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The fluctuations of cosmic-ray particles resulting from extensive air showers at ground level are
well described by the two-parameter Poisson-driven Yule-Furry and negative-binomial counting
probability distributions. The background signal from a single photomultiplier tube has been used
to experimentally verify these results with remarkable precision, in spite of the simplicity of the
underlying pure-birth stochastic process. Counting distributions from three different
photomultiplier-tube detectors operated in the dark are presented, together with the theoretical
predictions. Probability distributions of interevent times have also been obtained and these are
found to be consistent with the observed clustering properties at the detector output. Our ap-
proach is expected to be of importance in quantum optics where cosmic-ray-shower particles can
pose a significant limitation on the detection of squeezed light.
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I. INTRODUCTION

The rich historical legacy embodied by cosmic-ray
research began in 1912 when the extraterrestrial origin
of ionizing radiation in the atmosphere was inferred
from the pioneering balloon experiments of Victor Hess.
By recording their tracks in triggered cloud chambers,
Rossi! and others demonstrated that some cosmic rays
at ground level can initiate cascades and are stopped in
thin lead plates, while others continue to penetrate
through much thicker layers of the same material
without multiplicative effects (hence the designations soft
and hard components, respectively). The penetrating
power of the latter revealed for the first time the ex-
istence of carriers of ultrahigh energies and heralded the
search for new elementary particles, thus opening an im-
portant chapter in modern physics.

The fate of primary cosmic-ray particles from space
determines the duality of observed behavior in lead, as is
now well understood. The primary particles (consisting
mostly of protons) collide soon after entering Earth’s at-
mosphere and fragment into metastable species such as
7 mesons, which propagate the Yukawa strong force
beyond the interaction region. If not captured, the
charged pions decay readily into inert & mesons that col-
lide infrequently and survive to the ground as the
penetrating facet of the cosmic radiation.> Muons may
also disintegrate over a relatively long time span into
electrons or positrons, in accordance with their initial
charge state. The neutral pions, on the other hand, are
much more unstable than their charged counterparts
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and decay swiftly into photon pairs.

These resulting photons and the less abundant muon-
derived electrons are seeds of the atmospheric avalanche
effect, and, thus, collectively encompass the multiplica-
tive nature of cosmic rays. A single high-energy photon
in matter may materialize into an electron-positron pair,
whose members in turn radiate further photons through
bremsstrahlung collisions. A cyclic mechanism is thus
available to initiate and sustain an electromagnetic cas-
cade where the energy of the source particle is parti-
tioned among its offspring until the individual share is
low enough for Compton scattering, ionization losses,
and other processes to dominate and dilute the
avalanche. If the source is sufficiently energetic, howev-
er, the family survives down to ground level where it can
be detected as an extensive air shower.>

It is the statistical behavior of this cascading com-
ponent of the cosmic-ray progeny that is of principal in-
terest in this paper. We focus on the fluctuations in
shower size that arise from the inherent randomness of
the multiplication processes, rather than on the distribu-
tion of secondary-particle energies. The mathematical
description is rooted in stochastic branching-process
theory.

From the unfolding history of a primary cosmic ray in
the atmosphere, we can clearly identify at least three lev-
els of randomness. They represent the fluctuations in
primary arrivals, in the number of cascade-initiating
sources per primary, and in the population of each such
cascade. For greatest simplicity, however, we eliminate
the intermediate level of random behavior and assume
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that a primary cosmic ray collisionally excites only a sin-
gle shower.

We employ the Poisson-driven Yule-Furry and
negative-binomial counting probability distributions,
which are derived in the context of cascade theory in the
next section, to describe the fluctuations of cosmic-ray
showers at ground level. To demonstrate the efficacy of
these models, we present in Sec. III experimental count-
ing distributions, which were generated in the dark from
ordinary photomultiplier tubes, over a broad range of
counting times and experimental durations.

II. THEORY OF COSMIC-RAY-SHOWER STATISTICS
A. Showers initiated by a single primary event

The first statistical treatment of a single-primary-event
cascade as applied to cosmic rays was presented by
Bhabha and Heitler* in the United Kingdom and simul-
taneously by Carlson and Oppenheimer® in the United
States. The model is equivalent to a zero-memory pro-
cess whereby daughter particles are independently added
to the cascade. In a counting experiment, this model
leads to a Poisson-distributed number of secondaries,®’
ie.,

P(k;T)={k)Yexp(—(k))/k!, k>0. (1

The angular brackets denote an ensemble average and T
is the counting time, which is chosen to be sufficiently
long to capture the entire cluster of secondary events, so
their nonstationary production can be effectively treated
as instantaneous. In other words, if ¢, is the temporal
spread of the cluster, then the requirement T >>f, en-
sures that no events are lost to the counting process.
We assume this to hold henceforth.

Clearly the conservation laws that link the partici-
pants in the pair-production and bremsstrahlung pro-
cesses would appear to suggest that the addition of new
individuals to the cascade in an uncorrelated manner is
inadequate. We have included the Poisson law in our
discussion because of its broad applicability and its
unique and fundamental property

(k)=V(k)=M;(k) . (2)

Here V and M denote the variance and third central
moment of the distribution, respectively. We employ the
Fano factor, defined as the variance-to-mean ratio, as an
elementary measure of event dispersion.! The Fano fac-
tor F;(T) of the above Poisson counting distribution
provides a convenient standard for comparison with oth-
er distributions, as it is simply given by

F(D)=V(k)/{k)=1. (3)

The inclusion of the primary particle in the shower
statistics can be easily effected by a unit translation of
the counting distribution of the secondaries

P(m;T)=Plk=m —1;T), (4)

yielding, in the above case, a shifted-Poisson (one-
parameter) distribution for the shower size or multiplica-
tion m. Thus,
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P(m;T)=(k)" lexp(—(k))/(m —1),
m>1, (5)

where the mean value of the shifted distribution,
(m)=(k)+1, reflects the deterministic addition of the
primary particle to the fluctuating number of secondary
events. Since the count variance is unchanged, the Fano
factor becomes

F, (T'=({m)=1)/{m)=1—exp(—a),
a>0, (6)

where we have set (m )=exp(a). The reason for this
choice of notation will soon be apparent. Note that the
Fano factor now approaches unity asymptotically with
increasing a as the primary’s determinism becomes
largely obscured by the growing fluctuations of secon-
dary counts.

The assumptions of this simple model were challenged
by Furry® soon after their publication. In his landmark
paper, Furry considered a pure-birth model whereby
each cascade particle may directly breed daughters via a
fixed birth rate A. The multiplication then follows a
shifted-geometric (shifted-Bose-Einstein) one-parameter
counting distribution

P(m;T)=exp(—B)[1—exp(—B)]" !,
B>0, m>1. (7)

The statistics up to third order are

(m)=exp(B), (8a)
Vim)={(m)>—{(m) , (8b)
Mim)={m)—=3(m)*+2(m)3; (8¢)

the Fano factor is, therefore,
F,(T)=exp(B)—1. 9)

Here the unitless branching parameter S=Az, is the
product of the growth rate A and the clusters playout
time ¢;. Hence when 7, =0 there is no branching, since
only the primary event is present, but the mean multipli-
cation subsequently grows exponentially with z,. The
quantity a in Eq. (6) can now be viewed as an equivalent
branching-process parametrization of the shifted Poisson
distribution.

The above counting distribution was independently
derived earlier by Yule in connection with his elegant
mathematical treatment of evolution.!® An exact paral-
lel follows if we identify the shower population as the
number of species within a genus and if we let the
branching mechanism represent random mutations. The
shifted-Bose-Einstein counting distribution is, therefore,
also known as the Yule-Furry distribution, and the point
process from which it is derived is termed a Yule-Furry
process.

