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Encoding arbitrary four-qubit states in the spatial parity of a photon pair
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Advancing quantum information processing is predicated on the preparation of ever-larger multiqubit states.
Photonic realizations of such states may be achieved by increasing the number of photons populating the state
or the number of qubits encoded per photon. Typical approaches to the latter strategy utilize distinct degrees
of freedom of the photon field. We present here an approach that encodes two qubits per photon in the spatial
parity of its transverse spatial profile. Simple linear optical devices transform each parity qubit separately
or the two qubits jointly. Furthermore, we demonstrate that entangled photon pairs produced by spontaneous
parametric down-conversion may be used to prepare arbitrary four-qubit states through sculpting the spatial
profile of the classical optical pump. Two examples are highlighted—the preparation of two-photon four-qubit
Greenberger-Horne-Zeilinger and W states, whose encoding in a photon pair has thus far eluded other approaches.
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I. INTRODUCTION

Most breakthroughs in photonic realizations of quantum
information processing (QIP), such as quantum teleportation
[1,2], quantum cryptography [3–5], and quantum computation
[6–8], have made use of the two-dimensional (2D) qubit
Hilbert space of photon polarization. Entangled two-photon
states produced by optical spontaneous parametric down-
conversion (SPDC) from a nonlinear crystal (NLC) [9–14]
have served as the workhorse of these demonstrations. Further
advancement of photonic QIP is predicated on producing
states in larger Hilbert spaces [15,16]. One path to increasing
the size of the Hilbert space is via production of N -photon
states (e.g., N = 4 [17], N = 6 [18], and N = 8 [19]). Pursuit
of this strategy is hampered by fundamental experimental
difficulties. Since the SPDC conversion efficiency is very
low, generating multiple photon pairs requires high-power
ultrafast pump lasers and is currently limited by the optical
damage threshold in available NLCs. Moreover, restrictions
on linear transformations of multiphoton states in the absence
of photon-photon interactions limit the space of accessible
states. In light of these difficulties, we restrict ourselves in this
paper to two-photon states, N = 2, which are readily produced
by SPDC.

Instead of increasing the number of photons occupying
the quantum state, one may alternatively encode qudits or
multiple qubits per photon. The large-dimensional Hilbert
space corresponding to the spatial degree of freedom (DOF) of
a photon [20] is therefore an attractive candidate for QIP [21]
and quantum metrology [22]. Nevertheless, until recently
[23–25], there have been no demonstrations of the direct
encoding and manipulation of spatial quantum information
without recourse to truncating the Hilbert space by spatial or
modal filtering. Previous attempts include using (i) distinct
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optical paths [26], (ii) pixellated spatial domains [27–31], and
(iii) orbital angular momentum (OAM) states [32].

The first approach to encoding quantum information in
a spatial DOF relied on selecting discrete directions (i.e.,
linear momentum states) [26]. In this conception, two spatially
filtered, well-separated directions or optical paths constitute a
qubit. Theoretical studies have shown that utilizing N spatial
paths and two-port beam splitters may be used to implement
an arbitrary N -port unitary operator [33,34]. This spatial
realization of quantum information is not easily scalable to
larger Hilbert spaces, since the demands on phase stability
grow exponentially with the number of optical paths selected.
Experimental progress along this route has made use of
fiber multiports [35], free-space longitudinal momentum-state
filtering [36], and on-chip coupled waveguides [37].

A second approach to encoding quantum information in the
spatial DOF is to discretize the transverse plane into mutually
exclusive patches, or “pixels,” that correspond to orthogonal
functions taken as the basis of a Hilbert space. This approach
was used by Walborn et al. [31] to implement a single-photon,
large-alphabet quantum key distribution protocol and was also
applied to entangled photon pairs [29,30]. Although such a
scheme is feasible in principle, it is difficult to construct
unitary operators on this Hilbert space. Fourier-transform (FT)
systems and imaging systems (a cascade of two FT systems
[38]) were used to implement “rotations” in the pixellated
Hilbert space [29–31]. It is now understood from research on
the fractional FT [39,40] that the FT is in fact a rotation in the
position-momentum space of the Wigner function associated
with the field and not in the Hilbert space constructed on the
spatial domain [41]. This fact casts doubt on the potential of
simple pixellation schemes as a route to spatial-domain QIP.

A third approach is the use of the rotational DOF of
OAM [42,43]. Pairs of photons produced by SPDC are in fact
described by a large-dimensional entangled-OAM state [32]
whose bandwidth has now been measured [44]. A recent
experiment on generalized-Bell-inequality violation infers the
existence of a high-dimensional OAM-entangled state [45].
Nevertheless, direct manipulation of photon-pair OAM states

062317-11050-2947/2012/85(6)/062317(14) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.85.062317


ABOURADDY, YARNALL, DI GIUSEPPE, TEICH, AND SALEH PHYSICAL REVIEW A 85, 062317 (2012)

has thus far been limited to a low-dimensional Hilbert space
per photon through modal filtering [32,46,47].

Further increase in the information-carrying capacity of a
photon is achieved by utilizing multiple DOFs simultaneously.
When two photons are entangled in each of multiple DOFs
separately, they are said to be “hyperentangled” [48–52].
Hyperentangled multiqubit states have been characterized via
quantum-state tomography [52], used to implement deter-
ministic two-qubit single-photon gates [27,28], to test the
foundations of quantum mechanics [53–57], and in cluster-
state one-way quantum computation [58,59]. Nevertheless, the
experimental complexity for the simultaneous manipulation of
different physical DOFs is daunting.

We recently introduced an approach for encoding quantum
information in photonic states using a global spatial property
of a photon, namely, its spatial parity along one dimension
(1D) [23,25]. The central insight that led to this approach
was the recognition of the isomorphism between single-mode
multiphoton states and single-photon multimode states of
the electromagnetic field [23]. Previous theoretical proposals
[60–62] for violating Bell’s inequality [63] using the Einstein-
Podolsky-Rosen (EPR) state [64] relied on casting that state
in a multiphoton Fock basis. Such states are not feasibly
produced using current or foreseeable technology. Our insight
in Ref. [23] allows one to translate the proposed single-mode
multi-photon states into readily produced multi-mode single-
photon states. This led to experimental demonstrations of the
controlled preparation of entangled 1D spatial-parity qubits
using SPDC photon pairs [25] and the first violation of Bell’s
inequality using the EPR state [24]. Subsequent work on OAM
benefited from these developments, leading to an analogous
violation of Bell’s inequality [65,66].

In this paper, we extend our one- and two-photon 1D
spatial-parity formulation into a 2D Cartesian space. While
this is a simple extension to realize experimentally, we find that
this nontrivial conceptual extension allows one to encode two
logical qubits in a single-photon transverse spatial field. Each
qubit may be manipulated via unitary transformations and
projected onto a basis using simple linear optical components.
Moreover, the two qubits encoded in a single photon may
be jointly rotated in their combined Hilbert space, resulting
in nonseparable, one-photon, two-qubit states. An arbitrary
one-photon, two-qubit state is prepared by modulating the
field transverse spatial distribution. Moreover, we demonstrate
that photon pairs produced by SPDC enable the encoding of
four entangled logical qubits, two in each photon. We describe
how arbitrary two-photon, four-qubit states may be prepared,
and the associated 16-dimensional Hilbert space spanned, by
sculpting the phase and amplitude of the classical optical pump
used in the SPDC process. We highlight the capabilities of
this approach by describing the preparation of two classes
of four-qubit states that have heretofore eluded realization
using photon pairs: a four-qubit Greenberger-Horne-Zeilinger
(GHZ) state and a four-qubit W state. Our approach owes
its experimental simplicity to the fact that the two qubits per
photon are carried in the photon global spatial profile and
manipulation of the beam profile engenders the qubit transfor-
mations, allowing for simple cascading of multiple operations.

