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Entanglement in Cascaded-Crystal Parametric Down-Conversion
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We use spontaneous parametric down-conversion in a cascade of crystals, driven by a single monochro-
matic cw pump laser, to study the interference of entangled photon pairs. By changing the distance
between the crystals, the observed quantum interference pattern varies continuously from that associated
with a longer single crystal to that associated with independent emissions from two distinct crystals.
Postselection via spectral filtering suppresses this phenomenon. These findings are expected to advance
the field of quantum-state engineering.
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A good deal of research has been carried out in recent
years with the help of entangled-photon states. A stan-
dard source of such nonclassical light comprises a highly
coherent pump laser incident on a nonlinear optical crys-
tal; beams of entangled-photon pairs (twin-photon beams)
are generated via spontaneous optical parametric down-
conversion (SPDC) [1]. Depending on the configuration of
the experiment and the cut of the crystal, the photon pairs
can be entangled in any number of variables: time, fre-
quency, direction of propagation, and polarization. Studies
carried out with twin-photon beams range from the exami-
nation of quantum paradoxes [2–4], to applications in op-
tical measurements [5], spectroscopy [6], imaging [7], and
quantum information [8,9].

Quite recently, because of practical advances in the en-
gineering of special quantum states [10,11], studies of
the coherence properties of entangled states generated via
parametric down-conversion have taken center stage. Since
entanglement from multiple sources is of fundamental im-
portance in quantum mechanics it is crucial to examine
its nature in the simplest of circumstances, viz. in the ab-
sence of possible confounding effects such as those asso-
ciated with predetector spectral and spatial filtering. To
this end we have carried out a study of the fourth-order
coherence properties of entangled-photon states generated
in a medium comprising two separate nonlinear crystals
pumped by the same highly coherent, monochromatic con-
tinuous wave (cw) laser source. We show that, depending
on the spacing between the crystals, the observed quantum
interference pattern can be varied from that associated with
a longer single crystal to one associated with independent
emissions from two distinct crystals.

The results reported in this Letter are likely to be
of use in guiding future developments in the area of
complex quantum-state engineering involving multicrystal
configurations [12], in ultrafast-pumped parametric down-
conversion [11], and in the design of periodically poled
materials for nonlinear-optics applications [13].

Quantum-interference experiments with a two-crystal
cascade.—The experimental arrangement is illustrated in
Fig. 1. A 100-mW cw Ar1-ion laser operated at 351.1 nm
0031-9007�01�86(18)�4013(4)$15.00
served as the pump. This highly monochromatic, co-
herent ultraviolet light was passed sequentially through
a cascaded pair of beta-barium-borate (BBO) crystals of
lengths 1.5 and 0.5 mm. The distance between the crystals
was nominally 5.5 cm. The crystals served as nonlinear
optical media in which orthogonally polarized (type-II)
spontaneous parametric down-conversion was generated in
a collinear degenerate configuration (v0

s � v0
i � v0

p�2,
where v0

s , v0
i , and v0

p represent the central frequencies of
the signal, idler, and pump fields, respectively). The laser
power was sufficiently low to provide, with high probabil-
ity, that at most one photon pair was generated at a given
time (the high visibilities obtained from separate single-
crystal quantum-interference experiments confirm the va-
lidity of this assumption).

Collinear down-converted beams were selected by
a 2.0-mm circular aperture (not shown), located 1 m
beyond the second crystal. After removal of the residual
pump-laser beam by a fused-silica dispersion prism, the

FIG. 1. Schematic diagram of the cw cascaded-crystal
quantum-interference experiment.
© 2001 The American Physical Society 4013
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twin-photon beams were passed through a birefringent
crystalline-quartz element of variable thickness, which
served to introduce optical-path delay. The entangled-
photon beams were then directed to a nonpolarizing beam
splitter, and thence to the two arms of a polarization
intensity interferometer. Each arm of the interferometer
comprised a Glan-Thompson polarization analyzer set at
45± with respect to the horizontal axis in the laboratory
frame, which established the basis for the polarization
measurements. Finally a convex lens (not shown) was
used to reduce the beam size to that of the small area of the
actively quenched Peltier-cooled avalanche-photodiode
detector. Predetection spectral filters were used in some
experiments. A coincidence circuit with a 3-nsec inte-
gration window constituted the basic electronics of the
experiment. Corrections for accidental coincidences were
not necessary. In each of the interference experiments,
the coincidence counts were accumulated over a period of
30 sec and plotted against the optical-path delay t in fsec.