Finally, we examine the use of a related model whose
mathematical properties resemble those of the Yule-
Furry distribution. This is the one-parameter logarith-
mic counting distribution
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P(m;T)=(1/6)q™"/m),

(10a)
(10b)

O<g<l, m>1,

where 0 is a normalization factor. We can rewrite this
distribution, in terms of 6, into the suggestive form

P(m;T)=[1—exp(—0)]"/6m, 6>0, m>1, (11)

with statistics, up to third order,
(m)=(1/0)[exp(8)—1], (12a)
Vim)=(m)+(6—1){(m)?*, (12b)
My(m)=(m)+3(0—1){m )>+(26°—36+2)(m )3 .
(12¢)
The corresponding Fano factor is
F,(T)=1+[(6—1)/0][exp(6)—1] . (13)

The striking similarity between the Yule-Furry and
logarithmic statistics is not accidental. As shown in Ap-
pendix A, these counting distributions are in fact related
when 6=/, although statistical equality does not follow
from this condition [as is evident from Eqs. (8a) and
(12a)]. Nevertheless, we may mimic the evolution of the
Yule-Furry mean multiplication by setting

(m)=(1/0)[exp(8)—1]=exp(y), (14)

which is a transcendental equation for 8=f(y). The
dependence of the Fano factor on y cannot be deter-
mined analytically, although this poses no difficulty since
for a given value of ¥ we may obtain the corresponding
value of 6 (and, hence, the Fano factor) from a numeri-
cal table.

The advantage of this technique rests on the
mathematical equivalence of the parameter y to a and f3,
which allows us to present the associated Fano-factor
dependencies together for comparison in Fig. 1(a). In
contrast with the asymptotic Fano factor of the shifted-
Poisson counting distribution, the Fano factors for the
Yule-Furry and logarithmic counting distributions fol-
low a similar trend and rise quickly with increasing mul-
tiplication. The latter two models thus allow us to de-
scribe the clustered behavior of cosmic-ray showers for
large multiplication with far greater accuracy than the
former. The principal underlying reason is the associa-
tion of parents to their offspring at each branching stage
of the multiplicative process.

Representative probability distributions are presented
in Fig. 1(b) for {(m )=1.005, 1.2, and 3.0. Note that in
this, and all counting distributions to follow, the theoret-
ical values are shown as continuous curves for clarity,
but they have significance only at the discrete values of
the count index. It is clear that for fixed multiplication
the logarithmic distribution exhibits greater variance
than the Yule-Furry distribution; however, all three
models converge to an equivalent description for very
low multiplication. This is also apparent in Fig. 1(a).

We conclude this section by speculating on the validi-
ty of the Yule-Furry distribution in describing the soft
component of the cosmic-ray progeny. Clearly the mod-

2651

LD
SR

- — - — SHIFTED POISSON
YULE-FURRY
fffff LOGARITHU I C

—~
~
MULTIPLICATION FANO FACTOR F
. —
1

BRANCHING PARAMETER

T T T T T T T

- — - — SHIFTED POISSON
YULE-FURRY
~ . — == - LOGARITHMIC

"

1
0
0

1
2
1

1 F
t N ; - {
E N N
. . {
3 .
ARLIERE . E
| . . N
<m> = gL ' . \
. \
1 1 L 1 L 1 1 1 1 L
o

(b)

10

10
10

MULTIPLICATION COUNTING DISTRIBUTION P (m)

4
5
6

10

3 6 9 12 15
NUMBER OF EVENTS (m)

FIG. 1. (a) Multiplication Fano factor F,(T)=V(m)/{(m)
versus branching parameter for three models of a cascade that
is initiated by a single primary particle. The Fano factors of
the Yule-Furry (solid curve) and logarithmic (dashed curve)
counting distributions increase rapidly with branching parame-
ter, in contrast with the bounded Fano factor of the shifted-
Poisson (dashed-dotted curve) counting distribution. The
former two models thus provide a more accurate description of
cosmic-ray shower fluctuations. (b) Representative multiplica-
tion counting distributions P(m ;T) versus number of multipli-
cation events m for the models of (a) with {(m )=1.005, 1.2,
and 3.0. Although all three models are equivalent at low mean
multiplication, the Yule-Furry and logarithmic differ substan-
tially from the shifted-Poisson counting distribution as (m )
increases. The tails of distributions for the former two models
become much more developed than the latter, thus incorporat-
ing cascades with a larger number of events.

el represents only a first-order idealization of the prob-
lem since it considers only a single particle species
(hence, not accounting for the alternating generations of
electrons and photons in the physical cascade), and, as a
pure-birth process, it does not incorporate particle losses
and immigration.

Extensions of the Yule-Furry have been considered by
Arley!! and Srinivasan!? in their authoritative mono-
graphs. The framework for more sophisticated cascade
treatments can be constructed from the general problem
of birth, death, and immigration with time-dependent
rates.!> When no immigration is allowed, the mean and
variance of the multiplication can be written more suc-
cinctly, yet with no loss of generality, as
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(m)=I(,), (15a) Q.(s)=0,(—1nQ,,(s5)) , (1
L A(e)dr where the moment-generating function (MGF) is defined
Vim)={(m)+(m)* |2 ["2222 1|, (15b) as
1(1)
Q. (s)=(exp(—sx))
where ©
=¥ exp(—sx)P(x;T), (18)
1(0=exp | [ Tae)—ve)lar | (15¢) o

where A(¢) and v(¢) are the birth and death rates, respec-
tively. Setting v(z)=0 and A(¢z)=A reproduces the
Yule-Furry results presented in Eqs. (8a) and (8b).

The temporal variation of these rates can be appropri-
ately chosen to represent the degradation in offspring
production due to the partitioning of energy among the
particles of a developing cascade. Arley considered a
simple example in which the death rate is linearly in-
fused [v(t)=wvt] while the birth rate is held constant
[A(t)=A]. The evolution of the mean multiplication can
be solved using Eq. (15a):

(m ) =exp(At,)exp(—vt,2/2) . (16)

This is the same result as that for a birth process that at-
tenuates via the tail of a zero-mean Gaussian envelope
with the standard deviation o =V'1/v. Since more ener-
getic primaries yield larger showers, the Gaussian modu-
lation can further be made dependent on the total pri-
mary energy by proper adjustment of the death-rate
slope v.

Apparently, the simple geometric character of the
Yule-Furry pure-birth solution offers the essential in-
gredient for the characterization of cosmic-ray showers,
regardless of the level of sophistication incorporated into
the cascade model. Arley appreciated this and suggested
that ... the region of validity of the simplifying ap-
proximations, of which any theory must necessarily
make use, is always far wider than might be justified by
theoretical arguments.”

Mathematically, cascade counting distributions sup-
port a multiplication variance term that is proportional
to the square of the mean. This is evident in Eq. (15b)
for arbitrary birth and death rates. In the hierarchy of
discrete probability distributions, the Bose-Einstein dis-
tribution (as well as its shifted version, the Yule-Furry)
provides the simplest example of mean-square excess
fluctuations. Our intuition regarding the logarithmic
description of the multiplication is based on the presence
of a similar dependence, as can be inferred from Eq.
(12b).

B. Showers initiated by a Poisson number of primaries

We now generalize the results of the previous section
by considering a number of primary events p, which is
randomized via a suitable counting distribution P (p;T).
Since each primary event independently multiplies ac-
cording to a model counting distribution P(m ;T), the
overall cascade is an example of a compound process
with well-known properties. In particular, the moment-
generating function Q,(s) of the overall cascade counting
distribution can be obtained by nesting those of the pri-
mary and multiplication counting distributions accord-
ing to

for a general counting process x (Ref. 14).

We can use the above result to obtain a useful set of
equations that expresses the mean, variance, and third
central moment of the overall cascade counting distribu-
tions P(n.;T) in terms of those of the constituent count-
ing processes:

(ny=(p)(m), (19a)
Vin)=V(p){m)*+{(p)V(m), (19b)
My(n)=My(p){m ) +3V(p){m )V (m)+{(p)M;(m) .

(19¢)

These results are quite general and are explicitly de-
rived in Appendix B. The former two expressions were
first proved by Shockley and Pierce,'® and the second is
known as the cascade variance theorem.'® Equation
(19c) is an extension to third-order statistics; higher-
order theorems are discussed via an equivalent method
by Shih!” in his treatment of hadronic multiplicity distri-
butions.

