
Experimental Violation of Bell’s Inequality in Spatial-Parity Space

Timothy Yarnall,1 Ayman F. Abouraddy,2 Bahaa E. A. Saleh,1 and Malvin C. Teich1,*
1Quantum Imaging Laboratory, Departments of Electrical & Computer Engineering and Physics, Boston University, Boston,

Massachusetts 02215-2421, USA
2Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA

(Received 21 July 2007; published 26 October 2007)

We report the first experimental violation of Bell’s inequality in the spatial domain using the Einstein-
Podolsky-Rosen state. Two-photon states generated via optical spontaneous parametric down-conversion
are shown to be entangled in the parity of their one-dimensional transverse spatial profile. Superpositions
of Bell states are prepared by manipulation of the optical pump’s transverse spatial parity—a classical
parameter. The Bell-operator measurements are made possible by devising simple optical arrangements
that perform rotations in the one-dimensional spatial-parity space of each photon of an entangled pair and
projective measurements onto a basis of even-odd functions. A Bell-operator value of 2:389� 0:016 is
recorded, a violation of the inequality by more than 24 standard deviations.
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Introduction.—Although Einstein, Podolsky, and Rosen
(EPR) [1] couched their challenge to the completeness of
quantum mechanics in the language of continuous spatial
parameters of a two-particle quantum state, most of the
subsequent work investigating their claim relied on dis-
crete degrees of freedom [2]. In particular, Bell [3] de-
scribed an approach to delineate quantum theory from
those that subscribe to local realism in terms of correlations
between two spin- 1

2 particles. Surprisingly, after more than
70 years of studying the EPR state, the quantum nonlocal-
ity potentially exhibited by it, as evidenced by the violation
of a Bell-type inequality, has not been experimentally
demonstrated in the spatial domain.

While the original paradox has been realized using the
EPR state in numerous experiments, such as the one re-
ported by Ou et al. [4], including one in the spatial domain
(which did not report a Bell-inequality test) [5], it was
posited by Bell himself [6] that the EPR state should not
violate a Bell-type inequality, and hence does not violate
local realism, since its associated Wigner distribution [7] is
positive everywhere. It has since been recognized that this
statement is not correct [8]. The challenge one faces to
demonstrate a Bell-inequality violation in the spatial do-
main is to identify operators that perform rotations and
projective measurements on suitably defined observables
of the infinite-dimensional Hilbert space associated with
the spatial profile of entangled photon pairs. A recent
proposal to achieve this [9], relying on orbital angular
momentum observables manipulated by spiral phase
plates, was subsequently retracted [10]. A modified pro-
posal using the same variables [11] relies on projecting the
EPR state in the spatial domain onto a two-dimensional
subspace and has thus far not been demonstrated experi-
mentally; nor have other proposals [12]. Another approach
that retains the entire Hilbert space relies on a set of
‘‘pseudospin’’ operators that have been recently con-
structed [13] and that provide a bridge between states
described by continuous and discrete variables. In essence,

these proposed operators map the infinite-dimensional
Hilbert space of the EPR state onto a smaller-dimensional
space [14]. Nevertheless, the physical realization of these
operators presents daunting experimental difficulties
[13,15].

In this Letter, we present a conclusive experimental
violation of Bell’s inequality in the spatial domain, and
thus demonstrate quantum nonlocality using the EPR state
produced by spontaneous parametric down-conversion
(SPDC) [16]. This is made possible by constructing pho-
tonic pseudospin operators in the spatial domain using an
approach that we recently described [17]. These operators
make use of the spatial parity (even-odd) of the one-
dimensional (1D) transverse field of single photons. This
entails mapping the infinite-dimensional Hilbert space of
the photon’s transverse spatial profile onto a space of
dimension two. It is important to note that the potentially
infinite-dimensional Hilbert space of transverse modes
(limited by the effective numerical aperture of the experi-
mental arrangement) is mapped onto a two-dimensional
space [14] and is neither truncated as in Ref. [18] nor
projected onto a smaller-dimensional subspace as in
Ref. [11].