We highlight an important distinction between our approach
and that of OAM. In the polar-coordinate system appropriate

for OAM, the radial r and angular θ coordinates are asym-
metric from a geometric standpoint. While the angular modes
have been the focus of attention to date, schemes developed
for manipulating OAM are not suitable for manipulating the
radial modes. The radial DOF has consequently been ignored
in all OAM schemes used for QIP (see recent exceptions
that consider radial OAM modes [67,68]). In contrast to
the asymmetry between r and θ in polar coordinates, our
approach utilizes the parity in the orthogonal x and y Cartesian
coordinates, which are intrinsically symmetric. Thus, the
devices developed to manipulate 1D spatial parity along x in
Refs. [23–25,69] can also be used for manipulating the y parity
after an appropriate rotation. Furthermore, we demonstrate in
this paper that simple optical devices controllably couple or
correlate parity in x and y by operating in their joint Hilbert
space.

The paper is organized as follows. We first review the
elements of one- and two-photon spatial parity in 1D. Next,
we introduce the concept of one-photon 2D spatial parity
in x and y, and then extend the formalism to two-photon
states. An Appendix describes the SPDC state used. For
convenience, we use the following abbreviations throughout
the paper: 1P (one-photon), 2P (two-photon), 1P-1D (one
photon, one-dimensional parity), etc. We also use “parity”
for “spatial parity” throughout for brevity.

II. ONE-PHOTON ONE-DIMENSIONAL (1P-1D)
PARITY SPACE

We first offer, for completeness, a description of 1D parity
for a 1P state (1P-1D hereafter). Our presentation is simpler
than that in Ref. [23] and lays the groundwork for our
subsequent generalization to 2D parity. Consider a pure 1P
state, |�〉 = ∫

dx ψ(x)|1x〉, where 〈�|�〉 = 1 implies that∫
dx|ψ(x)|2 = 1, and x is a 1D transverse Cartesian spatial

coordinate. We assume that the field spatial distribution is
separable in x and y and we trace over the y dependence. We
focus on state functions having the form

ψ(x) = ϕ(x){αu0(x) + βu1(x)}, (1)

where u0(x) and the Heaviside step function u1(x) are even and
odd functions, respectively [Fig. 1(a)], ϕ(x) is a generic even
function normalized such that

∫
dx|ϕ(x)|2 = 1, and |α|2 +

|β|2 = 1. We construct a 2D (qubit) Hilbert space for 1P-
1D parity by identifying the logical basis {|0〉,|1〉} with the
orthogonal functions u0(x) and u1(x). In this Hilbert space,
the state function in Eq. (1) corresponds to the qubit state

|�〉 = α|0〉 + β|1〉. (2)

We thus establish a mapping from the space of spatial photon
field distributions in Eq. (1) to the space of logical qubit states
in Eq. (2).

To prepare an arbitrary qubit, we need only control
the relative amplitude and phase of the two halves of the
1P field along x. Writing α = cos θ

2 and β = sin θ
2 eiφ , we

identify a case of particular interest when φ = π
2 , whereupon

|�〉 = cos θ
2 |0〉 + i sin θ

2 |1〉. Since cos{ θ
2 u1(x)} = cos θ

2 u0(x)
and sin{ θ

2 u1(x)} = sin θ
2 u1(x), the corresponding state func-
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FIG. 1. (Color online) 1D parity qubits and operators on 1D parity
space. (a) The basis functions u0(x) and u1(x), (b) a realization of
a spatial flipper corresponding to the Ẑ operator and its symbolic
representation, (c) a spatial parity rotator R̂x(θ ) = ei θ

2 X̂ implemented
using a phase plate with phase θ between the two halves [R̂x(π ) =
iX̂], and (d) a parity analyzer 1

2 {̂I ± Ẑ} for 1D parity qubits realized
using a balanced MZI with the Ẑ parity operator in one arm. ψ(x) is
the 1D spatial state function; t(x) is the spatial distribution impressed
upon the optical field, a pure phase here.

tion is then

ψ(x) = ϕ(x) exp

{
i
θ

2
u1(x)

}
, (3)

and the amplitude of the state function |ψ(x)| = |ϕ(x)| is
independent of θ . The information is thus encoded solely in
the phase of the 1P field and transformations among states in
this class may be implemented by spatial phase modulation
alone.

We next identify optical systems that implement spatial
transformations that are closed on the class of states described
in Eq. (1). Such transformations are described either by
an impulse response function in the spatial representation
or a 2 × 2 matrix operator in the parity representation. In
the spatial representation, a linear device transforms the
state function ψ(x) to ψ ′(x) = ∫

dx ′h(x,x ′)ψ(x ′), where
h(x,x ′) is the impulse response function [70]. We consider
here devices having h(x,x ′) = t(x)δ(x ∓ x ′); i.e., ψ(x) is
modulated by t(x) and may also be reflected around the
origin. Note that h is unitary if t(x) is a unit-amplitude
phase function, t(x) = exp{iθ (x)}. We introduce two optical
devices in Figs. 1(b) and 1(c) whose actions on 1P-1D parity

correspond to the Pauli operators Ẑ and X̂. The Ẑ parity
operator [Fig. 1(b)] performs the transformation |0〉 → |0〉 and
|1〉 → −|1〉, or u0(x) → u0(x) and u1(x) → −u1(x) in the
spatial representation. This is achieved by a spatial reflection
(spatial flip) around the origin, h(x,x ′) = δ(x + x ′), which
may be implemented using a mirror or a dove prism [23]. The
X̂ parity operator performs the transformation |0〉 → |1〉 and
|1〉 → |0〉, or u0(x) → u1(x) and u1(x) → u0(x) in the spatial
representation, and is implemented using a phase plate or a
spatial light modulator (SLM) with a π -phase shift between
the two halves of the plane, h(x,x ′) = u1(x)δ(x − x ′) [Fig. 1(c)
with θ set to π ].

Using the X̂ and Ẑ parity operators, we construct two
important operators. The first is a parity rotation operator

R̂x(θ ) = ei θ
2 X̂ = cos

θ

2
Î + i sin

θ

2
X̂ =

(
cos θ

2 i sin θ
2

i sin θ
2 cos θ

2

)
,

(4)

which rotates the 1D parity state an angle θ around a major
circle on a parity Poincaré sphere [25], with R̂x(π ) = iX̂. Thus
starting from the fiducial state |�〉 = |0〉, ψ(x) = ϕ(x), R̂x(θ )
produces the state |�〉 = cos θ

2 |0〉 + i sin θ
2 |1〉. In the spatial

representation, this operator corresponds to an optical system
having h(x,x ′) = ei θ

2 u1(x)δ(x − x ′) implemented using a phase
plate or SLM having a constant phase in each half plane and a
phase difference θ between the two halves [Fig. 1(c)]. Note that
this transformation affects only the phase of the state function
in Eq. (3), and the class of such states thus remains closed
under its action.

The second operator we construct is the parity projection
operator P̂0 = 1

2 {Î + Ẑ} = |0〉〈0| and its complement P̂1 =
1
2 {Î − Ẑ} = |1〉〈1| = Î − P̂0 in the even-odd basis. In the
spatial representation, P̂0 and P̂1 correspond to the transfor-
mations ψ(x) → 1

2 {ψ(x) + ψ(−x)} and ψ(x) → 1
2 {ψ(x) −

ψ(−x)}, respectively, implemented using a balanced Mach-
Zehnder interferometer (MZI) with a spatial flip Ẑ in one of
its arms [Fig. 1(d)]. No temporal scanning is needed in this
modified MZI.

Bringing all the above-described elements together, as
summarized in Table I, coherent control over the Hilbert
space of 1P-1D x-parity states is enabled. The class of state
functions having the form of Eq. (1) is closed under the
parity transformations we consider here. Although we have
presented the formalism of 1D parity using the x spatial

TABLE I. The spatial representation of a 1P-1D parity state and
the corresponding logical-qubit representation.

Spatial representation Logical qubit

ϕ(x)u0(x), even |0〉
ϕ(x)u1(x), odd |1〉
ψ(x) = ϕ(x){αu0(x) + βu1(x)} |�〉 = α|0〉 + β|1〉
ψ(x) → ψ(−x) |�〉 → Ẑ|�〉
ψ(x) → u1(x)ψ(x) |�〉 → X̂|�〉
ψ(x) → ei θ

2 u1(x)ψ(x) |�〉 → R̂x(θ )|�〉
ψ(x) → 1

2 {ψ(x) + ψ(−x)} |�〉 → P̂0|�〉 = |0〉〈0|�〉
ψ(x) → 1

2 {ψ(x) − ψ(−x)} |�〉 → P̂1|�〉 = |1〉〈1|�〉
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parameter while tracing over y, it should be clear that this
approach may be also applied to the y spatial parameter after
tracing over x. Taking the two spatial dimensions together,
new possibilities for information encoding are enabled, as we
show subsequently.