If we now specify that the primaries arrive in station-
ary (or homogeneous) Poisson form, Eq. (19) simplifies
considerably. We denote the mean of the primary Pois-
son distribution (p) as u,T, where generally p is the
rate parameter of the homogeneous Poisson point pro-
cess (HPP) and T is the counting time over which we ob-
serve the events. For the Poisson primaries, we then
have {p)= V(p)=M;(p)=p,T, whereupon

(n)=p,T{(m), (20a)
Vin)=p,T[{m)*+V(m)], (20Db)
M;(n)=p,T[{m)*+3(m)V(m)+M;(m)] . (20c)

This can be compactly rearranged in terms of the ordi-
nary moments as

(n)=p,T{(m), (21a)

Vin)=p,T{(m?), (21b)

Mi(n)=p,T{m?*) . (21c)
The Fano factor is given by

FAT)={m)+F,(T), (22)

and depends solely on the multiplication statistics.

For the case of a primary Poisson counting distribu-
tion with Yule-Furry multiplication, we use Eq. (8) in
Eq. (20) to provide the overall cascade statistics, up to
third order:

(23a)
(23b)

(n.)=p,Texp(B),
Vin)=p,T exp(B)[2exp(B)—1],



Mi(n )=p, T exp(B)[6exp(2B)—6exp(B)+1] .
(23c¢)

These formulas are appropriate for the Poisson-driven
Yule-Furry (PDYF) counting distribution, which has
been shown to obey the recursion relation'® !’

Pn,+1;T)= :':L}l éOP(nc_k;T)A(k), (24a)

A (k)=(k +1)exp(—2B)[1—exp(—B)]*, (24b)
with the initial condition

P(0;T)=exp(—pu,T) . (24c¢)

Equation (24c) indicates that the probability of observing
zero cascade counts is simply the probability of arrival
of zero primaries in the counting interval. Note also
that as f—0 this recursion relation reduces to that for
the Poisson law of the primaries.

Finally, we consider the case of logarithmic multipli-
cation with statistics given by Eq. (12). Utilizing Eq.
(20) once more and using the transformation

(no)=p,Texp(6)—1]/6, (25a)
M=u,T/0, (25b)
we find
(n.)=Ang) , (26a)
Vin)={no)[1+(ny)/M)], (26b)
Miy(n)={ny)[1+(ny) /M)][14+2({ny)/M)], (26¢c)

to be the representative statistics of the Poisson-driven
logarithmic distribution. This turns out to be none oth-
er than the negative-binomial counting distribution,'
with mean (ny) and degrees-of-freedom parameter M:

P(n.;T)

(ny+M —1) ' M

(n0>
M

n (M —1)

(27)

as first shown by Quenouille.?® Interestingly enough, the
negative-binomial distribution also arises, in the context
of cascade theory, as the steady-state limit of the prob-
lem of birth, death, and immigration with stationary
rates.”! The result is independent of the number of pri-
mary particles and is only valid if the death rate exceeds
the birth rate; the limit thus represents a balance be-
tween the decaying cascade population and the immigra-
tion rate. The Poisson-driven Yule-Furry and the
negative-binomial distributions are both two-parameter
distributions.

III. EXPERIMENTS

A. The photomultiplier tube as a detector of cosmic rays

It has long been known that cosmic-ray-shower parti-
cles at ground level are registered by optical detectors
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such as the photomultiplier tube (PMT). The underlying
reason is understood from the work of Cherenkov in
1934. A relativistic charged particle which travels at a
speed exceeding the phase velocity of light in a transpar-
ent medium can induce a broadband optical shock wave
with a spectral line shape predominant in the visible and
ultraviolet regions of the electromagnetic spectrum.?>2}
Since this Cherenkov emission is highly directive and
efficient, a single charged energetic shower component
that traverses the thin photomultiplier-tube window gen-
erates a dense packet of photons that is subsequently
amplified into a large anode current pulse.

Because the photomultiplier cannot resolve the indivi-
dual photons from the brief Cherenkov flash, which lasts
of the order of tens of picoseconds in accordance with
the cosmic ray’s transit time, the output signal is just the
device’s impulse response with an amplitude proportion-
al to the number of Cherenkov-induced photoelectrons
(if saturation effects are not considered). These large
pulses in fact account for the pronounced tails in pulse-
height distributions of the photomultiplier back-
ground.?*—2¢

Young?” has shown that the output current from a
PMT, operated in the continuous mode in the dark, is
indeed marked by substantial fluctuations that can seri-
ously degrade the signal-to-noise ratio in a variety of ex-
periments. As a photon counter, however, the PMT
offers a significant reduction in the Cherenkov noise,
since each output pulse that exceeds an adjustable
threshold height yields a single count, regardless of its
excess amplitude. The passage of a cosmic ray through
the photon-counting PMT therefore registers one, and
only one, count, although these background events may
still be highly detrimental to some counting and correla-
tion experiments. Barring other sources of PMT events,
a counting distribution from the device in the dark thus
provides a direct probe of the local cosmic-ray activity,
and, in this capacity, the photon counter is the ideal tool
for extracting its clustering properties.

Previous efforts by Young and others to characterize
cosmic-ray effects at the photomultiplier tube were in-
tended primarily for dc and mean-square current appli-
cations that do not take full advantage of pulse-height
discrimination. The theoretical counting distributions
considered in the previous section should provide a more
appropriate and complete description of the cosmic-ray
noise, since they capture the essential clustering behavior
of these particles at ground level and retain their count-
ing statistics to all orders.

B. Cosmic-ray counting experiments in space

Before examining experimental configurations at
ground level in which Poisson-driven cascades play a
role, it is useful to experimentally verify that the pri-
mary cosmic-ray flux above the atmosphere does indeed
obey the Poisson law.

Fastie?® conducted dark-counting experiments in space
using a Schlumberger EMR type 542G-09 solar-blind
PMT from the ultraviolet spectrometer aboard the Apol-
lo 17 space-vehicle command module. He concluded
that ... in lunar orbit the observed dark count varied
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with spacecraft altitude and attitude, but was indepen-
dent of the position of the spacecraft in lunar orbit; that
is, the background signal was clearly not of solar, lunar,
or earth origin.”” The count rate varied from 20.7 to
28.3 sec™! at lunar altitudes of 26 and 312.5 km, respec-
tively, as compared with 0.6 sec ™!
-tory tests. )

The PMT background events were processed into
counting probability distributions with a counting time
T =0.1 sec, two of which are reproduced in Fig. 2. The
.dashed line, which represents a Poisson distribution with
the same mean as the experimental data, provides a good
fit in both cases. A small excess clustering is inferred
from the raised tail of the experimental distributions and
their associated Fano factors, which are slightly greater
than unity [1.08 and 1.13 for Figs. 2(a) and 2(b), respec-
tively]. Fastie attributes this super-Poisson effect to ad-
ditive fluorescence photons from the MgF, window of
the photomultiplier tube. We reserve a discussion of
fluorescence for a later section of this paper and accept
Fastie’s data as confirmation of the independence of pri-
mary cosmic-ray arrivals.

in prelaunch labora-

C. Cosmic-ray counting experiments at ground level

1. Models for noise in photomultiplier tubes
operated in the dark

Photomultiplier-tube background events are most
often assumed to obey a simple homogeneous Poisson
law, with dark-count index nj, reflecting the presence of
independently arriving events generated by thermionic
emission at the photocathode and dynode stages, by ra-
dioactive elements such as K in the window material,
and by a number of other effects, some of which are dis-
cussed subsequently.?#2%272° The counting distribution
P(np;T) then takes the form of Eq. (1).

However, the data at ground level do not support this
simple model. Rather, it is necessary to extend this
framework by incorporating cosmic-ray counts from a
Poisson-driven cascade. The generalization proceeds in
a twofold fashion. The cascading component of the
cosmic rays has been shown to exhibit super-Poisson be-
havior via a counting distribution P (n,;T) that incorpo-
rates the clustered aspect of the background. A noncas-
cading cosmic-ray component, such as the muon, is also
registered at the PMT. These events are essentially in-
dependent and random and may therefore be fully ab-
sorbed in the Poisson counting distribution P(np;T)
used to describe the thermionic emission.

