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Multiresolution Wavelet Analysis of Heartbeat Intervals Discriminates Healthy Patients
from Those with Cardiac Pathology
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We applied multiresolution wavelet analysis to the sequence of times between human heattiiats (
intervals) and have found a scale window, between 16 and 32 heartbeat intervals, over which the widths
of the R-R wavelet coefficients fall into disjoint sets for normal and heart-failure patients. This has
enabled us to correctly classify every patient in a standard data set as belonging either to the heart-
failure or normal group with 100% accuracy, thereby providindiaically significant measure of the
presence of heart failure from tlie R intervals alone. Comparison is made with previous approaches,
which have provided onlgtatistically significant measures. [S0031-9007(97)05278-2]

PACS numbers: 87.10.+e, 87.80.+s, 87.90.+y

Multiresolution wavelet analysis [1-5] has proved toover which a statistic of the wavelet coefficients permits
be a useful technique for analyzing signals at multipleeach heart-failure and normal patient to be correctly
scales, even in the presence of nonstationarities whicbategorized.
often obscure such signals [6,7]. The sequence of times Scale-dependent statistics are constructed by transform-
between human heartbeais R intervals) is a prototype of ing the discrete-time sequence BfR intervalss = {r;}

a nonstationary time series that carries information aboutl4] into a space of wavelet coefficients. One can think
the state of cardiovascular health of the patient [8,9]. of the transformed signal in terms of a landscape over a

By projecting this sequence into a wavelet space, a newvo-dimensional plane whose axes are interbeat-interval
set of variables is obtained, whose statistics allow us, fonumberi and scalen [see Fig. 1(c)]. Smaller scales cor-
the first time, to correctly classify every patient in a stan-respond to more rapid variations and therefore to higher
dard data set as either heart-failure or normal, with 100%requencies. The height is the value of the correspond-
accuracy. ltis clear from our results that tReR intervals  ing wavelet coefficient. With such a three-dimensional
alone suffice as a measure for the presence of heart failurepnstruct it is possible to trace the behavior at different
the full electrocardiogram is not required. This remark-scales as the heartbeat sequence proceeds. Technically the
able result arises from the ability of multiresolution analy- coefficients are obtained by carrying out a discrete wavelet
sis to simultaneously and compactly monitor multiple timetransform (DWT) [1,4]
scales and thereby to expose a hitherto unknown scale win- et
dow (between 16 and 32 heartbeat intervals) over which wav(.y _ ~A—m/2 p——
the widths of theR-R wavelet coefficients fall into disjoint Wi () =2 Z:Zo T =), (1)
sets for normal and heart-failure patients. The emergence
of this particular scale window should help shed light onwhere the scale variable: and the translation variable
the underlying dynamics of cardiovascular function [9].n are non-negative integers, aid represents the total
Previous approaches [10—12], even those that have madember ofR-R intervals analyzed. The discrete wavelet
use of wavelets [13], have been successful only in protransform is evaluated at the poiria, n) in the scale—
viding a statistically significant measure, rather than the interval-number plane.
clinically significant one we have developed. The analy- We have carried out this transformation using a broad
sis method we have used is applicable to a wide variety ofange of orthonormal, compactly supported analyzing
nonstationary physical and biological signals, regardless ofiavelets. We present results for both Daubechies 10-tap
whether the underlying fluctuations have stochastic originend Haar wavelets; similar results were obtained using
or arise from nonlinear dynamical processes. other wavelets. Orthogonality in the DWT provides that

The series of intervals between adjacent heartbeats the information represented at a certain sealis disjoint
[known asR-R or interbeat intervals in cardiology; see from the information at other scales. Because certain
Figs. 1(a) and 1(b)] is thought to result from a complexwaveletsiys have vanishing moments, polynomial trends
superposition of multiple physiological processes at theiin the signal are automatically eliminated in the process
respective characteristic time scales [9]. The object obf wavelet transformation [6,7,15]. This is salutatory in
this Letter is to demonstrate that is is possible, withouthe case of the heartbeat time series, as is evident from the
anya priori knowledge of the physiological time scales or trends apparent in Fig. 1(b), which are eliminated by the
underlying heart dynamics, to determine a range of scalesavelet transformation shown in Fig. 1(d).
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T=R-R); | T,,~(R-R), FIG. 1. (a) Schematic diagram of an
electrocardiogram  segment,  showing
the beat occurrence timeg and the
interbeat R-R) intervals 7;. (b) Series
of interbeat intervalsr; versus interval
T number i for a typical normal patient
0.5 | ! (data set 16265). (Adjacent values
—_— . of the interbeat interval are connected
a t/x t/m ° II\ZIEJF(?I%VAL“&[)JO&BER(B?OOO by straight lines to facilitate viewing.)
i i+l Substantial trends are evident. (c) 3D
() (b) representation of the wavelet coefficient
W as a function of scalel(= m = 10)
and interval numberi (n has been
rescaled toi), over a portion of the data

