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We define fractal shot noise, which is a stationary continuous-time process that is fundamentally
different from fractional Brownian motion. Two applications in physics are considered: the mass distri-
bution of collections of solid-particle aggregates and the electric field at the growing edge of a doped
semiconductor quantum wire. For a broad range of parameters, the amplitude probability density func-
tion of this process is a Lévy-stable random variable with dimension less than unity; it therefore does not

converge to Gaussian form.

PACS numbers: 05.40.+j, 02.50.+s

Fractal shot noise 7(¢) may be expressed as an infinite
sum of impulse response functions

I(t)E.Z h(t—1;), 6))
j™=—oo
where
_ Kt ™, A<t=<B;
h(1)= 0, otherwise, @

and the times ¢; are random events from a Poisson point
process of rate u. The amplitude parameter may be ei-
ther random (denoted by K) or deterministic (denoted
by Ko). The parameters u, 4, B, and B are deterministic
and fixed. In general, the range of the function may ex-
tend down to 4 =0 or up to B =oco, and 8 may range be-
tween 0 and oo exclusive. In this paper we consider
power-law impulse response functions with 8> 1; the
case 0 < B <1 is fundamentally different, with applica-
tions in semiconductor 1/f noise.! For all calculations
we assume that ¢ is finite, so that the shot-noise process
has reached steady state.

J

n(sKo) Ve
B

r

01(s)=Ele ] -exp{—y(B—A)—

© 1989 The American Physical Society

—— ,sKoA -8B

All moments of the fractal-shot-noise process may be
given in terms of the cumulants. The nth cumulant
(semi-invariant) C, of I(z) is given by?

A 1—ng _ B 1—npg

C,,-p<f_:h"(t)dt>-y(1<") e

where the angular brackets denote expectation over the
distribution of K. The nth cumulant will be infinite if
(K™ is infinite or if 4 =0. The first three moments and
the variance are

Elll=C,, ElI})1=C,+C},
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where E[- - - ] denotes expectation over the distribution
of I.

To compute the moment generating function of the
fractal-shot-noise process I(t), we first consider the case
where K is deterministic and fixed, and therefore all im-
pulse response functions are identical. Then h(z)
=Kot ~#, and the first-order moment generating func-
tion Q;(s) of the shot-noise process I is given by
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or equivalently,

Ql(s)-exp{uA[I —exp(—sKoA “P)1 —uBl1 — exp(—sKoB ~#)]
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where I'(---,---) is the incomplete gamma function I
defined by I'(a,x)= [°e ~‘t°'dt. Both Egs. (5) and In the case B <1, the limit B— oo leads to a degenerate
(6) are valid for all values of u, 4, B, and B, including probability distribution such that the amplitude of the

the case < 1. process is infinite with probability one. !

Returning to the case > 1, if we let A— 0 and If C, < oo for all n, for any B, and for either stochastic
B— oo then a much simpler form for Q;(s) results. or deterministic K, the moment generating function may
After evaluating limits using I’'Hopital’s rule, we obtain alternatively be expressed in terms of the cumulants of

the process:
Qi(s) = expl— u(sKo) VPr(1 —1/p)]1 . P
Defining D=1/p, we have 0 <D <1 since > 1. Furth- - (=1)", . Al""f—pgl—m
ermore, for 4 =0 and B = oo, we can consider stochastic Q:(s) =exp /"nzl n! (K" np—1 s . (®)
K by using the equivalent deterministic impulse-
response-function method of Gilbert and Pollak,® which Equations (5) and (6) admit 4 =0, B =00, and arbitrary

