most frequent, class 
represented in the cell. The goal of training is to find a minimum set of features that are optimal 
in predicting the class [14]. 
 



The Nearest Neighbours algorithm [15] simply stores samples. When an example is presented to 
the classifier, it looks for the nearest match from the examples in the training set, and labels the 
unknown example with the same class. In practice the algorithm looks at the nearest k 
neighbours, where k is a parameter set by the user. We have used this algorithm with k=1 and 
k=3. 
 
The Decision Tree Induction algorithm [16] uses the C4.5 algorithm to form a tree by splitting 
each variable and measuring the information gain provided. The split with the most information 
gain is chosen, and then the process is repeated until the information gain provided is below a 
threshold. 
 
The Kernel Density algorithm [17] estimates a probability distribution of the data separately for 
each class. Each point is represented by a kernel function, and the kernels for all points in the 
class are summed to provide a composite function. An unknown point is evaluated by each 
composite function separately, and the class function corresponding to the highest probability is 
chosen. 
 
The Naïve Bayes algorithm [18] assumes that features are independent. From the correlation 
analysis above, we know this is untrue, but the algorithm performs surprisingly well. It estimates 
prior probabilities by calculating simple frequencies of the occurrence of each feature value given 
each class, then returns a probability of each class, given an unclassified set of features. 
 
The Cerebellar Model Articulation Controller (CMAC) [19] with the Kernel Addition Training 
Algorithm [20] divides the input space using multiple overlapping grids and builds a probability 
density function for each class. An unknown input then can be associated with an appropriate 
probability value for each class. The input is assigned to the class having the largest probability. 
 
Included in the Weka toolbox is a Wrapper Subset evaluator. This takes as a parameter the name 
of the class being used for the discriminant function. The wrapper does a search in the list of 
features for the set that gives the lowest error on the given classifier. 
 
3. Methods 
 
The aim of these experiments is to determine whether it is possible to make any predictive model 
from these data. If it is possible, this is evidence that the disease is related to changes in the heart 
rate parameters measured. 
 
We used heart rate variability data from a joint Israeli-Danish study [21], which consists of 46 
adult people, 22 with known diabetes and 24 controls, which had not been diagnosed with 
diabetes. The dataset provides the measurements shown in table 1. 
 



Table 1. Features used from the heart rate variability dataset. 
Feature 
number 

Details 

1 to 13 Allan Factor using time windows of 1, 1.5, 2.2, 3.2, 4.7, 6.80, 10, 15, 22, 32, 
47, 68, and 100 sec [Allan, 1966; Barnes and Allan, 1966]. 

14 to 21 The  Discrete Haar Wavelet Transform using scales of 2, 4, 8, 16, 32, 64, 
128, and 256. 

22 Wavelet transform power law exponent 
23 The Mean of heartbeat counts. 
24 The average heart rate (not period) 
25 to 29 Other standard measures of distribution used are the Variance, Standard 

deviation, Coefficient of variation, Skewness, and Kurtosis. 
30 SerialCC – Autocorrelation coefficient of sequence of R-R intervals. 

 
These features have been evaluated for their efficacy in discriminating between cardiac 
dysfunction and normal controls [7], but not as a diagnostic aid for diabetes. The complex 
interaction between these variables makes it difficult to choose the correct feature subset to use 
by manual inspection. We therefore conducted a search both for the optimum classifier algorithm 
and for the optimum feature subset for that model. We used an outside cross validation loop to 
eliminate the bias. This was implemented as follows: 
 

• Create 46 data sets, each one excluding one data record. 
• Perform wrapper subset evaluation on each dataset, for each classifier algorithm using 

5-fold cross validation on the remaining 45 records. Repeat 10 times 
• For each classifier and exclusion set, choose the most common set of features. Where 

more than one has equal frequency, pick the fewest number of features. Break any 
further ties at random. 

• Test each classifier by training on 45 records with the chosen feature set, then testing on 
a single holdout record. 

• Evaluate each classifier on the number of records correctly classified out of 46 trials. 
 