III. TWO-PHOTON ONE-DIMENSIONAL (2P-1D)
PARITY SPACE

Consider a general pure 2P state where each photon is
described by a 1D spatial parameter after tracing over the
second coordinate of each photon:

|�〉 =
∫ ∫

dxdx ′ψ(x,x ′)|1x,1x ′ 〉, (5)

where the state function ψ(x,x ′) is normalized such that∫∫
dxdx ′|ψ(x,x ′)|2 = 1 [14]. Using SPDC to generate photon

pairs [Fig. 2(a)], ψ(x,x ′) is determined by the parameters of
the classical optical pump and the NLC. By judicious design
of these parameters we can encode an arbitrary two-qubit
parity state in the photon pair. Using the conditions outlined
in the Appendix (type I, collinear, spectrally narrow band,
degenerate SPDC from a thin NLC), the state function may be
approximated by

ψ(x,x ′) ≈ Ep(x)δ(x − x ′), (6)

where Ep(x) is the spatial profile of the classical optical pump
in 1D. If Ep is even, Ep(x) = ϕ(x)u0(x) = Ep(−x), it can
be shown [23] that the resulting entangled 2P-1D parity state
corresponds in parity space to the two-qubit Bell state |�+〉 =

1√
2
{|00〉 + |11〉}; i.e., if the pump has even parity, then both

photons have the same parity (both have even parity or both
have odd parity). On the other hand, if the pump is odd Ep(x) =
ϕ(x)u1(x) = −Ep(−x), the resulting 2P-1D state is |�+〉 =

1√
2
{|01〉 + |10〉}; i.e., if the pump has odd parity, then the two

FIG. 2. (Color online) (a) A classical pump is incident on a
nonlinear crystal (NLC) and generates a two-photon spatial parity
state |�〉. (b) Schematics of the configurations for generating the
four Bell states: (i) |�+〉, an even pump; (ii) |�+〉, an odd pump;
(iii) |�−〉, an even pump and a spatial flip Ẑ in the path of one
photon; and (iv) |�−〉, an odd pump and Ẑ in the path of one photon.

photons have opposite parity (one of them has even parity and
the other has odd parity).

Consequently, if the pump is prepared in an arbitrary parity
superposition,

Ep(x) = ϕ(x)

{
cos

θ

2
u0(x) + eiφ sin

θ

2
u1(x)

}
, (7)

then the resulting 2P-1D state is

|�〉 = cos
θ

2
|�+〉 + eiφ sin

θ

2
|�+〉, (8)

which may or may not be entangled, according to the values
of θ and φ. Interestingly, it is not possible to generate
the Bell states |�−〉 and |�−〉 by manipulating the pump
profile alone when a thin NLC is used. Further control
over the 2P-1D state may be achieved by manipulating the
parity of the down-converted photons. For example, when
a spatial flip Ẑ is implemented in the path of one photon
of the pair, an even pump produces the |�−〉 state with
corresponding state function ψ(x,x ′) = ϕ(x)δ(x + x ′), while
an odd pump produces the |�−〉 state with state function
ψ(x,x ′) = ϕ(x)u1(x)δ(x + x ′). In this manner, all four Bell
states are prepared, as shown schematically in Fig. 2(b).

Combining control over the classical pump profile Ep(x)
and the parity of the SPDC photons, we may span the Hilbert
space of pure two-qubit states. To elucidate this statement, it is
most convenient to use the Bell states {|�+〉,|�+〉,|�−〉,|�−〉}
as a basis for the 2P-1D space, in which case an arbitrary
two-qubit pure state is

|�〉 = α1|�+〉 + α2|�+〉 + α3|�−〉 + α4|�−〉,
= α1 + α3√

2
|00〉 + α2 + α4√

2
|01〉 + α2 − α4√

2
|10〉

+ α1 − α3√
2

|11〉. (9)

We prepare this state using two NLCs (NLC1 and
NLC2) with pump profiles Epj (x) = ϕ(x){cos θj

2 u0(x) +
sin θj

2 eiφj u1(x)}, each producing the state |�j 〉 =
cos θj

2 |�+〉 + sin θj

2 eiφj |�+〉, j = 1,2. A spatial flip Ẑ

is placed in the path of one of the photons produced by NLC2,
for example, such that |�2〉 = cos θ2

2 |�−〉 + sin θ2
2 eiφ2 |�−〉.

The states |�1〉 and |�2〉 are then superposed to produce the
state |�〉 = cos θ

2 |�1〉 + sin θ
2 eiφ|�2〉. The parameters used

in generating |�〉 are related to the desired coefficients in
Eq. (9) through the following one-to-one relationships:

α1 = cos
θ

2
cos

θ1

2
, α2 = cos

θ

2
sin

θ1

2
eiφ1 ,

α3 = sin
θ

2
cos

θ2

2
eiφ, α4 = sin

θ

2
sin

θ2

2
ei(φ2+φ).

The superposition parameters θ and φ are set by controlling the
relative amplitude and phase of the two classical pumps. The
photon-pair probability amplitudes are then overlapped at two
identical symmetric beam splitters, as shown in Fig. 3. Only
two photons are produced in this scheme by one of the NLCs,
and the overlap at the beam splitters is between the probability

062317-4



ENCODING ARBITRARY FOUR-QUBIT STATES IN THE . . . PHYSICAL REVIEW A 85, 062317 (2012)

FIG. 3. (Color online) Setup for preparing a general 2P-1D parity
state by superposing the states |�1〉 and |�2〉 from two NLCs pumped
by mutually coherent pumps.

amplitudes of the photon pair being produced by NLC1 or

NLC2. The state is produced after postselecting for the two
photons emerging from the desired ports, which occurs 25%
of the time. Using this arrangement, an arbitrary two-qubit
state is encoded in 2P-1D parity.

We have thus established a mapping between 2P-1D state
functions of the form

ψ(x,x ′) = ϕ(x){[α1u0(x) + α2u1(x)]δ(x − x ′)
+ [α3u0(x) + α4u1(x)]δ(x + x ′)}, (10)

and the logical two-qubit state in Eq. (9). Thus by sculpting
the spatial distributions E1(x) and E2(x) of the pumps, by
setting the values of α1, α2, α3, and α4, we prepare an arbitrary
two-qubit state. For example, to prepare the separable state
|00〉, we set the values α1 = α3 = 1√

2
and α2 = α4 = 0; i.e.,

both E1(x) and E2(x) are even functions of equal weight, and
the state function becomes

ψ(x,x ′) = 1√
2
ϕ(x){δ(x − x ′) + δ(x + x ′)}. (11)

The two photons are then in an equal superposition of being
correlated [the δ(x − x ′) term] or anticorrelated [the δ(x + x ′)
term] in position. A subtle point must be made here. Although
ψ(x,x ′) in Eq. (11) is nonseparable in the spatial x–x ′
coordinate space, it is separable in parity space since the global
symmetry of the state ensures that the two photons both have
even parity.

The parity transformations described for 1P-1D states may
be used with each photon in a 2P-1D state. Since the parity
space of each photon is closed under the operation of the
transformations described in the previous section, the 2P-1D
parity space is in turn closed under these transformations
operating on each photon. For example, parity rotations
R̂x(θ ) and projections (P̂0 and P̂1) may be placed in the
path of each photon to implement a test of Bell’s inequality
violation [24]. The parity of the pump determines the degree
of entanglement [71], or concurrence [72,73], of the 2P-1D
state. This was confirmed experimentally in Ref. [24] by
measuring the violation of the CHSH-Bell inequality [63,74]
for different Ep(x). The degree of entanglement of the state in
Eq. (8) is P =

√
1 − sin2 θ cos2 φ. When φ = π/2, the 2P-1D

state is maximally entangled (P = 1) for all θ , as confirmed
experimentally for θ = π/2 [24]. Setting φ = 0 instead, we
have P = | cos θ |; see Ref. [24] for θ = 0 and θ = π (P = 1),
and θ = π

2 (P = 0).