Spatial-parity space.—To introduce the above-
mentioned mapping, consider a one-photon state in the
spatial domain j�i �

R
dx �x�j1xi, where

R
dxj �x�j2 �

1. This state is potentially of infinite dimensionality as
governed by the expansion into an orthonormal functional
basis  �x� �

P
ncn�n�x�, such that j�i �

P
ncnjni, where

jni �
R
dx�n�x�j1xi. We take the �n�x� basis functions to

alternate between even and odd parity, as do, for example,
the Hermite-Gaussian functions. We map this state onto
two ‘‘levels’’ of a qubit: the even  e�x� �

1
2 f �x� �

 ��x�g and odd  o�x� �
1
2 f �x� �  ��x�g components

of the photon transverse distribution, which are orthogonalR
dx �e �x� o�x� � 0. The one-photon state may be recast

in the even jei and odd joi basis of this 2D space of spatial
parity, j�i � �jei � �joi, where �jei �

P
nc2nj2ni and
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�joi �
P
nc2n�1j2n� 1i. The fundamental insight pro-

vided in this Letter is the isomorphism between the pseu-
dospin approach and the that of spatial-parity space.

It has been shown [17] that the pseudospin operators
corresponding to the well-known Pauli operators, as well
as other relevant operators (such as rotation and projection
operators), are easily implementable on this new Hilbert
space. The two most relevant operators for this Letter are
the parity rotator and the parity analyzer. The parity rotator
rotates the state function in parity space, just as a polar-
ization rotator rotates the polarization vector. This operator
is implemented using a phase plate that introduces a phase
� between the x � 0 and x < 0 half planes (i.e., having
transmissivity ei��=2�sgn�x�), corresponding to a rotation � on
a Poincaré sphere [17]. The parity analyzer is a device that
separates the even and odd components of the state into
two separate spatial paths, thus projecting the state onto the
even-odd basis. Our implementation of a parity analyzer
uses a Mach-Zehnder interferometer (MZI) at zero relative
path length delay with a spatial flipper (viz., a device that
produces a mirror image of the incident field, ’�x� !
’��x�, implemented in our case by a mirror) inserted in
one arm. The resulting interferometer becomes parity sen-
sitive (PS-MZI) [17,19].

Experimental arrangement.—A generic configuration
for the experimental violation of Bell’s inequality is shown
in Fig. 1(a). A two-photon source directs each photon to
an SO(2) rotation operator (characterized by angular set-
tings �1 and �2) followed by a projective measurement.
Coincidence measurements between the detectors D1 and
D2 for various settings of �1 and �2 are used to obtain the
correlations between a pair of dichotomic outcomes
needed for assessing a violation of Bell’s inequality in
the Clauser-Horne-Shimony-Holt (CHSH) formulation
[20]. In our conception, the SO(2) operator is a parity
rotator and the projective measurements on each photon
are performed using parity analyzers. Our experimental
arrangement is shown schematically in Fig. 1(b). Light
from a linearly polarized laser diode (center wavelength
405 nm, power 50 mW) emitting in an even-symmetry
spatial mode  even�x� is passed through a phase plate that
serves as a parity rotator [17]. The angle � determines the
spatial parity of the exiting pump beam, which illuminates
a 1.5-mm-thick �-barium borate nonlinear optical crystal
(NLC) in a degenerate collinear type-I configuration (sig-
nal and idler photons of center wavelength 810 nm with the
same polarization, orthogonal to that of the pump). The
collinear signal and idler photons are separated by a beam
splitter; each of the exiting photons passes through a parity
rotator, set at �1 and �2. Each output photon then enters a
parity analyzer and then exits to the detectors. The uncon-
verted pump light is removed with the help of a polarizing
beam splitter (PBS) placed after the NLC as well as by
interference filters F (centered at 810 nm, 10-nm band-
width) in front of the multimode-fiber-coupled detectors
D�1 , D�1 , D�2 , and D�2 (EG&G SPCM-AQR-15-FC). It is

important to note that we do not couple the photons into
single-mode fibers as is the usual practice in projecting
orbital angular momentum states onto a single spatial
mode [10,18]; as mentioned above, we aim to collect all
the available spatial modes. The outputs of these detectors
are fed to coincidence circuits and then to counters, from
which a correlation function E��1; �2;�� (to be defined
shortly) is obtained.