leads to B, whereas Eq. (8) does not allow 4 =0 for > 1, or
- _ D _ D B=1/n for any integer n; however, Eq. (8) is valid for
Qr(s) =expl = pKOIT(1 = D)s]. @ stochastic K as well as deterministic K.
This moment generating function is of the form This Lévy-stable shot-noise process should be contrast-
Q(s) =expl— (cs)?], where c is a constant, so that for ed with fractional Brownian motion (FBM), developed
all u the shot noise I is a Lévy-stable random variable*> by Mandelbrot and Van Ness.” Fractional Brownian
with extreme asymmetry of dimension D: 0 <D <. motion usually has a Gaussian amplitude distribution,
Therefore an infinite-area impulse response function but the times between zero crossings have a Lévy-stable
may be used to construct a shot-noise process which is time distribution. Our Lévy-stable process, however, has
nontrivial and non-Gaussian for all driving rates u, even a Lévy-stable amplitude distribution and no zero cross-
in the limits u— 0 and u— . The conditions of the ings. In addition, the fractal nature of our Lévy-stable
Gaussian central-limit theorem are violated, and, in par- shot-noise process differs from that of FBM, which is
ticular, all moments of the shot-noise process are infinite. self-affine and nonstationary; our Lévy-stable process is
If B < oo, the probability density function will also ap- strict-sense stationary.
proach a Lévy-stable form.® This is readily understood Values for the amplitude probability density function
in the limit u— oo, since the resulting impulse response may be obtained from the moment generating function
function is the same as in the B— oo case except for the by several methods. If 4 =0 and B— oo, for $>1 and
missing tail. Since the missing area is finite, and the to- for either deterministic or stochastic K, the amplitude

tal area is infinite, the difference is negligible for large u. probability density function is Lévy stable with dimen-

sion D=1/B, and an infinite-sum form may be used,>?

P()=-L i (=1)"*'r(1 +nD)sin(znD)
ml n=) n!

9
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For the particular case D = } the exact amplitude probability density function assumes the well-known closed form*>

1/2 2 1/2y2
P(I)--<K%>I_3/2exp[—fi—”<%>—]. (10)

Figure 1 displays Lévy-stable amplitude probability density functions for three values of the dimension D. All have
long power-law tails. Indeed, for 4 =0, B— oo, 3> 1, and D=1/B, P(I) approaches a simple asymptotic form in the
limit I— oo. Examining Eq. (9) and using well-known properties of the gamma function,” we obtain
lim; . P (I) =puD(K?)1 ~1+D),

In all cases with deterministic 4 (¢), including 8 < 1, the amplitude probability density function of fractal shot noise
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may be found by evaluating the Fourier integral>

-l ® [_ s — B _ joKgt 78 ]
P() ”Rej; exp | —joI ﬂL (1—e ddt |dw ,

11)

which is, unfortunately, often difficult. However, the amplitude probability density function may alternatively be ob-
tained from an integral equation.” We note that if B < oo, then Prob{l =0} =e ~#*~4)> 0, 50 that the density will
have a & function at 7 =0. The amplitude probability density function is given by®

(0, I1<0;

e HB=ADs(1), [=0;

0, 0<I<KoB %

uK{”®
BI

el

| Bl
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fm_,, PU~u)u"Pdu, I=Kod P,

1
L"B_,P(I—u)u “Vbdy , KoB P<I<KoA™P

12)

If B— oo, Eq. (12) simplifies to [
uKi®
Bl
and the integral-equation solution must be multiplied
by a scaling constant, determined by requiring
J&CPU)dI=1. The results obtained from the integral
equation for B> 1 are then identical to those given by
the Lévy-stable case for small values of 7, except for a
scaling constant required to normalize the amplitude
probability density function to unit area. In that case,
the values for the Lévy-stable amplitude probability den-
sity function, which are more easily calculated, may be

used for values of I between 0 and Ko4 ~%.

If C, <o for all n, then the amplitude probability
density function P(I) satisfies the conditions of the
central-limit theorem, and therefore approaches a Gauss-

in(1,Ko4 ~F)
Py =E20 [ b —w)u Ve, (13)
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FIG. 1. Double-logarithmic plot of the Lévy-stable ampli-
tude probability density P(I) vs I given in Egs. (9) and (10)
for three values of the fractal dimension D: 0.3, 0.5, and 0.7
(4=0, B=co, Ko=1, u=1). Note the long power-law tails
for all values of D.

ian distribution as u— oo, with the mean and variance
given by the first and second cumulants, respectively [see
Eq. (D).