We repeated steps 4 and 5 after choosing the most popular feature subset for each classifier, and 
again after choosing the most popular feature subset from the entire experiment. 
 
4. Results 
 
After the wrapper feature selection, all classifiers except CMAC found the same feature set given 
the same dataset. There was great variation in the feature subset chosen for different dataset, for 
all classifiers. The optimum feature subsets found are summarised in table 2, for the first dataset 
(excluding record #1) and the second dataset (excluding record #2). For the CmacKata algorithm, 
the feature set was different for each run. For the first dataset the best feature sets indicated were 
19, 17, 17, 17, 17, 19, 17, 17, and 17. The most frequent feature set {17} was selected. For the 
second dataset, the feature set indicated was always {15, 22}. 
 



Table 2. Optimum feature subsets for each classifier (only datasets 1 and 2 shown). 
Algorithm Feature set for dataset 1 Feature set for dataset 2 
CmacKata 17 15,22 
Decision Table 28 28 
IB1 19 17 
IBk=3 14,15,16,19,28 14,15,19,28 
j48.J48 7,9,28 3,7,9,24,28 
Kernel Density 10,12,16,18,20,26,27,28 8,9,21,28 
Naïve Bayes 11,16,20,22,26,28 16,20,25 

 
The result of classification using these feature sets is shown in table 3. For most algorithms, the 
accuracy is very poor considering that a random choice would be expected to assign 
approximately half of all records (23) to the correct class. The 3-Nearest Neighbours method 
(IBk=3) is the only classifier that provided a better classification than a random guess. The 
average number of correctly assigned records for all classifiers is 21, which is not a encouraging 
result. 
 

Table 3. Results of testing classifiers using feature subsets chosen for each classifier and each dataset using the 
wrapper method. 

Classifier truePos falsePos trueNeg falseNeg correct sensitivity specificity 
CmacKata 5 15 9 17 14 0.227273 0.375
Decision Table 0 1 23 22 23 0 0.958333
IB1 11 16 8 11 19 0.5 0.333333
IBk=3 11 10 14 11 25 0.5 0.583333
j48.J48 7 8 16 15 23 0.318182 0.666667
Kernel Density 8 13 11 14 19 0.363636 0.458333
Naïve Bayes 13 14 10 9 23 0.590909 0.416667
 
In the second test, we combined feature sets so that one set was used for each classifier. We did 
this by selecting the most frequently indicated feature set for each classifier, from the results of 
the wrapper evaluation used in the first test. These sets are shown in table 4, and the results of 
classification using these sets are given in table 5. There results appear far better, with the 
majority of the classifiers performing better than a random choice. The average number of 
correctly assigned records for all classifiers is 30. The 3-Nearest Neighbours classifier (IBk=3) 
and the Kernel Density classifiers both achieve a relatively high accuracy, correctly assigning 35 
out of 46 records to the correct class. Of the other classifiers, most achieve a result better than a 
random guess. It is interesting to note that the feature sets selected for the two most successful 
classifiers are very different. This tends to support the findings of Kohavi [12], i.e. that the feature 
set is best considered a part of the classifier algorithm chosen, and that it is unlikely that an 
feature set can be chosen that will be optimum for all classifiers. 
 



Table 4. Optimum feature subsets for each classifier, as used for all datasets. 
Algorithm Feature set 
CmacKata 15,22 
Decision Table 28 
IB1 6,10,12,17 
IBk=3 13,14,15,16,27,28,30
j48.J48 28 
Kernel 
Density 8,9,21,28 
Naive Bayes 16,20,26 

 
Table 5. Results of testing classifiers using feature subsets chosen for each classifier 

Classifier truePos falsePos trueNeg falseNeg correct sensitivity specificity 
CmacKata 17 11 13 5 30 0.772727 0.541667 
DecisionTable 0 1 23 22 23 0 0.958333 
IB1 14 9 15 8 29 0.636364 0.625 
IBk=3 16 5 19 6 35 0.727273 0.791667 
j48.J48 7 5 19 15 26 0.318182 0.791667 
KernelDensity 16 5 19 6 35 0.727273 0.791667 
NaiveBayes 16 9 15 6 31 0.727273 0.625 
 