10 - m= 8 _

05 | set, using a Daubechies 10-tap analyzing

gg wavelet. (d) Wavelet coefficient at three

e "y | scales f = 2,4, and8) for the data
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set illustrated in (b). The trends in the
original interbeat-interval time series are

s T 1 removed by the wavelet transformation.
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Since the signals fluctuates in time, so too does measure certainly remains statistically significant over all
the sequence of wavelet coefficients at any given scalescales shown. Similar results are obtained for other ana-
though its mean is zero [1]. A natural measure for thislyzing wavelets.
variability is the wavelet-coefficient standard deviation, as The results indicate that healthy patients exhibit greater
a function of scale: fluctuations than those afflicted with heart failure over

1 Nl : a time scale of 16—32 heartbeat intervals (roughly 0.2—

Oy (m) = |:N _— D> (s) — <W,‘,’{f‘nv(s))]2} , 0.5 min). This also appears to apply for sudden cardiac

n=0 death (SCD) as illustrated by the open squares in Fig. 2.
(2) 1t is tempting to ascribe the physiological origin of this
where N is the number of wavelet coefficients at a window to baroreflex modulations of the sympathetic or
given scalem [N = int(M/2™)]. The principal results parasympathetic tone, which lie in the range 0.04—0.09 Hz
of this paper are displayed in Fig. 2, wharg,, is plot-  (0.2—0.5 min), but we do not believe that this is a correct
ted vs scale I = m = 10) for all 27 patients (open and association. Rather, we expect that this window likely has
solid circles) [14], using the Haar wavelet (left) and theits origin in the intrinsic behavior of the heart itself. It
Daubechies 10-tap wavelet (right). The wavelet coefwill be important to carry out a thorough study in which
ficients for heart-failure patients evidently exhibit sub-our multiresolution wavelet-analysis technique is applied
stantially lower variability than those for normal patientsto the R-R intervals from transplanted hearts to carefully
at intermediate scales. Indeed at scales 4 and 5, coassess the role that the autonomic system might play in
responding ta2*-23 = 16-32 heartbeat intervalsg,,  heartrate variability.
serves to completely separate the two classes of patientslt is useful to tease apart the roles played by the
for both types of wavelets (white regions), thereby provid-magnitudes; of the interbeat intervals and theirdering
ing a clinically significant measure [16,17] of the presencen achieving this complete separation. The effects of the
of heart failure with 100% sensitivity at 100% specificity former also reside in the randomly reordered (shuffled)
(such that all normals are so identified). One can do nesequence ofR-R intervals; however information about
better. Though it has been previously shown that comthe ordering is removed in this surrogate data set [17].
plete separation can be achieved using hattanalysis We therefore calculate the standard deviatafy:! for all
[17,18], this is the first instance that we know of in which 27 heartbeat time series after shuffling theR intervals.
the R-R intervalscan be used as a definitive determinant[The first 70000 interbeat intervals were selected for
of the presence of a heart disorder in an individual patientanalysis after the entire data sets (see [14] and Table |
Both at smaller, and at larger scales, there are multiplen Ref. [17]) were shuffled.] The results are shown in
overlaps of the heart failures and the normals, though th&ig. 3(a). It is clear that the two classes of patients are no
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Haar wavelet Daubechies 10-tap wavelet