The autocorrelation function R;(z) of the fractal-
shot-noise process I(¢) is given by

Ri@) =D+ u{ J7_h G+ <dar)

=l
=02 [ |0 P, (8

Note that R;(z) ={I)2 for |z| = B—A. For B> 1 this
integral is infinite and therefore R;(z) does not exist if
A =0, in which case the power spectral density does not
exist either. In addition, the autocorrelation integral is
not solvable analytically except for the case when
B=n/2, where n is a positive integer. For =2, we ob-
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FIG. 2. Double-logarithmic plot of the electric-field-

magnitude probability density P(&) vs & at the edge of a Te-

doped GaAs quantum wire with dopant ionic radius 4 =0.211

nm, area @ =400 nm?, and dopant concentration Np=10!6
-3

cm 73,
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For A>0, B— o, and > 1 the autocorrelation func-
tion R;(t) approaches a simpler form® in the limit
| 7| — oo,

lim Rl(r)-(1)2+y(K2) |r| -

le]— oo

<K ) B | (16)

-<1>2+<1>
illustrating that it is a power-law function with the same
exponent as the impulse response function.

Fractal shot noise has widespread applicability in
physics since both Poisson events (e.g., random location
of particles) and power-law behavior (e.g., inverse
square-law fields) are ubiquitous in physics. We consid-
er two particular applications.

The magnitude of the electric field at the growing edge
of a doped semiconductor whisker or quantum wire is
precisely described by the fractal-shot-noise process
developed here. As growth proceeds, dopant atoms are
introduced into the wire in Poisson fashion. Each ion-
ized donor (or acceptor) atom produces an inverse-
square electric field that decays as x ~2, where x is the
distance from the ionized donor to the edge of the quan-
tum wire. The mobile carriers are uniformly distributed
throughout the material so that they do not contribute a
spatially varying field. Our approach is readily general-
ized by allowing A4 or A () to be stochastic.

Although our general results apply for random pro-
cesses, for some problems it is sufficient to consider the
resulting distributions associated with this process. At
the edge of a quantum wire of fixed length,'® for exam-
ple, the first-order electric-field statistics arising from the
ionized impurity atoms (ignoring the constant field con-
tributed by the free carriers) are given by Eq. (13). This
is plotted in Fig. 2 for a Te-doped, n-type GaAs quantum
wire, for which A =0.211 nm as provided by the ionic ra-
dius of tellurium; B =oo for a sufficiently long wire, the
Coulomb constant Ko=g/4ne=1.32% 109 V/cmnm?,
where q is the electronic charge and the permittivity e of
GaAs is 9.65%x10 '3 F/cm; p=2; and y =aNp =0.004
nm ~! for a wire of cross-sectional area @ =400 nm? and
dopant concentration Np=10'® cm ~3. This density is
proportional to, and essentially coincident with, the
Lévy-stable density given in Eq. (10) for fields as high as
2.97x107 V/cm. An analogous application is the magni-
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tude of the gravitational field provided by a random dis-
tribution of masses.!! An infinite number of these corre-
sponds to a noncasual power-law form for #(z) and leads
to a symmetric Lévy-stable probability density of dimen-
sion D=1,

A particularly important example of our analysis lies
in the domain of solid-particle aggregates, including
diffusion-limited aggregates, cluster-cluster aggregates,
and aerosols. The mass distribution of the aggregated
particles often obeys a power law over some range of
masses m in these systems, such that!?-!4

Prob{M = m} =cm ~?,

an

where ¢ is a normalizing constant and the power-law ex-
ponent D typically falls in the range 0 <D <1. The
probability distribution for the individual masses is iso-
morphic to sampling the time function M (¢) =Kt ~# uni-
formly over some range of times, where again g=1/D.
The total mass enclosed within a specified region is then
isomorphic to the fractal-shot-noise amplitude distribu-
tion. In particular the enclosed mass has a moment gen-
erating function given by Egs. (5) and (6), and in the
limit by Eq. (7).
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