The generalization is provided by the independent ad-
dition of the dark index np with the cascade index n..
The overall counting distribution P (n ;T) at ground lev-
el is then the convolution of these distributions

P(n;T)=P(n¢;T)e P(ny;T) . (28)
Their statistics up to third order are purely additive,°
ie.,

(n)=ppT+{n.), (29a)
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FIG. 2. (a) Sample 1 counting distribution P(n;T) versus
number of counts n from a Schlumberger EMR type 542G-09
photomultiplier tube in space, operated with counting time
T =0.1 sec (data adapted from Table II of Ref. 28) The open
circles represent experimental values from 5750 total samples.
The mean count {n )=2.85 and the Fano factor F,(T)=1.08.
The dashed curve is a Poisson distribution with the same
mean; it represents an excellent fit to the data and confirms the
independence of primary cosmic-ray arrivals. (b) Sample 2
counting distribution from the same source. In this case, the
experimental mean count (n)=2.32 and.the Fano factor
F,(T)=1.13 from 5750 total samples. Fastie suggests that the
excess clusters represented by the raised tail of the distribution
may be caused by luminescence in the tube window.

V(in)=upT+V(n.),
M3(n)=,uDT+M3(nc) .

(29b)
(29¢)

The analytical form of P(n;T) will clearly depend on
the choice-of the Poisson-driven cascade model.

Given the experimental moments obtained from the
counting distribution P(n;T) of a PMT operated in the
dark, it is of interest to invert the relations in Eq. (29) to
obtain a set of model-dependent parameters: u, (the pri-
mary driving rate), up (the dark driving rate arising
from noncascading sources), and (m ) (the mean multi-
plication per primary). The large spatial extent of the
shower and the small solid angle of acceptance of the
detector lead us to expect that the parameters p, and
(m ) will not reflect the full effects of the atmospheric
cascade process. Nevertheless, sufficient cosmic-ray
clustering remains to control these parameters.
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The inversion is facilitated by defining a convenient
auxiliary parameter

C=[V(n)—(n)]/[M;(n)—V(n)], (30

which is readily calculated from the statistics of P(n;T).
Assuming first a Poisson-driven Yule-Furry cascade, we
substitute Eq. (23) into Eq. (29) to obtain

(n)=ppT+p,TexpB), (31a)

V(n)=pupT+up, T exp(B)[2exp(B)—-1], (31b)

My(n)=ppT+p,T exp(B)[6 exp(2B)—6 exp(B)+1] .
(31¢)

Combining the above via Eq. (30) provides a quadratic
equation for the mean multiplication {m ) =exp(B) with
the simple roots

(m)=1,
(m)=11+(1/T)].

(32a)
(32b)

Equation (32a) represents the absence of branching and
is uninteresting; Eq. (32b) is, therefore, the unique solu-
tion for the nontrivial multiplicative nature of the cas-
cade as seen by the PMT. The associated driving rates
are then determined from

1, T=[(3T)?/2(14+T)(1—-2D)}(F, —1){n ) , (32c)
ppT={[(2—T)—(3D)F,1/[2(1-2)]}{n) , (32d)
where F, is the experimental Fano factor. Repeating

the technique for the negative-binomial cascade, we em-
ploy Eq. (26) to yield

(n)=ppT+{ny), (33a)
Vin)=upT+{ng)[14+({ng)/M)], (33b)
My(n)=pupT+{n)[1+({ny) /M)[142({ngy) /M)] .
(33¢)
Solving for the negative-binomial parameters, we obtain

(ny)=[20)/(1=2D))(F,—1)n) , (34a)

M =[(2T)/(1-2D))%F,—1){n) . (34b)

Returning to the parameter of the logarithmic distribu-
tion via Eq. (25) then yields 6= —In(2I'), so that

(m')=[In(2I")]"'[1—(1/2I")],

ppT=In[1/2D)][(2T")/(1—2D)]XF, —1){n) ,
(35b)
(35¢)

(35a)

upT={[1—(2T)F,]1/(1-2)}{n) .

The resemblance between Eqgs. (32) and (35) is a direct
consequence of the similar underlying multiplication
models that are discussed in Sec. IIA. We have primed
the latter three parameters to minimize confusion be-
tween the two models. Graphical representations for the
mean multiplications {m ) and (m’) are presented in
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Fig. 3, as a function of T', for comparison. The region of
physical significance is shaded and bounded on the left
by infinite multiplication for I'=0 and on the right by
unity multiplication for I'=21. This follows clearly from
the expressions I'=1/[3 exp(8)—1] and I'=Zlexp(—0)
when 0<B< » and 0<60< w, respectively. The loga-
rithmic factor in the negative-binomial result modulates
the solution in just the right way to produce a graphical
trend like that for the PDYF in this domain.

2. Experimental apparatus

We now present the results of photon-counting experi-
ments conducted with several different photomultipliers
in the dark at ground level. A Hamamatsu type R431-S
tube was operated at ambient temperature on the 13th
floor of the Seeley W. Mudd building of Columbia Uni-
versity. It was inserted in a Hamamatsu type C1050
photon-counting base that provides preamplification,
discrimination, and pulse shaping. An Ortec type 456
power supply delivered 1025 V to the PMT. The output
of the PMT base was passed through a buffer amplifier
(5x) and fed to a Hewlett-Packard type 5370A rate
counter and a Langley-Ford type 1096 statistical photon
counter. The former measures the detected mean pho-
ton count rate, whereas the latter generates the probabil-
ity distribution P(n;T). The experiment was controlled
by a Hewlett-Packard type 9825B minicomputer.

Photon counting is a simple experimental procedure.
Each sample of the counting distribution is obtained by
unshuttering the photosensitive PMT cathode and
recording the number of appropriately discriminated
events that occur within a fixed counting time 7. By re-
peating the procedure, enough samples are then taken to

MEAN MULTIPLICATION
°

PARAMETER [

FIG. 3. Graphical dependence of the mean multiplication
solutions {m ) and {(m’) on the experimental inversion param-
eter . The solution represented by the solid curve is obtained
if the Poisson-driven Yule-Furry (PDYF) cascade is incor-
porated into a model for photomultiplier background events,
whereas the solution represented by the dashed curve results if
the negative-binomial (NB) cascade is considered. The region
of physical significance, %>F>O, is shaded and bounded by
unity and infinite mean multiplications, respectively. The two
solutions exhibit similar behavior in this region.
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ensure a reliable estimate of the distribution P(n;T).
The total time required to collect all samples is called
the experimental duration D. In the case of measure-
ments taken in the dark, of course, the PMT is not
unshuttered.

We have also operated an RCA type 8575 PMT .under
similar conditions using a 2-kV Kepco type 188-0030
power supply, an EGG type NA201/N quadamplifier
(8X%), and an EGG type TR204/N discriminator. Addi-
tional data were obtained from a Schlumberger EMR
type 541N-06-14 PMT being used in a study of
radiation-environment effects on the star tracker for
NASA'’s Galileo/Jupiter mission.>!

The spectral response of all three tubes is within the
Cherenkov line shape. The Hamamatsu device was
selected for its high (Cs-Te) photocathode sensitivity in
the ultraviolet (210 nm), whereas the other two PMT’s
employed bialkali materials that peak in the blue (400
nm).