IV. ONE-PHOTON TWO-DIMENSIONAL
PARITY SPACE (1P-2D)

We proceed to extend the 1P-1D x-parity description to
include two transverse spatial dimensions, x and y. This
nontrivial extension allows us to encode two parity qubits
in a single photon, one in the parity of each dimension. The
two qubits may be controlled independently or, alternatively,
coupled to become correlated in a manner that is mathemati-
cally isomorphic to entangled two-photon states. Furthermore,
since the two qubits are realized on a single photon, we may
subsequently “disentangle” them.

As mentioned earlier, this symmetry between x and y is
in contrast to the asymmetry between the radial and angular
coordinates, r and θ , respectively, in a polar-coordinate system.
The angular dimension is manipulated to encode information
in OAM states while the orthogonal radial dimension is
typically ignored. In contrast, in our formulation both x and y

parity qubits are brought under control using the same optical
devices. We proceed to describe the encoding, manipulation,
and analysis of two qubits in 1P-2D states.

A. 1P-2D parity states

Consider a general 1P pure state with transverse Cartesian
coordinates x and y,

|�〉 =
∫ ∫

dxdy ψ(x,y)|1x,y〉, (12)

where
∫∫

dxdy|ψ(x,y)|2 = 1. By sculpting the state function
ψ(x,y), we may encode an arbitrary two-qubit state in the
photon. Consider first a state with separable state function
ψ(x,y) = ψ1(x)ψ2(y). Both ψ1 and ψ2 are in the form of
Eq. (1). We take this state to correspond to the logical separable
two-qubit state |�〉 = |�1〉x ⊗ |�2〉y , where the mapping from
the spatial state functions ψ1(x) and ψ2(y) to the logical-qubit
states |�1〉x and |�2〉y , respectively, is the same as that
in the 1P-1D case (see Table I). Therefore, in the special
case ψ1(x) = ϕ(x) and ψ2(y) = ϕ(y), ψ(x,y) = ϕ(x)ϕ(y) =
u00(x,y), we identify the state as |�〉 = |0〉x ⊗ |0〉y . The
state function ψ(x,y) = ϕ(x)u1(x)ϕ(y)u1(y) = u11(x,y), a
product of odd functions in x and y, corresponds to the two-
qubit state |�〉 = |1〉x ⊗ |1〉y . Similarly, the states |0〉x ⊗ |1〉y
and |1〉x ⊗ |0〉y correspond to state functions u01(x,y) =
ϕ(x)u0(x)ϕ(y)u1(y) and u10(x,y) = ϕ(x)u1(x)ϕ(y)u0(y), re-
spectively. It is understood hereafter in this section that |00〉 =
|0〉x ⊗ |0〉y , and so on. Note that |u00(x,y)| = |u01(x,y)| =
|u10(x,y)| = |u11(x,y)| = |ϕ(x)||ϕ(y)|, and the parity is en-
coded solely in the phase of each distribution. These four
states establish the x-y basis for the two-qubit 1P-2D parity
Hilbert space. The 2D spatial phase distributions of these basis
states are shown in Fig. 4(a).
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FIG. 4. (Color online) 1P-2D spatial parity qubits. (a) The phase
distribution of the basis functions u00(x,y), u01(x,y), u10(x,y), and
u11(x,y), corresponding to the states |00〉, |01〉, |10〉, and |11〉. The
phase in each quadrant is constant. There is no amplitude variation
needed in any of these basis states. (b) The complex amplitude
distribution in each quadrant necessary to produce the general state
|�〉 given in Eq. (13). The complex amplitude is constant in each
quadrant.

The most general pure state in this conception,

|�〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉, (13)

with the normalization |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1,
corresponds to the state function

ψ(x,y) = α00u00(x,y) + α01u01(x,y)

+α10u10(x,y) + α11u11(x,y). (14)

We have thus established a mapping from the space of 1P-2D
states having the spatial distribution in Eq. (14) to the space
of two-qubit states in Eq. (13). In order to prepare this four-
dimensional (six-parameter) state, we need only control the
relative amplitudes and phases of the four quadrants of the
x-y plane while maintaining constant amplitude and phase
within each quadrant, as shown in Fig. 4(b). One-qubit and
two-qubit transformations may be defined on 1P-2D parity
space. The transformations must be constructed in such a way
as to guarantee that the class of states in Eq. (14) is closed under
their operation. We proceed to show that such transformations
are implemented by modulating the amplitudes and phases of
the four quadrants of the x-y plane.

B. Transformations on 1P-2D parity space

In this section, we describe linear optical devices that
implement operations on the 1P-2D parity space. A linear
optical device in the 2D spatial representation is described
by an impulse response function h(x,y; x ′,y ′) such that
ψ ′(x,y) = ∫∫

dx ′dy ′h(x,y; x ′,y ′)ψ(x ′,y ′). We consider de-
vices where h(x,y; x ′,y ′) = t(x,y)δ(x ∓ x ′)δ(y ∓ y ′). In other
words, ψ(x,y) is modulated by the distribution t(x,y), and
is also potentially flipped in x, y, or both. For a unitary
transformation, t(x,y) = exp{iθ (x,y)}. In the 2D parity rep-

resentation, such devices are characterized by 4 × 4 matrix
operators.

A unique feature of this approach is that both one-qubit
and two-qubit rotations are implemented in a straightforward
fashion using SLMs that impart a spatially varying 2D phase
distribution exp {iθ (x,y)} with spatial phase distributions
θ (x,y) that are constant in each of the four quadrants of the
transverse plane. We described earlier how the 1P-1D parity
rotation operator R̂x(θ ) = exp {i θ

2 X̂} is implemented using an
SLM with phase distribution θ

2 u1(x) and no variation along
y. We now extend this approach to parity rotations in both x

and y and show that these operators may also be implemented
using an SLM.

We define Pauli operators on the x- and y-parity subspaces
and identify them by their subscripts: Îx , X̂x , and Ẑx on x, and
Îy , X̂y , and Ẑy on y. X̂x , for example, transforms x parity in
the usual way while not affecting the y parity. Its impulse re-
sponse function h(x,x ′; y,y ′) = u1(x)δ(x − x ′)δ(y − y ′), i.e.,
t(x,y) = u1(x), corresponds to X̂x ⊗ Îy . The implementation
of X̂x and X̂y differs only by a rotation of 90◦, which results
in an exchange of the x and y axes, leading to h(x,y; x ′,y ′) =
u1(y)δ(x − x ′)δ(y − y ′), which corresponds to Îx ⊗ X̂y .

1. One-qubit rotations

We first describe a one-qubit rotation operator that rotates
the x-parity subspace by an angle θ . This is the same operation
that we described earlier for the 1P-1D case and is imple-
mented by the phase transformation t(x,y; θ ) = exp{i θ

2 u1(x)}
in the x-y plane [Fig. 5(a)]. The state function ψ(x,y) after
this transformation becomes exp{i θ

2 u1(x)}ψ(x,y); i.e., |�〉 →
{exp(i θ

2 X̂x) ⊗ Îy}|�〉. In the {|00〉,|01〉,|10〉,|11〉} basis, the

00

00

00

00

|

(a)

(b)

FIG. 5. (Color online) (a) Phase distribution required in im-
plementations of one- and two-qubit 2D-parity rotations on a
single photon: Îx ⊗ Îy , R̂x(θ ), R̂y(θ ), and R̂xy(θ ). (b) Phase dis-
tribution required to implement the operator R̂(θo,θx,θy,θxy) =
ei

θo
2 R̂x(θx)R̂y(θy)R̂xy(θxy).
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matrix representation of this rotation operator is

R̂x(θ ) = ei θ
2 X̂x ⊗ Îy

=

⎛⎜⎜⎜⎜⎝
cos θ

2 0 i sin θ
2 0

0 cos θ
2 0 i sin θ

2

i sin θ
2 0 cos θ

2 0

0 i sin θ
2 0 cos θ

2

⎞⎟⎟⎟⎟⎠ . (15)

The symmetry between x and y allows us to define a
one-qubit rotation operator that operates on the y-parity
subspace. The phase transformation t(x,y; θ ) = exp{i θ

2 u1(y)}
that implements a phase shift θ between the two halves of the
x-y plane around the x axis, i.e., along the y axis [Fig. 5(a)],
corresponds to a rotation θ in the y-parity subspace and does
not affect the x parity; i.e., |�〉 → {Îx ⊗ exp(i θ

2 X̂y)}|�〉. The
matrix representation of this rotation operator is

R̂y(θ ) = Îx ⊗ ei θ
2 X̂y

=

⎛⎜⎜⎜⎜⎝
cos θ

2 i sin θ
2 0 0

i sin θ
2 cos θ

2 0 0

0 0 cos θ
2 i sin θ

2

0 0 i sin θ
2 cos θ

2

⎞⎟⎟⎟⎟⎠ . (16)

Since R̂x and R̂y commute, these two operators and
their products may be implemented using a single SLM.
For example, implementing the operator R̂x(θ1)R̂y(θ2) =
exp(i θ1

2 X̂x) ⊗ exp(i θ2
2 X̂y) requires that the phase on the SLM

take the form 1
2 {θ1u1(x) + θ2u1(y)}. This is achieved with an

SLM imparting the constant phases 1
2 (θ1 + θ2), 1

2 (−θ1 + θ2),
1
2 (−θ1 − θ2), and 1

2 (θ1 − θ2) to the four quadrants of the optical
field in the x-y plane (taken in counterclockwise order).