When no filters were used we find that, as the separa-
tion between the crystals is varied, the coincidence pat-
tern changes in nature between the two extremes shown
in Fig. 2 (filled and open squares). This change occurs
over a distance of a few mm of crystal separation; changes
over scales of the order of the optical wavelength have
no noticeable effect. We will demonstrate elsewhere that
this is attributable to angular spread in the down-converted
beams. The solid curves represent the theoretical results
based on a model introduced in the next section, which are
fit to data taken at the two extremes. The results of a simi-
lar experiment, in which 9-nm-bandwidth (FWHM) filters
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FIG. 2. Coincidence counts, R�u1 � 45±, u2 � 45±, t�, as a
function of relative optical-path delay, t, for the relative phase
settings f1 2 f2 � 0 (solid squares) and f1 2 f2 � p�2
(open squares), in the absence of predetection filtering. The
solid curves are the theoretical plots corresponding to Eqs. (7)
and (8). The fourth-order interference pattern which results
when the phases f1 and f2 differ by p�2 explicitly reveals
the order in which the crystals are cascaded; the second (thin)
crystal provides a background coincidence rate for the first
(thick) crystal. The fourth-order interference pattern when the
phases f1 and f2 differ by 0 forms a single triangular dip, just
as if a single nonlinear crystal were used.
4014
were placed immediately before each of the detectors, are
shown in Fig. 3. The solid curves again represent the
theoretical results.

Theory.—We proceed to provide a phenomenological
model that is consistent with all of our experimental obser-
vations. We represent the overall quantum state as arising
from a general superposition of two Hamiltonians that gov-
ern the parametric down-conversion generated from each
crystal with the appropriate phases. The two-photon state
jC�2�� at the output of a cascade of two crystals can be
written as the sum

jC�2�� � j0� 2
i
h̄

Z
dt �eif1Ĥint�t, L1�

1 eif2Ĥint�t, L2�� j0� , (1)

where j0� denotes the unperturbed initial vacuum state; L1
and L2 represent the lengths of the two down-conversion
crystals; and f1 and f2 are phases associated with the
down-converted waves generated by the two crystals. For
one-dimensional (along the z-axis) collinear degenerate
type-II SPDC from a single crystal of length L, the Ham-
iltonian in Eq. (1) is described by [1]:

Ĥint�t, L� � x �2�
Z 0

2L
dz Ep�t, z�Ê�2�

s �t, z�Ê�2�
i �t, z�

1 H.c. (2)

Here x �2� is the second-order nonlinear susceptibility of
the medium; Ep�t, z� is the electric field of the classi-
cal pump at the time t, Ê�2��t, z� and Ê�1��t, z� represent
the negative- and positive-frequency portions of the down-
converted-beam electric-field operators, respectively; and
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FIG. 3. The same as Fig. 2, but now in the presence of 9-nm-
bandwidth filters placed immediately before detectors D1 and
D2 (Fig. 1). The spectral postselection provided by the filtering
transforms the interference pattern into a function with a single
dip that partially masks the crystal configuration. In experi-
ments using yet narrower bandwidth filters (not shown), the co-
incidence rate is predicted and observed to be indistinguishable
from that obtained using down-conversion from a single crys-
tal, giving the illusion that the dual-crystal and single-crystal
down-conversion quantum states are identical for all values of
f1 2 f2.
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H.c. stands for Hermitian conjugate. The subscripts p, s,
i represent the pump, signal, and idler, respectively. It is
clear that jC�2�� in Eq. (1) is equivalent to that produced
by a longer single crystal when f1 2 f2 � 0.

The coincidence-detection probability amplitude is cal-
culated from [14]

A�t1, t2� � �0jÊ�1�
1 Ê

�1�
2 jC�2�� , (3)

where t1 and t2 denote the photon arrival times at detectors
D1 and D2, respectively.

For the experimental configuration shown in Fig. 1, in
the general case where predetection filters may be present,
the probability amplitude given by Eq. (3) takes the form

A�T , t� 	 A�t1, t2�
�

q
Ip e2iv0

pT �eif1F1�t 2 DL2, sf�
1 eif2F2�t, sf�� , (4)
where T � �t1 1 t2��2, t � �t1 2 t2�, and D � � 1
yi

2
1
ys

� with yi and ys representing the group velocities of
the idler and signal waves, respectively. Ip is the mean
pump intensity. For Gaussian-shaped filters, the function
Fi , i � 1, 2, depends on the 1�e-spectral-filter bandwidth
sf via

Fi�t, sf� �
1

2DLi

Ω
erf

µ
sf

2
t

∂
2 erf

∑
sf

2
�t 2 DLi�

∏æ
.

(5)

In the absence of filtering, Fi�t, sf� becomes a rectangular
function that assumes unity value in the range �2DLi , 0�,
and zero elsewhere, as expected.