In our third test, we chose the most frequent feature set out of all classifiers and all datasets. This 
was feature number 28, Skewness. Fig. 1 illustrates the frequency with which each feature was 
selected across all wrapper evaluation tests. This clearly shows that Skewness was the most 
frequent overall. However, Fig. 2 illustrates that classes are well interlocked when considering 
this feature alone, so it is obvious that no single feature would enable accurate classification of 
the two classes. 
 
The results of the accuracy evaluations are given in table 6. Although most of the classifier 
algorithms are more successful than a random guess, it is obvious from the result that this has not 
been as successful as the previous test. The most successful classifier for this test appears to be 3-
nearest neighbours. 
 

Table 6. Results of testing classifiers using the same feature subset for every classifier (Skewness). 
Classifier truePos falsePos trueNeg falseNeg correct sensitivity specificity 
CmacKata 13 11 13 9 26 0.590909 0.541667
Decision Table 0 1 23 22 23 0 0.958333
IB1 10 13 11 12 21 0.454545 0.458333
IBk=3 13 6 18 9 31 0.590909 0.75
j48.J48 7 5 19 15 26 0.318182 0.791667
Kernel Density 6 2 22 16 28 0.272727 0.916667
Naïve Bayes 8 4 20 14 28 0.363636 0.833333
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Fig. 1. Examination of the frequency distribution of features chosen from the dataset, 

for all classifiers, suggest that feature #28, the Skewness of distribution of interval 
sizes, has some special property in distinguishing the classes. 
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Fig. 2. Normal distributions for the two classes shown using the most popular feature, 
Skewness. 

 
5. Conclusions 
 

Based on these preliminary results, we suggest the following conclusions: 
 

• It appears that diabetes could be detected from an analysis of heart rate variability, but 
further study is obviously required. 

• Diagnosis of diabetes by this method is not 100% accurate, and depends upon careful 
selection both of the classifier algorithm used, and the feature subset. 

• Selection of a feature set for a particular classifier appears to be more successful than 
selection of a separate feature set for each classifier and each dataset, or selection of a 
common feature set for all classifiers. 

 
We have demonstrated the feasibility of detecting diabetes from heart rate recordings with 
possible Cardiac Autonomic Neuropathy (CAN). The most successful classifier algorithms tested 
were the 3-Nearest Neighbours and the Kernel Density, achieving a sensitivity of 0.727273 and a 
specificity of 0.791667. We have been careful to eliminate bias and over fitting in our evaluation 
of success, to provide some confidence in the results. The results are quite promising despite the 
small dataset available (46 records). The relative speed with which the analysis presented here 
can be performed on a modest computer suggests that this technique could be of benefit in 
screening, especially in rural regions where specialist medical personnel are less accessible than 
in urban areas. 
 
Both false negatives and false positives have merit here, so the results may be even better than 
indicated in table 5. We suggest that some false positives are actually controls with CAN and 
some false negatives are diabetics with no CAN. This needs to be clarified with additional tests in 
future work. With care, the error structure could be shifted towards false positives, which would 
allow marginal cases to be referred for further investigation. 
 
The success of classifier algorithms using a separate feature set for each classifier supports the 
findings of Kohavi [12], by showing that the feature set chosen should be regarded as part of the 
classifier algorithm. From the results presented, the best feature is the Skewness of heart rate 
intervals, although it is clear that this feature alone cannot provide any useful discrimination of 
diabetics from controls. It is necessary to use a set of features suited to the chosen classifier. 
 
The success in discriminating diabetes from normal controls in heart rate variability data suggests 
a methodology that would provide a very simple, cheap and quick test that could be performed in 
a rural health clinic, and if implemented, would bring great benefits to the rural community in 
terms of early diagnosis and consequently a reduction in hospitalization and length of stay. 
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