Quantum-state preparation.—We produce the different
two-photon states investigated here by manipulating the
spatial parity of the pump profile Ep�x�, a classical pa-
rameter, via its passage through a phase plate that produces
the classical field distribution

 Ep�x� � cos��=2� even�x� � i sin��=2� odd�x�; (1)

where � is the angle of parity rotation imparted by the
phase plate to the pump, and  odd�x� � sgn�x� even�x�. The
two-photon quantum state produced in 1D by SPDC
[16,17] is j�i �

RR
dxdx0 �x;x0�j1x;1x0 i, where

  �x; x0� � Ep

�
x� x0

2

�
�
�
x� x0

2

�
�
XN
n�0

�n�n�x��n�x
0�;

(2)

where ��x� is a function of width much smaller than that of
Ep�x�, representing the correlation between the emission
locations of the two photons,

PN
n�0 �

2
n � 1, and f�n�x�g
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FIG. 1 (color online). (a) Notional configuration for testing
Bell’s inequality. PA: parity analyzer; �: parity rotator; D:
detector. (b) Schematic of the experimental arrangement. The
inset depicts the construction of a phase plate (parity rotator)
used at three locations in the setup: after the laser diode (�) and
immediately preceding each PS-MZI (�1 and �2). It comprises
two glass microscope slides, abutted at the origin of the trans-
verse dimension x � 0 that can be tilted with respect to each
other, thus introducing a relative phase between the two halves
of the plane.
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and f�n�x�g are two orthonormal sets of functions in the
Schmidt decomposition [21].

The even  even�x� and odd  odd�x� components of the
pump spatial field distribution generate through the process
of SPDC the two-photon spatial-parity states j��i and
j��i, respectively, where j��i � 1��

2
p fjei1jei2 � joi1joi2g

and j��i � 1��
2
p fjei1joi2 � joi1jei2g, as detailed in

Ref. [17]. This may be understood intuitively by noting
that an even-parity (odd-parity) pump results in a Schmidt
decomposition of the two-photon state function in Eq. (2)
composed of a sequence of products of only even-even or
odd-odd (even-odd or odd-even) functions. The two-
photon state generated by the pump distribution in
Eq. (1) is thus

 j�i � cos��=2�j��i � i sin��=2�j��i: (3)

It is important to note that this two-photon state is maxi-
mally entangled regardless of the value of � (the concur-
rence [22] of the state is unity, independent of �) and thus
allows for a maximal violation of Bell’s inequality.

For the purposes of this Letter, only three values of� are
considered, namely � � 0 (corresponding to an even
pump), �

2 (pump in an equal superposition of even and
odd components), and � (odd pump), leading to the fol-
lowing two-photon states: j��i, 1��

2
p fj��i � ij��ig and

j��i, respectively. A fourth state, 1��
2
p fj��i � j��ig (i.e.,

without the factor i) is prepared using a pump having the
distribution 1��

2
p f even�x� �  odd�x�g. This is achieved by

removing the phase plate used to control the pump parity
(Fig. 1) and replacing it with an opaque screen that blocks
the field on the positive x axis. The resulting two-photon
state 1��

2
p fj��i�j��ig� 1��

2
p fjei1�joi1g	

1��
2
p fjei2�joi2g is

separable and as such will not violate Bell’s inequality.
Bell-operator measurements.—After their preparation,

each photon in the two-photon states undergoes a rotation
in parity space followed by a projective measurement
implemented by a phase plate and a PS-MZI, respectively.
Photon detection is done in coincidence and the value
�1��1� is associated with even (odd) outcomes. One can
then estimate the correlation function E��1; �2;�� between
the parities of the two photons as a function of their
respective rotations via

 E ��1; �2� �
C�e; e� � C�e; o� � C�o; e� � C�o; o�
C�e; e� � C�e; o� � C�o; e� � C�o; o�

; (4)

where C is the coincidence count rate recorded between the
indicated pair of detectors [17]. It should be noted that the
rotation employed here is about an axis on the Poincaré
sphere that is orthogonal to the one often reported in
polarization-based experiments. This distinction becomes
important when considering tests of quantum physics more
stringent than that of Bell [23].