3. Counting probability distributions

Two main sequences of experiments were carried out
using the Hamamatsu tube. A discriminator setting of 1
V was used to ensure that the recorded events originate
in the predynode environment. In the first sequence, the
counting time T and the duration D of each experiment
were fixed at 10 usec and 10 sec, respectively. Given the
duty cycle of the statistical counter (=~0.5) and a 5-sec
processing hiatus between experiments, we were able to
generate four counting distributions every minute with
about 480000 samples each. Collecting a full sequence
in this set required over an hour, but we focus on the
first 12 min, which are representative of the entire
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FIG. 4. (a) Mean number of events {(n ) (in units of 10~°)
versus real time ¢ (min) registered by a Hamamatsu type
R431-S PMT over a 12-min period (12/2/83, start time
17:10:00). The counting time T =10 usec and the duration
D =10 sec for each experiment. Successive experiments take
place every 15 sec. The total background rate is ~2 sec™!. (b)
Fano factor F,(T) versus real time for the same set of experi-
ments. Note that F,(T)=1.0 for about 70% of the counting
distributions, indicating the complete absence of cosmic-ray
clusters. It stretches to a maximum of 21 for the remaining
runs, indicating the presence of bursts. The cosmic-ray contri-
bution to the photomultiplier background can thus be general-
ly avoided if the duration of an experiment is limited to less
than tens of seconds.
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record.

Some of the experimental data is displayed (in histo-
gram form) as a function of elapsed time in Fig. 4. We
depict the mean count {n ) of each counting distribution
P(n;T) in Fig. 4(a) and the associated Fano factor
F,(T) in Fig. 4(b), both with a logarithmic ordinate.
The total experimental background rate is =2 sec ™.

The Fano factor serves as an effective tool for discern-
ing the underlying clustering phenomena. Although it is
essentially unity in nearly 70% of these experiments, the
Fano factors for the remaining counting distributions are
sufficiently greater than unity to signal the presence of
shower events. An example is provided about halfway
into the record, where there was an obvious deviation
from Poisson behavior that lasted for over a minute.
The shower was most intense during the counting exper-
iment that began at the fifth minute; in a single counting
time of 10 usec there was a burst of 32 events and the
Fano factor reached a value of 21. Our choice of experi-
mental parameters is clearly sufficient to resolve the
characteristic arrivals of shower particles at the detector.
This behavior could not have been inferred by analyzing
the evolution of the mean count alone, as is evident from
the record in Fig. 4(a).

Some of the counting distributions are, however, too
sparse to provide a rigorous test of the models under
consideration.>? In fact, only one super-Poisson experi-
ment in the 12-min record was successfully fit by our
models; it is shown in Fig. 5 and corresponds to 5:45
elapsed time in Fig. 4. Although a triple count occurred
only once in that experiment, it was sufficient to drive
the Fano factor above unity and exemplifies the vulnera-
bility of Poisson statistics to excess clustering.

T = 10 usec

i
i

O EAPERIMENT 1
—~ PDYF @ P

COUNTING DISTRIBUTION p(n)

°
>
v

NUMBER OF COUNTS (n)

FIG. 5. Counting distribution P(n;T) versus number of
counts n for the Hamamatsu type R431-S PMT (12/2/83,
17:15:45) operated in the dark with count time T =10 usec and
duration D =10 sec. Open circles represent experimental
values (note that P(2)=0); the convolution of the Poisson-
driven Yule-Furry cosmic-ray cascade with a Poisson
(PDYFeoP) is shown as a solid curve, whereas the negative-
binomial cascade convolved with a Poisson (NBe P) leads to the
dashed curve. All experimental and theoretical parameters are
displayed in Table I. The single triple count cluster was
sufficient to drive the Fano factor to 1.5.
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The resemblance between the Poisson-driven Yule-
Furry and the negative-binomial descriptions of cosmic-
ray showers is reflected by the near indistinguishability
of the two fits in Fig. 5 and in those to follow. The con-
volution of the former with a Poisson distribution
(PDYF oP) is shown by the solid curve, whereas the
convolution with the latter (NBoP) is shown by the
dashed-line fit. We adopt this notation for all subse-
quent counting distributions. Parameters have been ex-
tracted from the data for each model in accordance with
Egs. (32) and (35); these are collected in Table 1.

In a second photon-counting sequence, we increased
the duration D of each experiment to 1000 sec and,
furthermore, changed the counting time 7 from 10 usec
to 59 usec in consecutive experiments, to observe the
dependence of the model parameters on 7. The number
of samples per counting distribution naturally decreased
with increasing counting time, but with an unsubstantial
loss of accuracy; at T'=59 usec we still obtained some 8
million samples as compared with 48 million samples at
T =10 usec.

We present the mean count for this sequence of exper-
iments in Fig. 6(a) as a function of counting time 7. The
data exhibit reasonable linearity between (n ) and T, as
expected; the larger the counting period, the more the
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number of events from the point process that enter the
counting window. The proportionality factor provides a
measure of the mean rate of total background counts for
this Hamamatsu tube. A linear fit to the data yields a
slope of about 3.0 sec™!, which accords with the esti-
mate from Fig. 4(a).

The Fano factors in Fig. 6(b) can be compared to
those of the first sequence of experiments in Fig. 4(b)
(note the difference in the ordinate scales, however). The
maximum value of F,(T) (6.98) occurred at T =52 usec
(this resulted from single dense bursts of 62 and 64
counts each), whereas the minimum Fano factor was
1.19. It is evident that, under these experimental condi-
tions, every measurement in the record leads to a super-
Poisson result, so the effects of cosmic-ray showers on
the photomultiplier-tube background can no longer be
avoided. This is a direct consequence of the increase in
the duration of each experiment to D =1000 sec (=~17
min). It is longer than the entire sequence of experi-
ments shown in Fig. 4(b), thereby unavoidably leading to
the capture of cosmic-ray clusters.

The permanence of the cosmic-ray contribution
throughout this data set provides an opportunity for
testing the applicability of our models. We discuss two
distinct examples for this tube.

TABLE 1. Experimental parameters for the full counting distributions presented in Sec. III C.

Counting Duration Total Total rate—1 Fano Gamma
Counting time of run samples (n)/T factor factor
experiment Fig. T D N, (sec™h) F,(T) r
Hamamatsu R431-S 5 10 usec 10 sec 480353 2.498 1.500 0.333
12/02/83 17:15:45
Hamamatsu R431-S 7 41 psec 1000 sec 11732575 2.732 1.355 0.310
11/14/83 04:26:00
Hamamatsu R431-S 8(a) 44 usec 1000 sec 10902318 2.952 1.538 0.142
11/14/83 05:16:15
Hamamatsu R431-S 8(b) 44 usec 1000 sec 10902317 2.918 1.373 0.341
11/14/83 05:16:15
(burst deleted)
EMR 541N-06-14 12 40 usec 19 min 8192001 58.972 1.887 0.146
09/16/77
RCA 8575 13 10 msec ~3d 3499873 149.460 2.750 0.065
07/08/82 17:01:46
Theoretical parameters extracted from fits to the data.
Counting Bo Eb Bp Kb
experiment Fig. (sec™ ) (m) (sec™") (sec™ ) (m") (sec™)
Hamamatsu R431-S 5 1.405 1.333 0.625 2.026 1.233 6.241x 1073
12/02/83 17:15:45
Hamamatsu R431-S 7 0.844 1.408 1.544 1.236 1.282 1.148
11/14/83 04:26:00
Hamamatsu R431-S 8(a) 0.176 2.683 2.480 0.314 2.004 2.323
11/14/83 05:16:15
Hamamatsu R431-S 8(b) 1.338 1.310 1.166 1.919 1.218 0.582
11/14/83 05:16:15
(burst deleted)
EMR 541N-06-14 12 6.194 2.615 42.775 10.968 1.969 37.375
09/16/77
RCA 8575 13 5.406 5.444 120.030 11.990 3.273 110.220

07/08/82 17:01:46
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FIG. 6. (a) Mean number of events () (in units of 10~°)
versus counting time T (usec) registered by a Hamamatsu type
R431-S PMT (11/13/83, start time 19:30:00). The counting
time T increases for each successive experiment beginning with
T =10 psec and ending with T =59 usec, while the duration
D =1000 sec throughout. The time required to collect the en-
tire set of 50 counting distributions was ~14 h. The mean
count has an approximately linear dependence on T with a
slope of 3 sec™!. (b) Fano factor F,(T) versus counting time T
for the same set of experiments. The minimum value for the
Fano factor is 1.19, whereas in Fig. 4(b) it is just the unity
Poisson barrier. This is a consequence of the increase in dura-

- tion to 1000 sec, which results in some cosmic-ray clusters al-
ways being present in each experiment, so that it is no longer
possible to avoid their effect on the photomultiplier-tube back-
ground.