FIG. 2. Wavelet-coefficient standard de-
viation o,, versus scalen for the stan-
dard 27 data-set collection [14], using the
Haar wavelet (left) and the Daubechies 10-
tap wavelet (right). Complete separation
of the two groups is achieved at scales
4 and 5, corresponding t@*—2> heart-
beat intervals. Results for an SCD patient
(white squares), using the same number of
interbeat intervals, also exhibit low vari-
ability. The outcome is similar for both
45678910 12345678910  analyzingwavelets.
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longer completely separated; three heart-failure patients is nearly the same in the two subregions4() = 0.37
fall among the normals at all scales, yielding a sensitiv.and 1.22 = 0.11, respectively). For the 15 heart-failure
ity of 80% at a specificity of 100%. Comparison with patients, on the other hand, the average scaling exponent
Fig. 3(b) shows that the shuffled-wavelet result is esserestimated in the regionl = m =3 (0.26 = 0.60) is
tially identical to that obtained by using the standard de-dramatically lower than the value57 = 0.17 estimated
viation o, Of the interbeat intervals obtained from thesein the region3 = m = 10. Over the range of larger
data sets, a measure that has long been used in cardiskales, the values of the scaling exponemtprovided
ogy [19,20]. The concurrence in sensitivity displayed inby our wavelet measure are in good accord with typical
Figs. 3(a) and 3(b) is not accidental; the shuffled interbeatalues § provided by the interval-based periodogram at
intervals essentially comprise a renewal process so th#&w frequencies (see Table | in Ref. [17]), as expected.
the 1IH contains all of the available information. All de- We conclude that scaling persists across a broader range
pendencies among intervals, and therefore long-term cofer normal patients than it does for heart failures, as is
relations, are removed from the shuffled surrogate datsisually evident in Fig. 2.
[17], leaving behind only short-term information. Indeed, These observations lead us to consider a heart-failure
for the Haar analyzing wavelet;..,(m = 0) (in the ab- index determined by the difference of these scaling ex-
sence or in the presence of shuffling) is analytically idenponentsA = a3 =m = 10) — a(l = m = 3). Eval-
tical to oy uating A for each patient we find that two heart failures
The ordering of the interbeat intervals gives rise tofall among the normals, corresponding to a sensitivity of
scaling behavior, as is evident from a comparison 0B7% at a specificity of 100%. Thus considering only the
Figs. 2 and 3(a). For normal patients (open circlesscaling information irory,,, while ignoring the magnitude
solid lines) the straight-line behavior in Fig. 2 indicatesdifferences for normals and heart failures associated with
that approximate scaling is maintained across all scaleshort-term information [as illustrated in Fig. 3(a)], fails to
whereas for heart-failure patients (filled circles, dashedjive rise to complete separation.
lines) the relatively flat nature of the curves in the region Over the years, using this same collection of data, a
m = 3 indicates thatry,, is essentially scale independent number of measures based on scaling have been eval-
in this region. uated for their accuracy in discriminating between nor-
The distinction can be examined quantitatively bymal and heart-failure patients. Peegal. [10] examined
calculating the average scaling exponeat§21] in the the correlation properties of the heartbeat-interval incre-
two ranges { =m =3 and 3 = m = 10), for both mentsl; = {r;+, — 7;}, and obtained the exponent of the
classes of data. For the 12 normal patients, the value of associated power-law spectrum, which they denoted as
is quite insensitive to the range over which it is estimated;8. It was shown subsequently [17] that this measure is
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] u FIG. 3. (a) Wavelet-coefficient standard

i 8 8 8 {8 Z 20 deviation o versus scalem for the
g g s g =10{8®| E o| standard 27 data-set collection [14] after

0.10 | _0104Cg Z o 3 157 o| random reordering of theR-R intervals
5, 3 a ‘ 6 ] ! ] @: ;, ° (shuffling), using a Daubechies 10-tap
85 0.05 1 s ! . 0.05 { g IS 2 107 i wavelet. (b) Standard deviation of the
b s ! 1 : W ! g oe interbeat intervalso;,, for the 27 data

1 O NORMAL 2 %518 sets. (c) ExponeniB of the heartbeat-
@ HEART-FALURE . Q o interval increment-process spectrum for

° @
N % & 3 0.01 — 0.0 — 00— all 27 original (nonshuffled) data sets.
SCALE m A LURE (d) The scaling instability index for 25 of
() (b) (©) () the original 27 data sets.
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isomorphic to the exponerdt of the interval-based spec- [5] Time Frequency and Wavelets in Biomedical Signal
trum at low frequencies and therefore reveals only long-  Processing, edited by M. Akay (IEEE, Piscataway,
term correlations. We have calculatgdfor all 27 data NJ, 1997). .