2. Two-qubit rotations

We now introduce a two-qubit “parity-entangling” operator
that operates on the joint Hilbert space of x and y parity.
This operator rotates x-y parity by an angle θ , resulting
in the coupling of parity in x-y starting from an initially
separable state. Consider the phase transformation t(x,y; θ ) =
exp{i θ

2 u1(x)u1(y)}, which is nonseparable in x and y, and
thus couples the x and y parities. This transformation may
be implemented with an SLM with constant phases θ

2 , − θ
2 ,

θ
2 , and − θ

2 in the four quadrants (taken in counterclockwise
order), as shown in Fig. 5(a). The 1P-2D state |�〉 after this
transformation is exp{i θ

2 X̂x ⊗ X̂y}|�〉, and the corresponding
two-qubit rotation operator is

R̂xy(θ ) =

⎛⎜⎜⎜⎜⎝
cos θ

2 0 0 i sin θ
2

0 cos θ
2 i sin θ

2 0

0 i sin θ
2 cos θ

2 0

i sin θ
2 0 0 cos θ

2

⎞⎟⎟⎟⎟⎠ . (17)

Starting from the separable state |�〉 = |00〉, this oper-
ator produces the entangled state R̂xy(θ )|�〉 = cos θ

2 |00〉 +
i sin θ

2 |11〉 with controllable degree of entanglement P =
| sin θ |. The two Bell states |�+〉 and |�−〉 (except for the
relative π

2 phase) are produced from |00〉 via the operators

R̂xy(π
2 ) and R̂xy(−π

2 ), respectively. Starting, instead, from the
separable state |�〉 = |01〉, R̂xy(θ ) produces the entangled
state cos θ

2 |01〉 + i sin θ
2 |10〉. The two Bell states |�+〉 and

|�−〉 are thus produced from |01〉 via the operators R̂xy(π
2 )

and R̂xy(−π
2 ), respectively. Furthermore, the inverse of R̂xy(θ )

is R̂xy(−θ ). Thus after R̂xy(θ ) entangles the separable state
|00〉, the operator R̂xy(−θ ) disentangles the resulting state and
returns it to the initial separable state.

These three operators, R̂x , R̂y , and R̂xy , all commute, and
hence products of these operators are implementable on a
single SLM.

3. General two-qubit rotations

Finally, consider the general phase transformation shown
in Fig. 5(b) with constant phases θ1, θ2, θ3, and θ4 in the
four quadrants. The corresponding operator may be cast as a
product of four simpler commuting operators: R̂x(θx), R̂y(θy),
R̂xy(θxy), and an overall phase exp (i θo

2 )Îx ⊗ Îy :

R̂(θo,θx,θy,θxy) = ei θo
2 R̂x(θx)R̂y(θy)R̂xy(θxy). (18)

The 1P-2D parity rotation angles θo, θx , θy , and θxy are related
to the quadrant phases θ1, θ2, θ3, and θ4 as follows:

2θ1 = θo + θx + θy + θxy,

2θ2 = θo − θx + θy − θxy,
(19)

2θ3 = θo − θx − θy + θxy,

2θ4 = θo + θx − θy − θxy.

For example, starting from |�〉 = |00〉 we can prepare |�+〉
using R̂x(π )R̂xy(−π

2 ); θ1 = π
4 , θ2 = −π

4 , θ3 = − 3π
4 , and

θ4 = 3π
4 .

4. One- and two-qubit Ẑ operators

We define two Pauli Ẑ operators, Ẑx and Ẑy , which operate
on the x- and y-parity subspaces, respectively [see Figs. 6(a)
and 6(b)]. The operator Ẑx flips the state function along x

without affecting y [Fig. 6(a)], ψ(x,y) → ψ(−x,y), corre-
sponding to |�〉 → (Ẑx ⊗ Îy)|�〉. The operator Ẑy flips the
state function along y, ψ(x,y) = ψ(x, − y), corresponding
to |�〉 → (Îx ⊗ Ẑy)|�〉. The two operators may be com-
bined, resulting in a reflection through the origin, ψ(x,y) →
ψ(−x, − y), corresponding to |�〉 → (Ẑx ⊗ Ẑy)|�〉. The
matrix representations of these operators are⎛⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Ẑx⊗Îy

,

⎛⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 −1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Îx⊗Ẑy

,

(20)⎛⎜⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

⎞⎟⎟⎟⎠
︸ ︷︷ ︸

Ẑx⊗Ẑy

.
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FIG. 6. (Color online) Representation of Pauli (a) Ẑx and (b) Ẑy

operators depicted as Dove prisms oriented to perform spatial flips
in x and y, respectively. (c)–(f) Representations of modified MZIs
that correspond to the projection operators (c) Îx ⊗ Îy , (d) Ẑx ⊗ Îy ,
(e) Îx ⊗ Ẑy , and (f) Ẑx ⊗ Ẑy . The second output port of the MZIs
corresponds to the orthogonal projections.

Since the operators X̂x and Ẑx (X̂y and Ẑy) do not commute,
the order in which rotations and spatial flips are implemented
is important. We emphasize the simplicity of implementing
this scheme with linear optics. Using products of rotations X̂

and Ẑ, implemented with cascaded phase plates and spatial
flips (implemented by mirrors or Dove prisms), respectively,
two-qubit unitary operators on 1P-2D parity space are realized.

C. Projections on 1P-2D parity state space

We describe here the implementation of two-qubit projec-
tions on the 1P-2D parity space. The goal is to construct an
arrangement that yields the weights |α00|2, |α01|2, |α10|2, and
|α11|2 of the two-photon state in Eq. (13). We use a modified
balanced MZI similar to that used in the 1P-1D parity case
[Fig. 1(d)], with each of the following elements placed in one
arm: (1) a spatial flip along x, Ẑx ⊗ Îy ; (2) a spatial flip along
y, Îx ⊗ Ẑy ; and (3) a spatial flip along both x and y, ẐxẐy

[see Figs. 6(d) and 6(f)].
These three projections correspond to the operators

�̂x = |00〉〈00| + |01〉〈01|,
�̂y = |00〉〈00| + |10〉〈10|, (21)

�̂xy = |00〉〈00| + |11〉〈11|.
The other output port of the MZI provides the complementary
projections {Î − �̂t }|�〉, t = x, y, and xy. �̂x and Î − �̂x

project the state according to the x parity, i.e., the photon
emerges from one port if it is even along x and from the other
if it is odd, regardless of the parity along y [Fig. 6(d)]; �̂y and
Î − �̂y project the state according to the y parity, regardless
of x parity [Fig. 6(e)]; and �̂xy and Î − �̂xy project the
state into equal-xy-parity and opposite-xy-parity subspaces
[Fig. 6(f)]—the photon emerges from one port if it is even or
odd in both x and y, and emerges from the other port if the x

parity is different from the y parity. The detection probabilities

at the outputs of Î [Fig. 6(c)], �̂x , �̂y , and �̂xy , are Mo, Mx ,
My , and Mxy , respectively, where

Mo = |α00|2 + |α01|2 + |α10|2 + |α11|2,
Mx = |α00|2 + |α01|2,

(22)
My = |α00|2 + |α10|2,

Mxy = |α00|2 + |α11|2.
The lengths of the projections of the 1P-2D state along the
basis vectors in the computational basis are

2|α00|2 = −Mo + Mx + My + Mxy,

2|α01|2 = Mo + Mx − My − Mxy,
(23)

2|α10|2 = Mo − Mx + My − Mxy,

2|α11|2 = Mo − Mx − My + Mxy.