Using Eq. (4), the coincidence rate R�t� can be explic-
itly written in terms of polarization-analyzer angles (u1, u2)
defined with respect to the laboratory coordinate system’s
horizontal axis (which is set at zero degrees) [14]:
R�u1, u2, t� � Ip

Z `

2`

Z `

2`
dT dt jeif2�cosu1 sinu2F2�t 1 t, sf� 2 sinu1 cosu2F2�2t 1 t, sf��

1 eif1�cosu1 sinu2F1�t 1 t 2 DL2, sf� 2 sinu1 cosu2F1�2t 1 t 2 DL2, sf��j2. (6)

We have found that our experimental observations at an arbitrary separation between the crystals can be described in
terms of f1 2 f2. In the limit f1 2 f2 � 0, the coincidence rate in Eq. (6) reduces to

R�u1, u2, t� � Ip

Z `

2`

Z `

2`
dT dt jcosu1 sinu2F112�t 1 t, sf� 2 sinu1 cosu2F112�2t 1 t, sf�j2, (7)
where the function F112 is associated with a single
nonlinear crystal of length L � L1 1 L2. The resultant
quantum-interference pattern then assumes the classic
form of a single dip with a width determined by L.

In the limit f1 2 f2 � p�2, on the other hand, Eq. (6)
becomes

R�u1, u2, t� � R1�u1, u2, t 2 DL2� 1 R2�u1, u2, t� ,
(8)

with R1�u1, u2, t 2 DL2� and R2�u1, u2, t� representing
the coincidence rates arising from down-conversion gen-
erated independently at the two crystals. In this case the
quantum-interference pattern assumes the form of two ad-
jacent dips. This is the same result that would be obtained
if the phases f1 and f2 in Eq. (1) were taken to be sta-
tistically independent and uniformly distributed over the
range �0, 2p�. Finally, in the general case of an N-crystal
cascade in this same limit, the overall coincidence rate
becomes

R�u1, u2, N , t� �
NX

i�1

Ri

√
u1, u2, t 2

NX
j�i11

DLj

!
, (9)

where the summation over j accounts for dispersion delays
introduced by all crystals subsequent to the ith.

The coincidence rate predicted by Eqs. (7) and (8), for
f1 2 f2 � 0 and f1 2 f2 � p�2, respectively, are
plotted in Fig. 2. For BBO material of overall length L �
L1 1 L2 � 2 mm, u1 � u2 � 45±, and in the absence
of predetection filtering, Eq. (7) is plotted as the single-
dip solid curve in Fig. 2, which agrees well with the
associated experimental data (filled squares). The coinci-
dence rate provided in Eq. (8), in contrast, applies when
f1 and f2 are out of phase with each other by p�2.
Using the same experimental parameters, this function is
plotted as the double-dip solid curve in Fig. 2, which also
agrees well with its corresponding data (open squares).
This interference pattern is distinctly different from that
obtained using a single-crystal configuration with the
same overall nonlinear interaction length; it comprises
two separate and disjoint fourth-order interference pat-
terns. The theoretical results in the presence of 9-nm-
bandwidth predetection filters, for the same two limits
(f1 2 f2 � 0 and f1 2 f2 � p�2), are presented
as the solid curves in Fig. 3, along with the associated
experimental measurements (filled and open squares,
respectively).

Conclusion.—We have measured the quantum-
interference patterns for various separations between two
parametric down-conversion nonlinear optical crystals,
both with and without predetector spectral filters. In the
unfiltered case, the quantum-interference patterns vary
between two limiting forms. One is consistent with the
coherent addition of contributions from the two crystals
with f1 2 f2 � 0; the other is consistent with coherent
addition with f1 2 f2 � p�2, which is also equivalent
to incoherent addition. The presence of filters softens
the interference patterns considerably; it also results in a
4015
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reduction of the entangled-photon-pair flux as is evident
by comparing the ordinates in Figs. 2 and 3. The use of
even narrower filters, with bandwidths from 1 to 3 nm
such as those commonly used in quantum-interference
experiments, results in a single-dip smooth interference
pattern in both limits. The spectral preselection provided
by the predetector filtering process therefore camouflages
the unique mutual coherence properties of the twin-photon
beams generated at the two crystals.

We conclude that nonclassical correlations and interfer-
ence between probability amplitudes of entangled-photon
pairs generated spontaneously from physically separate
crystals yield controllable quantum-interference patterns.
The ability to modify these patterns at will offers possi-
bilities for quantum-state engineering. It is important to
note that these novel effects are suppressed when spectral
postselection is used, which is the usual practice.

This work was supported by the National Science
Foundation.
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