Evaluation of the Bell operator in the CHSH form
requires measurement of four correlations requiring two
settings for each parity rotator

 B �jE��1;�2��E��1;�02��E��01;�2��E��01;�
0
2�j
2;

(5)

where we omit the implicit dependence on� for simplicity.
Quantum theory predicts the correlation function for the
maximally entangled state given in Eq. (3) to be

FIG. 2 (color online). Coincidence counts between D�1 and D�2
as a function of �1 for fixed �2 �

�
8 and three values of �: the

green � for � � 0 (even pump), the red � for � � �
2 (pump in

equal superposition of even and odd), and the yellow � for � �
� (odd pump). The black � represents the same measurement
when the initial phase plate is replaced by an opaque screen that
blocks the positive x axis, which leads to a separable two-photon
state. A side-effect of the screen is to halve the number of
photons produced via SPDC; for purposes of comparison with
the previous cases we therefore plotted twice the recorded values
in the figure.

FIG. 3 (color online). The correlation function E��1; �2;�� derived from coincidence measurements for three different maximally
entangled two-photon states, corresponding to different settings of the pump parity angle � (from left to right � � 0, � � �

2 , and
� � �). The final (right) panel shows E��1; �2� for a separable state. The dashed white line indicates the cross section of the data
presented in Fig. 2.
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E��1; �2;�� � cos��1 � �2 ���. Accordingly, B attains
the maximum value of 2

���
2
p

when �1 � �2 �
�
8 �

�
2 and

�01 � �02 �
13�

8 �
�
2 . When the state is separable, as is the

case for 1��
2
p fj��i � j��ig, the predicted correlation func-

tion is E��1; �2� � 0. The lack of dependence on the setting
of either parity rotator can be understood by noting the axis
of rotation on a Poincaré sphere. In this case each photon’s
state of parity is a point that lies on the axis of rotation
chosen in our experimental configuration and the correla-
tion function is thereby unchanged.

Experimental results.—Although evaluation of the Bell
operator requires that E��1; �2;�� be measured at only four
points in the (�1, �2) plane; measuring E over the full range
of values for �1 and �2 provides much more information
and offers insight into the effect of the pump parity on the
Bell operator. Measurements of the correlation function,
for each of the four states prepared, were performed by
varying �1 and �2 over 2� radians. Figure 2 provides an
example of the coincidence rate recorded by the ‘‘even’’
detectors after the parity analyzers when �2 �

�
8 ; the visi-

bility of the recorded coincidence sinusoids for each of the
maximally entangled states is � 84%. This lower-than-
expected visibility is a result of imperfect alignment of
the PS-MZIs. The full landscapes for E��1; �2;�� are
shown in Fig. 3. The functional form of E��1; �2;�� for
the entangled states are clearly seen to be 2D sinusoids in
�1 � �2 with the fringes shifted according to the value of
�. The separable state reveals a flat correlation landscape.
The measured values of the Bell operator for each state are
presented in Table I. All three entangled states demonstrate
clear violations of Bell’s inequality.

Conclusion.—We have shown that the entangled state
proposed in the original embodiment of the EPR paradox
violates a Bell inequality in the spatial domain, and thus is
at odds with any local-hidden-variables theory. We identi-
fied dichotomic observables based on the spatial parity of
each particle’s transverse spatial distribution. This identi-
fication, combined with our demonstrated abilities to per-
form rotations in parity space, and projections onto an
even-odd basis, enabled us to carry out a direct test of
Bell’s inequality in the spatial domain. The results demon-
strate clear violations of the bounds imposed by local
realism, in agreement with quantum theory.
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