sets and present the results in Fig. 3(c). This measurd®l A- Arneodo, G. Grasseau, and M. Holschneider, Phys.
results in seven heart failures among the normals, yield- . '\Fjleé I}et.t.ﬁl,czzl_?l—zzhm (189888)'L dR.G. Turcott
ing a sensitivity of 53% at 100% specificity, so that it [7] M.C. Teich, C. Heneghan, S.B. Lowen, and R. G. Turcott,
. Lo T in Ref. [4], pp. 383-412.

is not very successful in discriminating the two classes

. . . " 8] R.I. Kitney, D. Linkens, A.C. Selman, and A. H. McDon-
of patients. The interbeat-interval standard deviatign (6] ald ,,mto%edi&,j14 141-153 (1982).

shown in Fig. 3(b) (sensitivity of 80% at 100% speci- (9] J.B. Bassingthwaighte, L.S. Liebovitch, and B.J. West,

ficity) performs significantly better. In a subsequent pa- =~ Fractal Physiology(Oxford University Press, New York,
per, Peng and collaborators [11] constructed a “detrended  1994).

fluctuation measure” which turns out to yield approxi- [10] C.-K. Peng, J. Mietus, J. M. Hausdorff, S. Havlin, H.E.
mately 80% sensitivity at 100% specificity for the 27 data Stanley, and A. L. Goldberger, Phys. Rev. L&, 1343—
sets. Most recently, this same group introduced a so- 1346 (1993).

called “scaling instability index” [12], which achieved [11] C.-K. Peng, S. Havlin, H.E. Stanley, and A.L. Gold-
a sensitivity of 71% at 100% specificity for the 25 (of berger, Chaos, 82-87 (1995).

the same 27) data sets that they reported, as shown ih?] gbmbgsgar;{ﬁhgnhg\}'%fgg' 8HA;9E.(159tg;1)Iey, and A.L.
Fig. 3(_d). The performance of both of thgse Iatter.meaLB] P C. Ive?no,v, I\XG Rdseﬁblum, CK Pené, J. Mietus,
sures is therefore comparable to that achievable with th

: ) - ) S. Havlin, H.E. Stanley, and A.L. Goldberger, Nature
interbeat-interval standard deviation measutg intro- (London)383 323-327 (1996).

duced by Wolfet al.in 1978 [19]. As far as we are [14] The R-R recordings were drawn from the Beth Israel
aware, no group has been able to successfully separate Hospital (Boston, MA) congestive heart-failure database
this standard collection of data with 100% sensitivity at comprising 12 records from normal patients (age: 29—64
100% specificity using scaling measures alone. years; mean 44 years) and 15 records from severe con-

We conclude that our multiresolution approach suc-  gestive heart-failure patients (age: 22—71 years; mean 56
ceeds not only because it eliminates trends in a math-  Years). The recordings, which form a standard database
ematically acceptable way, but also because it crisply fpr.evaluatmg f[he merits of various measures for !den-
reveals a range of scales over which heart-failure patients titying heart failure, were made with a Holter monitor,
differ from normals, both in short- and long-term heart- digitized at a fixed value of 250 Hz. Three of the 15

. ’ . . heart-failure patients also suffered from atrial fibrillation.

beat behavior. In contrast, interbeat-interval measures re-

. . Detailed characterization of the data sets is presented in
flect only short-term behavior, whereas scaling measures  tapje | of Ref. [17]. We used the firdt = 70000 inter-

reflect only long-term behavior. beat intervals (total time duratiofl ~ 20 h) of each of
Finally we note that it will be important to evaluate these records.
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The scaling exponentr is computed from an indi-
vidual wavelet-coefficient standard-deviation curve (as
shown in Fig. 2) by calculating the slope of its square
(rendering it a variance so that it corresponds to other
standard scaling-exponent measures) on a base-10
log-log plot. Thusa = d[log,, 2,,(m)]/d(log,,2™) =

2/ |0910 z)d[IOQm O way(m)]/dm.
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