A typical counting distribution that lacked dense
bursts is shown in Fig. 7 (T =41 usec; see Fig. 6). Both
models share the ability to reproduce the nearly
geometric tail of the distribution with excellent precision
over 7 orders of magnitude. The presence of a dense
burst, on the other hand, reduces the quality of both fits
substantially, as the counting distribution of Fig. 8(a) il-
lustrates (T =44 usec; see Fig. 6).

These large bursts do not, however, invalidate the
theoretical approach. The cascade theory describes only
the general properties of shower fluctuations and is not
designed to accommodate the extremely nonstationary
behavior of the dense cosmic-ray burst at n =16 in this
data set. Indeed, it is of interest to examine the data
when a singular burst such as this is removed from the
counting distribution. This is illustrated in the renor-
malized distribution shown in Fig. 8(b). The improve-
ment is quite dramatic and the result resembles that
presented in Fig. 7 (note the difference in scale). The
mean and Fano factor that result from the removal of
such bursts from the data of Fig. 6 is shown in Fig. 9.
Comparing these figures shows that the removal of the
dense cosmic-ray activity has little effect on the mean
count but significantly reduces the Fano factor. Never-
theless, F,(T) retains its super-Poisson character, as a
result of the residual tails of the counting distributions.

4. Extraction of model parameters

The uniformity of this revised data set encouraged us
to attempt to extract the stationary properties of our
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FIG. 7. Counting distribution P(n;T) versus number of
counts n for the Hamamatsu type R431-S PMT (11/14/83,
04:26:00) operated in the dark with counting time T =41 usec
and duration D =1000 sec. Open circles represent experimen-
tal values, whereas the solid and dashed curves represent the
PDYFeoP and NBoP theoretical models, respectively. All ex- .
perimental and theoretical parameters are displayed in Table I.
Both models provide excellent and nearly indistinguishable fits.

three model parameters. The total background-count
rate is decomposed into a cosmic-ray primary rate and a
dark rate from other sources at the detector. The last
parameter carries the multiplicative strength of the at-
mospheric cascade. The theoretical parameters corre-
sponding to the two models, {u,,{m)up} and
{mp,{m’),up}, are given by Egs. (32) and (35), respec-
tively. These were extracted from each counting distri-
bution represented in Fig. 9 and are displayed in Figs.
10(a)-10(c) and 11(a)-11(c) for the Poisson-driven Yule-
Furry and negative-binomial models, respectively.

One immediate feature of the results is the stability of
the mean multiplication that is obtained from both mod-
els over the entire range of counting times. From a
mathematical point of view, the similarity in the magni-
tude of {m ) and (m’') (both are ~1.2) results from the
proximity of the inversion parameter (I'=}) to the re-
gion of convergence of the two solutions in Fig. 3.

Whatever small variation exists in the full background
rate must, therefore, be apportioned to the primary and
dark rates. Those for the PDYF oP are about the same
order of magnitude (u,,up=~1.0 sec”!), whereas the
NBo P model places a slightly greater emphasis on the
primary rate (u,~1.2 sec™!) with a corresponding de-
crease in the dark rate (u}, =~0.7 sec™!). This compara-
tive reduction in uj has the effect of reducing the fitting
efficiency of the NBo P model, for its dark-rate estimate
is more likely to be driven below zero on occasion, and
thus yield an unacceptable solution. This is evident
from the gaps in the histogram records of Figs. 10 and
11 (the PDYFo P model successfully fit 49 of 50 experi-
ments, while the NBoP model could not accommodate
five additional cases).

From the above parameters, we find the total fluctua-
tion of cosmic-ray particles at ground level in this range
of counting times to be about p,(m)=~1.2 sec™! and
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FIG. 8. (a) Counting distribution P (n;T) versus number of
counts n for the Hamamatsu type R431-S PMT (11/14/83,
05:16:15) operated in the dark with counting time T =44 usec
and duration D =1000 sec. The open circles represent experi-
mental values, whereas the solid and dashed curves represent
the PDYFoP and NBoP theoretical models, respectively. All
experimental and theoretical parameters are displayed in Table
I. Note the presence of a dense cosmic-ray burst at n =16
which reduces the quality of the fit. (b) Counting distribution
for the same experiment after removal of the singular dense
shower at n =16 and renormalization of the data. Now note
the similarity to Fig. 7. The Fano factor decreased from 1.54
to 1.38.

pp{m’')=1.44 sec™! for the two models. These ob-
served rates are an order of magnitude higher than that
which is expected from an estimated sea-level flux of 1.0
cm~2 min~! (Ref. 27) through the 2.5-cm Hamamatsu
photocathode (i.e., 0.1 sec™!). The discrepancy may
arise from the superior resolution of this PMT operated
in the photon-counting mode, which can detect low-
height Cherenkov pulses.

5. Counting probability distributions for other PMT’s

These observations are complemented by two addi-
tional counting distributions obtained with PMT’s other
than the Hamamatsu. The former used a counting
period similar to that employed in our second sequence
of experiments (I'=40 usec, duration D =19 min) with
.the Schlumberger EMR type 541N-06-14 PMT. This
PMT is similar to that to be used in the now pending
NASA/JPL Galileo mission to Jupiter. The distribu-

36 STATISTICAL PROPERTIES OF COSMIC-RAY SHOWERS AT ...

2659

o~ & @ ® o

(a)

MEAN COUNT <n)
C107%)

° 15 20 25 30 35 40 45 50 55 &

COUNTING PERIOD T (usec)

60

()

FANO FACTOR F (T)

6 - N u & 0 o N

o

FIG. 9. (a) Mean count {7 ) (in units of 10~5) and (b) Fano
factor F,(T) versus counting time T (usec) for the sequence of
experiments illustrated in Fig. 6, after removal of large count
numbers resulting from intense brief cosmic-ray bursts. The
mean count was not significantly affected, but the occasional
high peaks in the Fano factor that are prevalent in Fig. 6 are
eliminated. Nevertheless, the counting distributions remain-
super-Poisson, with F,(T)=1.3, in the range of counting times
displayed. The variation of T does not contribute to the rais-
ing of the Fano factor above unity; rather, this results from the
increased experimental duration D.

tion, which is shown in Fig. 12, resembles that for the
Hamamatsu PMT shown in Fig. 7, except that larger
clusters are observed.

The final counting distribution, presented in Fig. 13,
represents one of two similar experiments carried out
with an RCA type 8575 tube. The counting time and
duration were especially long (I'=10 msec, D=3 d).
Although the full distribution extended to the count
number n =137, it was curtailed at n =50 and renormal-
ized to increase clarity, but without loss of essential in-
formation.

This experiment is appealing because it facilitates an
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FIG. 10. (a) Primary cosmic-ray driving rate p, (sec™?), (b)
mean multiplication {m ) and (c) dark (noncascading) driving
rate pup (sec™!), versus counting time T. These parameters
were extracted from the sequence of experiments shown in Fig.
9 via the PDYFo P model for background events. They do not
vary substantially over the entire range of counting times
displayed. Only one experiment (For T =24 usec) out of 50
was not able to be fit by the model.
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FIG. 11. (a) Primary cosmic-ray driving rate u, (sec™!), (b)
mean multiplication {m’), and (c) dark (noncascading) driving
rate up (sec™!), versus counting period T. These parameters
were extracted from the sequence of experiments shown in Fig.
9 via the NBo P model background events. They do not vary
substantially over the range of counting times displayed. A to-
tal of six counting distributions out of 50 were not able to be fit
by this model.

identification of the two components of each model .
For low count numbers, the shape of the distribution is
inherited primarily from the Poisson law of the noncas-
cading events ((np)=ppT=1.2, whereas (n,)=p,T
~0.054). On the other hand, the quasigeometric tail
beyond n =5 is characteristic of the appropriate PDYF
and negative-binomial distributions; it provides a telltale
signature of cosmic-ray clusters at the detector. This
dual behavior is quite adequately captured by the models
we have considered.