We have thus outlined the ingredients for QIP using the
two-qubit state encoded in 1P-2D parity and proceed to extend
this approach to 2P states.

D. Comparison between 1P-2D and 2P-1D
two-qubit parity states

Both the 2P-1D and 1P-2D parity states encode two qubits.
Nevertheless, there is a fundamental distinction between them.
In the 2P-1D case, each qubit is realized on a single photon and
may thus also be measured independently of the other. On the
other hand, in the 1P-2D case, both qubits are encoded in the
same photon and thus must be measured together. Moreover,
the two qubits in the 1P-2D case may be easily entangled or
disentangled; in other words, they may be made to “interact”
using transformations that couple x and y parity. This is not
straightforward in the 2P-1D case without bringing the two
photons together. In the absence of photon-photon interactions,
it is difficult to implement deterministic transformations on
two qubits encoded on two photons, but it is feasible when
they are encoded on one photon.

V. TWO-PHOTON TWO-DIMENSIONAL
PARITY SPACE (2P-2D)

We now consider the general case of an entangled photon
pair with both the x and y spatial dimensions retained, namely,
2P-2D parity states. Since each photon in the pair encodes
two logical qubits in the x and y parity, the 2P-2D state
encodes four qubits. The general 2P-2D pure state in the spatial
representation is

|�〉 =
∫ ∫

dxdx ′ dydy ′ ψ(x,y; x ′,y ′)|1x,y,1x ′,y ′ 〉, (24)

where (x,y) and (x ′,y ′) are the transverse Cartesian coordi-
nates of each photon, and

∫∫
dxdx ′ dydy ′|ψ(x,y; x ′,y ′)|2 =

1. The two-photon state produced by SPDC, within the ap-
proximations outlined in the Appendix, has the state function

ψ(x,y; x ′,y ′) ≈ Ep(x,y)δ(x − x ′)δ(y − y ′), (25)

where Ep(x,y) is the 2D spatial profile of the classical optical
pump. The state function indicates that the two photons
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are produced at the same point in the x-y plane, limited
by the spatial extent and profile of the pump. We proceed
to describe a mapping from the 2P-2D state to a logical
four-qubit space and indicate how sculpting the classical
pump profile enables spanning this 16-dimensional space.

A. Mapping the SPDC 2P-2D parity state to a four-qubit space

Consider first a pump spatial profile that is separable in x

and y, Ep(x,y) = Ex(x)Ey(y). The 2P-2D state function in
Eq. (25) may then be factorized in (x,x ′) and (y,y ′):

ψ(x,y; x ′,y ′) = ψ1(x,x ′)ψ2(y,y ′)
= E1(x)δ(x − x ′)E2(y)δ(y − y ′). (26)

Both terms in x and y, Ex(x)δ(x − x ′) and Ey(y)δ(y − y ′),
respectively, correspond to the state functions for 2P-1D parity
states that encode two qubits. The 2P-2D parity state produced
by a separable pump thus separates into a product of two
two-qubit states, |�〉 = |〉x ⊗ |�〉y . The mapping between
the two-qubit state |〉x and the parity of the classical pump
profile Ex(x) was presented above. A similar mapping holds
between |�〉y and Ey(y).

It is important to note that the states |〉x and |�〉y do
not correspond to photon 1 and 2. Each of these states
instead spans both photons 1 and 2 and relates to their x

and y spatial distribution. Both |〉x and |�〉y correspond to
two-qubit entangled states. In other words, when the pump
spatial profile is separable in x and y, the two photons are
entangled in x parity and in y parity separately. We designate
this state as doubly entangled. Such a state corresponds to the
hyperentangled states produced when different physical DOFs
are under consideration and each DOF encodes an entangled
logical state. The distinction here is that both two-qubit states
are encoded in the spatial DOF.

For example, if Ex(x) = ϕ(x) and Ey(y) = ϕ(y), then
|〉x = |�+〉x and |�〉y = |�+〉y ; i.e., both photons are
correlated in the x and y parity, and the 2P-2D state is

|�〉 = |�+〉x ⊗ |�+〉y = |�+,�+〉
= 1√

2
{|00〉 + |11〉}x ⊗ 1√

2
{|00〉 + |11〉}y

= 1

2
{|0000〉 + |0011〉 + |1100〉 + |1111〉}. (27)

We identify the logical basis states according to the rule
|0000〉 = |0〉(1)

x ⊗ |0〉(2)
x ′ ⊗ |0〉(1)

y ⊗ |0〉(2)
y ′ . The superscripts re-

fer to photon 1 and photon 2 of the pair, and the subscripts

refer to the x and y coordinates of each photon. We have thus
associated the 2P-2D state function ϕ(x)ϕ(y)δ(x − x ′)δ(y −
y ′) with the four-qubit state |�+,�+〉.

By varying the parity of the pump in x and y, we may
prepare other Bell-state products. For example, if the separable
pump has even x parity and odd y parity, i.e., Ex(x) = ϕ(x)
and Ey(y) = ϕ(y)u1(y), then the resulting 2P-2D parity state is
|�+〉x ⊗ |�+〉y = |�+,�+〉. We have thus associated the state
function ϕ(x)ϕ(y)u1(y)δ(x − x ′)δ(y − y ′) with the four-qubit
state |�+,�+〉. Similarly, the state |�+,�+〉 (|�+,�+〉) is
prepared with a separable pump having odd (odd) x parity and
even (odd) y parity (see Table II).

Using the same sequence of separable pump spatial dis-
tributions in x and y (even-even, even-odd, odd-even, and
odd-odd), all possible products of the four Bell states in x

and y parity may be prepared by manipulating the parity of
one of the photons in the pair. For example, placing Ẑx in the
path of one of the photons, we prepare |�−,�+〉, |�−,�+〉,
|�−,�+〉, and |�−,�+〉. Placing instead Ẑy in the path of
that photon, we prepare |�+,�−〉, |�+,�−〉, |�+,�−〉, and
|�+,�−〉. Finally, placing both Ẑx and Ẑy in the path of
that photon, we prepare |�−,�−〉, |�−,�−〉, |�−,�−〉, and
|�−,�−〉; see Table II for details.

A new situation arises when the pump is not separable in x

and y, i.e., when the pump x and y parity are coupled. In this
case, it can be shown that the x- and y-parity logical qubit pairs
in turn are no longer separable, and we say that the four-qubit
state is “cross-entangled”: the two DOFs are entangled with
each other in the joint Hilbert space.

A general four-qubit state takes the form

|�〉 =
n=1:4∑
jn=0,1

αj1j2j3j4 |j1,j2,j3,j4〉, (28)

represented in the logical (computational) basis. This state
inhabits a 16-dimensional Hilbert space and requires 30 real
parameters, within an overall phase and normalization, for the
full specification of the complex coefficients {αj1j2j3j4}. The
16 products of x- and y-parity Bell states in Table II form
an alternative basis for this four-qubit space. In this basis, a
general four-qubit state is

|�〉 =
16∑

j=1

αj |�j 〉, (29)

where |�j 〉 are the Bell-state products. In the spatial represen-
tation, the state function of this 2P-2D state is

ψ(x,y) = [{α1u00(x,y) + α2u01(x,y) + α3u10(x,y) + α4u11(x,y)}δ(x − x ′)δ(y − y ′)
+{α5u00(x,y) + α6u01(x,y) + α7u10(x,y) + α8u11(x,y)}δ(x − x ′)δ(y + y ′)
+{α9u00(x,y) + α10u01(x,y) + α11u10(x,y) + α12u11(x,y)}δ(x + x ′)δ(y − y ′)
+{α13u00(x,y) + α14u01(x,y) + α15u10(x,y) + α16u11(x,y)}δ(x + x ′)δ(y + y ′)]. (30)

We have thus established a mapping from this family of 2P-2D
parity states and the four-qubit states in Eq. (29), and thereby
the four-qubit state in Eq. (28).