We also remark on the manner of decomposition of
the total background rate: in Table I it is shown that
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FIG. 12. Counting distribution P(n;T) versus number of
events n for the Schlumberger EMR type 541N-06-14 PMT
designed for the NASA/JPL Galileo mission (9/16/77, Base
line B-1 experiment) operated in the dark with counting period
T =40 psec and duration D =19 min. Open circles represent
experimental values. Solid and dashed curves represent the
PDYFoP and NBoP theoretical models, respectively. The ex-
perimental and theoretical parameters are displayed in Table I.
This distribution resembles that for the Hamamatsu PMT
displayed in Fig. 7 except that larger clusters are observed.
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FIG. 13. Counting distribution P(n;T) versus number of
events n for the RCA type 8575 PMT (7/8/82, 17:01:46)
operated in the dark with counting time T =10 msec and dura-
tion D=3 d. Open circles represent experimental values. The
solid and dashed curves represent the PDYFoP and NBoP
theoretical models, respectively. All experimental and theoret-
ical parameters are displayed in Table I. The underlying Pois-

" son distribution for noncascading sources is clearly evident for

low count numbers (n <5), whereas the characteristic tail from
the Poisson-driven cascade counting distributions is observed
for large count numbers (n >5). Both models capture this
dual behavior with remarkable precision.

the dark rate for this counting distribution received the
largest share in such a way as to maintain the primary
rate estimate within an order of magnitude of those for
the Hamamatsu tube experiments. This is not unreason-
able since it is likely that noncascading sources (such as
thermionic emission) and discriminator adjustments will
vary from one experimental setup to another.

D. Interevent-time probability density functions

The experimental counting distribution P(n;T) is an
important statistical measure of a point process. The
process of counting, however, forsakes a knowledge of
the occurrence times of the individual events and, there-
fore, provides only a partial characterization of the en-
tire point process. Another window on this information
is the probability distribution P(7) of the interevent
times, which is constructed experimentally by recording
a histogram for the temporal separations of adjacent
pulses that are properly discriminated (see the discussion
on pulse discrimination in Sec. III A). For the homo-
geneous Poisson point process, this distribution follows
the simple exponential law P (7)=pu exp( —’wr), where pu
is the constant driving rate of the process.®

In Fig. 14(a) we present P(7) for the RCA type 8575
PMT operated in the dark. On these semilogarithmic
coordinates, the experimental distribution may indeed be
well approximated by a linear trend for large interevent
times, but this Poisson description fails for 7 <0.01 sec.
The deviation can be scrutinized by a double-logarithmic
presentation of this same data, as shown in Fig. 14(b). A
similar distribution has been obtained with the
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Hamamatsu type R431-S PMT, as shown in Fig. 15.

A sharp peak appears in Fig. 14(b) at 7=~0.5 usec; this
same phenomenon occurs, and is especially pronounced,
in Fig. 15 at 7=~0.12 usec. This feature is attributed to
brief but intense bursts of evenly spaced cosmic-ray
events of unknown origin, which drive the Fano factor
in counting experiments well above unity. These peaks
permit us to estimate the typical intracluster event spac-
ing. Since the smallest counting periods in our counting
experiments (T =10 usec) are well in excess of the intra-
cluster separation, it is clear that many of these events
are indeed captured.

The broader tails of the two distributions (at the larg-
est values of 7) are exponential and reflect intercluster
separations arising from the cascade’s primary (Poisson)
process. Additional counts from noncascading sources
at the PMT are also present, but these do not alter the
exponential character of this tail since they are also ran-
dom events. The quenching of both distributions below
7=~100 nsec arises from the limited electronic resolution
of the detectors. Typical pulse durations (full-width half
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FIG. 14. (a) Interevent probability density P(7) versus in-
terevent time 7 (sec) for background counts in a RCA type
8575 PMT, on semilogarithmic coordinates. The approximate-
ly exponential dependence for 7>0.01 sec reflects Poisson-
distributed arrival times. The data set was collected on
7/19/82, at an 18:59:35 start time, and contain 881002 sam-
ples. (b) The same data presented in a double-logarithmic for-
mat. The peak at 7=0.5 usec reflects cosmic-ray intercluster
event spacings. Even the smallest counting period used in our
counting experiments (T =10 usec) is sufficiently large to cap-
ture these clustered events.
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.maximum) for the Hamamatsu system are rated at about

25 nsec.

E. Other sources of dark events in the photomultiplier tube

The phenomena of afterpulsing and luminescence,
which are known to be important sources of spurious
counts in certain photomultiplier tubes, have not been
incorporated into our models. Since these are primarily
tube-dependent effects, the introduction of further
branching steps to the mathematical formulation may
not always be necessary.

Afterpulsing is known to arise in photomultipliers
from ion bombardment of the cathode and initial dy-
nodes.?*?° These charged agents result from the ioniza-
tion of residual and leakage gases (such as hydrogen,
helium, and nitrogen) during electromultiplication. The
process is governed by the ion transit time, which is
broadly distributed (even if afterpulsing from the dy-
nodes is eliminated by proper discrimination) since it de-
pends on the mass of the ionized species and its path
length back to the photocathode.

A simple estimate of the afterpulsing probability
P,(T) per photocathode event can be obtained by con-
sidering a cascade of Poisson primaries with a Bernoulli
law for the creation of secondary afterpulses. Using a
laser source of Poisson photons (to render the dark-rate
contribution negligible) and conducting photon-counting
experiments at T'=1 psec and D =0.4 sec (to enable
cosmic-ray effects to be excluded from most of the ex-
periments), Teich and Saleh®® estimated that P,(1
usec)=~1.6x 1072 for the Hamamatsu tube. For larger
counting times, an enhancement of P,(T) is expected,
since more afterpulses are likely to be captured by the
increased time window.

Even so, this is not sufficient to account for the very
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FIG. 15. Interevent probability density P(7) versus in-

terevent time 7 (sec) for background counts in a Hamamatsu
type R431-S PMT, on double-logarithmic coordinates. The
distribution resembles that of Fig. 14(b). The pronounced
feature arising from clustered cosmic-ray effects is evident at
7=~0.13 usec. The data set was collected on 9/7/83 and con-
tains 500 000 samples.
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gradual decrease in probability between adjacent counts
beyond n =1 in all our experimental distributions; it is
typically shallower than that required by the above esti-
mate. We conclude that the afterpulsing contribution is
not crucial and need not be considered in our models.

Luminescence can arise from the excitation and relax-
ation of molecular states in the faceplate material of the
PMT, and has been studied extensively in connection
with the effects of the radiation environment on space-
borne photomultiplier tubes.*~3” Unlike Cherenkov
photons, which are copiously produced but cannot be in-
dividually resolved at the detector, the less numerous
luminescence photons are emitted during the compara-
tively long molecular relaxation times and may thus be
registered as individual events. In fluorescence decay,
this deexcitation commonly occurs from over a few to
hundreds of microseconds, whereas in phosphorescence
decay times may span from minutes to days. Of the two
processes, the former is likely to be most significant to
our counting experiments because its decay parameter
can be well accommodated within the chosen counting
times.

A statistical estimate of fluorescence noise is very
difficult to obtain, unless the correlation between cosmic
rays and fluorescence photons at the detector is known.
This relationship cannot be deduced following a
photon-counting experiment because knowledge of the
occurrence times and pulse heights of individual events
is lost. For this reason we cannot totally exclude
fluorescence from our experimental measurements, al-
though arguments against its dominance can be set
forth.

If cosmic-ray particles were completely divorced from
fluorescence emissions, the latter would simply add to
the uniform background of random events, which is nat-
urally incorporated into our models via the dark-rate pa-
rameter (1. A strong correlation between the two phe-
nomena, on the other hand, would imply that a cosmic-
ray count is closely followed by fluorescence events, thus
falsely enhancing the shower clustering properties.