In order to generate an arbitrary four-qubit pure state
[Eq. (28)], four NLCs are required, as shown in Fig. 7, which
extends the two-qubit arrangement in Fig. 3 to four qubits.
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TABLE II. Preparing 2P-2D parity states using a separable pump. u00(x,y) = ϕ(x)ϕ(y), u01(x,y) = u00(x,y)u1(y), u10(x,y) =
u00(x,y)u1(x), and u11(x,y) = u00(x,y)u1(x)u1(y). The unitary operators Ûx and Ûy are placed in the path of the first photon only. The
16 resulting states are all products of Bell states in x and y parity. The spatial representation of the 2P-2D state is Ep(x,y)δ(x − x ′)δ(y − y ′).

Pump Ep(x,y) Ûx ⊗ Ûy 2P-2D parity state Implementation

u00(x,y)
u01(x,y)
u10(x,y)
u11(x,y)

Îx ⊗ Îy

Îx ⊗ Îy

Îx ⊗ Îy

Îx ⊗ Îy

(|00〉 + |11〉) ⊗ (|00〉 + |11〉) = |�+,�+〉
(|00〉 + |11〉) ⊗ (|01〉 + |10〉) = |�+,�+〉
(|01〉 + |10〉) ⊗ (|00〉 + |11〉) = |�+,�+〉
(|01〉 + |10〉) ⊗ (|01〉 + |10〉) = |�+,�+〉

u00(x,y)
u01(x,y)
u10(x,y)
u11(x,y)

Ẑx ⊗ Îy

Ẑx ⊗ Îy

Ẑx ⊗ Îy

Ẑx ⊗ Îy

(|00〉 − |11〉) ⊗ (|00〉 + |11〉) = |�−,�+〉
(|00〉 − |11〉) ⊗ (|01〉 + |10〉) = |�−,�+〉
(|01〉 − |10〉) ⊗ (|00〉 + |11〉) = |�−,�+〉
(|01〉 − |10〉) ⊗ (|01〉 + |10〉) = |�−,�+〉

u00(x,y)

u01(x,y)

u10(x,y)

u11(x,y)

Îx ⊗ Ẑy

Îx ⊗ Ẑy

Îx ⊗ Ẑy

Îx ⊗ Ẑy

(|00〉 + |11〉) ⊗ (|00〉 − |11〉) = |�+,�−〉
(|00〉 + |11〉) ⊗ (|01〉 − |10〉) = |�+,�−〉
(|01〉 + |10〉) ⊗ (|00〉 − |11〉) = |�+,�−〉
(|01〉 + |10〉) ⊗ (|01〉 − |10〉) = |�+,�−〉

u00(x,y)

u01(x,y)

u10(x,y)

u11(x,y)

Ẑx ⊗ Ẑy

Ẑx ⊗ Ẑy

Ẑx ⊗ Ẑy

Ẑx ⊗ Ẑy

(|00〉 − |11〉) ⊗ (|00〉 − |11〉) = |�−,�−〉
(|00〉 − |11〉) ⊗ (|01〉 − |10〉) = |�−,�−〉
(|01〉 − |10〉) ⊗ (|00〉 − |11〉) = |�−,�−〉
(|01〉 − |10〉) ⊗ (|01〉 − |10〉) = |�−,�−〉

Each NLC has a pump with 2D spatial profile Ej (x,y), j =
1,2,3,4, which requires six real parameters for the complete
specification of its 2D parity: the three relative amplitudes and
the three relative phases between the four quadrants of the x-y
plane (see Fig. 3). The four pump spatial profiles thus provide
24 real parameters of the four-qubit state. The remaining six

NLC1

|

|

|

|

NLC2

NLC3

NLC4

|

|

|

FIG. 7. (Color online) Schematic of a configuration for generat-
ing an arbitrary four-qubit state with 30 independent real parameters
encoded in the spatial distributions of the classical pumps Ej (x,y),
j = 1,2,3,4 and their relative complex amplitudes. The black
horizontal line segments each represent a symmetric nonpolarizing
beam splitter.

parameters derive from the three relative complex weights
of the four pumps after fixing the amplitude and phase of
one of them, which in turn determines the relative complex
weights of the states produced by the four NLCs. Thus, by
sculpting the amplitude and phase of the classical optical
pump profile, we can encode a four-qubit parity state. Most
four-qubit states require less complex optical arrangements for
their preparation, compared to the arrangement in Fig. 7 that
produces an arbitrary four-qubit state with no prior knowledge
of the particular state required.

The question of classification of N -qubit states has attracted
considerable attention. There is only one class of two-qubit
entangled states and two distinct classes of three-qubit-state
entanglement: GHZ states, |GHZ3〉 = 1√

2
{|000〉 + |111〉}, and

W states, |W3〉 = 1√
3
{|001〉 + |010〉 + |100〉} [75]. The N = 4

case (four-qubit states) is considerably more complex and
some controversy over the proper classification of distinct
entanglement classes remains. Two early studies indicated that
nine [76] or eight [77] distinct classes of entangled four-qubit
states exist. A recent study [78] utilizing tools from string-
theory treatment of black holes has identified nine classes of
four-qubit entangled states modulo qubit permutations. Using
the above-described approach for generating an arbitrary four-
qubit 2P-2D parity state, all these families may be generated
and studied. We describe the preparation of two particular
classes of four-qubit states: GHZ and W states.

B. Four-qubit GHZ states

Although GHZ states are fundamental tools both in tests
of the foundations of quantum mechanics and in applications
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of quantum information processing, preparation of photonic
GHZ states has heretofore proven challenging. The first
experimental demonstration of a three-photon GHZ state
made use of a four-photon state with one photon heralding
the preparation of the GHZ state. No demonstration of a
two-photon GHZ photonic state has been forthcoming.

Since the four-NLC configuration in Fig. 7 produces an
arbitrary four-qubit state, appropriate settings of the experi-
mental parameters will yield the four-qubit GHZ state,

|GHZ4〉 = 1√
2
{|0000〉 + |1111〉}. (31)

This state may be prepared using the simpler arrangement in
Fig. 8(a) that requires two NLCs having the same pump (with
equal amplitude and no relative phase) that is separable and
has even parity in x and y, E1(x,y) = E2(x,y) = ϕ(x)ϕ(y) =
u00(x,y). Both NLCs produce the 2P-2D parity state |�+,�+〉.
One photon from NLC2 passes spatial flips in x and y,
Ẑx and Ẑy , resulting in the state (Ẑ(1)

x ⊗ I(2)
x ) ⊗ (Ẑ(1)

y ⊗
I(2)
y )|�+,�+〉 = |�−,�−〉, where the superscripts refer to the

two photons produced by NLC2. Superposing the probability
amplitudes from the two NLCs results in the 2P-2D state

|�〉 = 1√
2
{|�+,�+〉 + |�−,�−〉} = |GHZ4〉. (32)

The arrangement may be further simplified to make use of
a single NLC, as shown in Fig. 8(b). In this case, photon 1 is
split into two paths, one of which contains operators Ẑx and
Ẑy , before being combined to result in |GHZ4〉.

The spatial distribution of the two entangled photons is
given by the 2P state function,

ψ(x,y; x ′,y ′) = u00(x,y)

×{δ(x − x ′)δ(y − y ′) + δ(x + x ′)δ(y + y ′)};
(33)

|

|

NLC1

NLC2

|

NLC

|

(b)

(a)

FIG. 8. (Color online) Schematic arrangements for generating the
four-qubit 2P-2D GHZ state, |GHZ4〉 = 1√

2
{|0000〉 + |1111〉}, using

(a) two NLCs or (b) a single NLC.

i.e., the pair is in an equal superposition of being detected
at correlated positions or at anti-correlated positions in the
planes (x,y) and (x ′,y ′). While both spatially correlated and
anticorrelated two-photon states have been previously studied
[79,80], the superposition of these two states has not, and
thus the recognition that such a superposition constitutes a
four-qubit GHZ parity state was not hitherto made.