However, recent numerical simulations by Howell and
Kennel of NASA (Ref. 35) have shown that existing
correlations between Cherenkov and fluorescence pho-
tons in the PMT window are substantially reduced en
route to detection at the photocathode. According to
their simulated bivariate distribution, the latter may
even at times appear without the presence of the former.
“This,” the authors suggest, “may be largely attributed
to the directed nature of the Cherenkov radiation, in
which photons exit the window with little or no internal
reflection, but the fluorescence photons, in their more
random flights, eventually strike the photocathode either
directly or after reflection.”

Some evidence in favor of this view may be gathered
from our data. For instance, the experimental interevent
time distributions shown in Figs. 14(b) and 15 reach lo-
cal minima precisely within the temporal region associ-
ated with fluorescence photon arrivals (1-100 usec).
This is particularly true of the Hamamatsu tube, perhaps
because its solar-blind response reduces fluorescence in
the visible regime. Strong correlations would most cer-
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tainly yield an enhancement in this emission-time win-
dow.

The small excess clustering that exists in the Apollo
17 counting distributions from space with very long
counting times (see Fig. 2) also supports the above inter-
pretation, especially since the MgF, window of the asso-
ciated PMT fluoresces more efficiently than the SiO, and
glass materials used by the other photomultipliers.?’

We believe fluorescence is not sufficient to fully ac-
count for the observed geometric feature that is so well
described by our models (see Fig. 13). Nevertheless, fu-
ture experiments employing point-process detectors in
conjunction with pulse-height analyzers would more pre-
cisely elucidate the contribution of fluorescence noise to
the clustered photomultiplier background.

IV. CONCLUSION AND DISCUSSION

We have shown that cosmic-ray-shower fluctuations at
ground level can be effectively represented by the
Poisson-driven Yule-Furry or the negative-binomial
(Poisson-driven logarithmic) two-parameter counting
probability distributions. The agreement between data
and theory determined with photomultiplier tubes
operated in the dark is remarkable, given the simplicity
of the underlying pure-birth cascade model. The
mathematical basis for the success of the theory lies in
the presence of mean-square excess fluctuations in the
variance of the multiplication statistics, of which the
Yule-Furry and the logarithmic distributions are funda-
mental examples. In order to extract the cosmic-ray-
shower component from the PMT data, we found it
necessary to formulate a more precise description of
photomultiplier background events by combining the
Poisson-driven cascades with an independent Poisson
random variable that summarizes other count sources at
the detector.

Finally, we note that cosmic-ray clusters are particu-
larly deleterious to some counting experiments. We
have shown that cosmic-ray clusters can, in fact, be
avoided in photon-counting experiments by restricting
the counting duration to less than tens of seconds. The
background events can then be described by a simple
Poisson counting distribution with a very low mean
(which is just a Bernoulli distribution when only O or 1
counts are observed). This is particularly useful for ap-
plications that seek to determine counting statistics
which are sensitive to excess clustering. One important
example is the detection of stationary photon-number
squeezed light, as recently reported by a number of au-
thors,3*38 =40 since the superposition of super-Poisson
cosmic-ray counts at the phototube may destroy the
nonclassical observable. In general, if photomultiplier
tubes are used in photon-counting experiments that can-
not be conducted at short durations, cosmic-ray clusters
may pose a significant limitation. The background mod-
els we have presented will then provide a useful analyti-
cal point of departure.
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APPENDIX A: RELATIONSHIP
BETWEEN YULE-FURRY
AND LOGARITHMIC COUNTING STATISTICS

The statistical behavior of logarithmic counting statis-
tics was shown in Sec. II A to resemble that of the pure-
birth (Yule-Furry) model. The purpose of this appendix
is to present a connection between the two counting dis-
tributions.

For a general discrete probability distribution P(x),
we consider the expectation

<<;‘—>>=§0—<;—>P(x)=1 ,

which is clearly normalized. This leads us to view the
summed expression above as a probability transforma-
tion of the type

(A1)

Pp(x)=[x/{x )P (x), (A2)
from which the auxiliary condition
(xpg)=F +{x ) (A3)

may be obtained, where F, is the Fano factor, or
variance-to-mean ratio, of the original distribution.

It is evident from the construction of Eq. (A2) that
Py(x) is zero when x =0, although this need not be true
for P,(x). The former distribution may thus belong to
the class of unit-shifted counting distributions, whose
members can represent cascades in which the primary
particle is included along with its offspring (as discussed
in Sec. IT A).

If P,(x) is the Poisson distribution, we employ Egs.
(1) and (3) to evaluate Egs. (A2) and (A3):

Pp(x)=(x )" lexp(—{x M) /(x —1)}, x>1,
(Ada)

(xp)=14(x ). (A4b)

This is just a unit-shifted version of the Poisson input,
which can be easily verified by comparison with Eq. (5).
On the other hand, if P, (x) is the logarithmic distri-
bution, then with the aid of many of Egs. (7)-(13) we in
fact obtain the Yule-Furry, or shifted Bose-Einstein,

statistic:
Pp(x)=exp(—B)[1—exp(—B)* "}, x>1, (A5a)

as long as
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(xp)=1460{x,), or 6=8. (A5b)

The simplicity of the transformation that links the
Yule-Furry and logarithmic distributions is reflected by
their shared mathematical properties.

We may recast Eq. (A2) into equivalent relations in
the domain of generating functions. The most compact
result is obtained via the probability-generating function
(PGF), which is defined as

o0

G(z)=(z")= 3 z*P(x) . (A6)
x =0
Applying Eq. (A6) to Eq. (A2) and using
Gy(z)=2Gy(z) , (A7)

which relates the PGF’s of the shifted and unshifted
counting distributions, respectively, we obtain

1 d

GB(z)_<XA> —-Gal2), (A8a)
and its inverse

G (z)=(x )fOZGB(z)dz . (A8b)

From Eq. (A8b) we can see that the logarithmic PGF
behaves like an unbounded cumulative version of the
(unshifted) Bose-Einstein PGF. The moments of these
two distributions can be linked to all orders by evaluat-
ing Eq. (A8) at z =exp(—s) to obtain relations for the
moment-generating function Q (s), whose properties are
given by Egs. (B1) and (B2) of Appendix B.

APPENDIX B: THIRD-ORDER MOMENTS
FOR A CASCADED PROCESS

It is well known that the nth ordinary moment of a
general counting distribution P(x) may be obtained from
its moment-generating function (MGF) (Ref. 14),

Q, (s)=(exp(—sx))

=3 exp(—sx)P(x) (B1)

x =0

by successive differentiation according to

Q 0O, (s)

n =(—1)"
(x™) ) " .

for all n . (B2)

Alternatively, it is oftentimes more convenient to em-
ploy the semi-invariant or cumulant-generating function
(CGF)

K. (s)=In[Q,(s)], (B3)

which yields the mean (x ), variance ¥ (x), and third
central moment M;(x) directly:

(x)z——a‘Kx(s) ,

(B4a)
as c=0
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a2
Vix)=—5K.(s) , (B4b)
ds s=0
83
My(x)=—=K,(s) (B4c)
ds s=0

This simple pattern does not persist beyond third order,
however.

Consider a primary process p characterized by the
MGF Q,(s), whose members independently initiate a
branching process resulting in an overall multiplication
m described by Q,,(s). The moment-generating function
of the overall compound process mixes the above via

0.(5)=0,(—InQ,,(s)) (BS)
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which, using Eq. (B3), can be rewritten in terms of the

associated CGF’s as
K. (s)=K,(—K,,(s)) . (B6)

Differentiating both sides according to Eq. (B4), and ex-
panding via the chain rule, leads to the general relations

(n)=(p){m), (B7a)
Vin )=V(p)m)*+{p)Vim), (B7b)
Mi(n)=M;(p){m 3 +3V(p)m)V(m)+{p)Ms(m),

(B7¢)

which may be applied to any simple compound process
where a primary counting distribution P(p) drives a
multiplication counting distribution P (m).
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