C. Four-qubit W states

Another important entangled four-qubit state is the so-
called W state. Its importance in QIP derives from the
robustness of its entanglement under losses. The four-qubit
W state is

|W4〉 = 1
2 {|0001〉 + |0010〉 + |0100〉 + |1000〉}. (34)

This state may be prepared using the arrangement shown
in Fig. 9(a). NLC1 has a pump distribution ϕ(x)ϕ(y)u1(y),
which is even in x and odd in y and produces the state
|�+,�+〉. The arrangement in Fig. 9(a) then produces the
superposition |�1〉 = 1√

2
{|�+,�+〉 + |�−,�+〉}. NLC2 has

a pump distribution ϕ(x)ϕ(y)u1(x), which is odd in x and
even in y and produces the state |�+,�+〉. The arrange-
ment in Fig. 9(a) then produces the superposition |�2〉 =

1√
2
{|�+,�+〉 + |�+,�−〉}. By superposing |�1〉 and |�2〉 we

obtain

|W4〉 = 1√
2

{|�1〉 + |�2〉} = 1

2
{|�+,�+〉 + |�−,�+〉

+ |�+,�+〉 + |�+,�−〉}. (35)

In the spatial representation, the state function for the 2P-2D
W state is

ψ(x,y; x ′,y ′) = u01(x,y)δ(y − y ′){δ(x − x ′) + δ(x + x ′)}
+ u10(x,y)δ(x − x ′){δ(y − y ′) + δ(y + y ′)};

(36)

u01(x,y) = ϕ(x)ϕ(y)u1(y) and u10(x,y) = ϕ(x)ϕ(y)u1(x).
In contrast to the one-photon realization of |W4〉 in

Ref. [81], where the qubits are encoded in multiple paths of the
photon, our realization here encodes the qubits in the spatial
profile of the field (specifically, in the spatial distribution of
the phase).

NLC1

NLC2

|

|

|

FIG. 9. (Color online) Schematic arrangement for generating the
four-qubit 2P-2D W state, |W4〉 = 1

2 {|0001〉 + |0010〉 + |0100〉 +
|1000〉} using two NLCs.
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VI. DISCUSSION AND CONCLUSION

We have presented an approach for encoding logical qubits
in the spatial parity of one-photon and two-photon states. One
qubit is encoded per transverse spatial dimension of the photon.
Two qubits are thus encoded in the x and y parity, manipulated
separately or jointly using simple linear optical devices, and
projected using a modified MZI. Using entangled-photon pairs
produced by SPDC, we have theoretically demonstrated that
sculpting the classical optical pump together with simple
manipulations of the SPDC photons enables the encoding of
four entangled spatial parity qubits, two in each photon. We
have also described the preparation of an arbitrary four-qubit
state, one that inhabits a 16-dimensional Hilbert space and
requires 30 independent real parameters for its complete
specification. The generation of four-qubit GHZ and W states
was described in detail.

A further increase in the size of the Hilbert space may
be achieved in two different ways. First, a high-intensity
ultrafast pump may be used to produce higher-photon-number
states and thereby encode a larger number of qubits than
studied in this paper. For example, a four-photon state
enables the encoding of eight spatial parity qubits. Second,
the information-carrying capacity of each photon may be
increased by including other DOFs. We have focused solely
here on the spatial DOF and overlooked other DOFs, such
as polarization and the temporal-spectral DOF. Including
polarization alongside 2D parity, for example, enables us
to encode three qubits per photon. We will investigate the
coupling between polarization and spatial parity elsewhere.

APPENDIX: QUANTUM STATE PRODUCED BY SPDC

The quantum state representing the two-photon field
produced by SPDC from an NLC of thickness � is |�〉 =∫∫

dqsdqiψ̃(qs,qi)|1qs
,1qi

〉 [14]. Here

ψ̃(qs,qi) = Ẽp

(
qx

s + qx
i ,qy

s + qy
i

)
χ̃ (qs,qi), (A1)

where qt = (qx
t ,q

y
t ), and kt = 2π/λt, t = p,s,i, are the trans-

verse momentum vectors and total momenta of the pump,
signal, and idler photons, respectively, and λt is the wavelength
inside the NLC. The state function ψ̃(qs,qi) is the 4D Fourier
transform of ψ(r,r′), where r = (x,y) and r′ = (x ′,y ′) are the
2D vector positions of the signal and idler photons,

ψ(r,r′) =
∫ ∫

dqsdqi e
i{qs·r+qs·r′}ψ̃(qs,qi). (A2)

Here ψ(r,r′) represents the correlation in positions of
the signal and idler photons, while ψ̃(qs,qi) represents the
correlation in their transverse momenta. Ẽp(qx

p ,q
y
p ) is the

2D Fourier transform of the pump spatial profile Ep(x,y) at
the NLC. Finally, the phase-matching function χ̃ depends
on the axial wave-number mismatch �kz = kz

p − kz
s − kz

i :
χ̃(qs,qi) ∝ exp(i��kz/2) sinc(��kz/2π); here

kz
p =

√
k2

p − (
qx

s + qx
i

)2 − (
q

y
s + q

y
i
)2

,

kz
j =

√
k2

j − (
qx

j

)2 − (
q

y

j

)2
, j = s,i.

For type-I collinear degenerate phase-matched
SPDC, the paraxial approximation leads to �kz ≈
[(qx

s − qx
i )2 + (qy

s − q
y
i )2]/2kp. We further assume that

narrow spectral filters are placed in the path of the signal
and idler photons. These simplifications have been found
to provide an adequate description of a wide range of
quantum-imaging experiments that utilize photon pairs
generated by SPDC.

The phase-matching function χ̃ (qs ,qi) may be separated,
within a very good approximation (Appendix I in Ref. [23]),
to yield

χ̃ (qs ,qi) = χ̃
(
qx

s − qx
i ,qy

s − q
y

i

)
≈ χ̃1

(
qx

s − qx
i

)
χ̃1

(
qy

s − q
y

i

)
, (A3)

where χ̃1(q) = exp(iπ�q2/2λp) sinc(�q2/2λp). This separa-
bility is independent of the pump spatial profile and is a
consequence solely of phase matching in the NLC. If the pump
spatial profile is separable in x and y, Ep(x,y) = Ex(x)Ey(y),
then its 2D Fourier transform Ẽp(qx

p ,q
y
p ) is separable in qx

p and
q

y
p , so that Ẽp(qx

p ,q
y
p ) = Ẽx(qx

p )Ẽy(qy
p ), and the state function

in turn is separable in x and y:

ψ(r,r′) = ψx(x,x ′)ψy(y,y ′)

= Ex

(
x + x ′

2

)
χ1

(
x − x ′

2

)
Ey

(
y + y ′

2

)
χ1

(
y − y ′

2

)
;

(A4)

where χ1(x) is the FT of χ̃1(q).
If the experimental arrangement does not couple the x and

y coordinates and the detectors integrate over y, then we may
trace over the y dependence and focus on the 2P-1D state:

|�〉 =
∫ ∫

dqx
s dqx

i Ẽx

(
qx

s + qx
i

)
χ̃1

(
qx

s − qx
i

) ∣∣1qx
s
,1qx

i

〉
=

∫ ∫
dx dx ′ Ex

(
x + x ′

2

)
χ1

(
x − x ′

2

)
|1x,1x ′ 〉. (A5)

The width of the function χ1 is on the order of
√

�λp/8 which
is typically � W , where W is the spatial width of Ex(x). The
idealized 2P-1D state in Eq. (6) is arrived at by taking � → 0,
so that ψ(x,x ′) → Ex(x)δ(x − x ′).

If we retain the y dependence and the pump profile is not
separable in x and y, then the state function is

ψ(r,r′) = ψ(x,x ′; y,y ′)

= E

(
x + x ′

2
,
y + y ′

2

)
χ1

(
x − x ′

2

)
χ1

(
y − y ′

2

)
.

(A6)

The separability of the state function thus depends on the pump
alone and not the phase matching. The idealized 2P-2D state
function in Eq. (25) is arrived at by taking � → 0, whereupon
ψ(x,x ′; y,y ′) → E(x,y)δ(x − x ′)δ(y − y ′).
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[16] T. Vértesi, S. Pironio, and N. Brunner, Phys. Rev. Lett. 104,

060401 (2010).
[17] W.-B. Gao, C.-Y. Lu, X.-C. Yao, P. Xu, O. Gühne, A. Goebel,

Y.-A. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, Nat. Phys.
6, 331 (2010).

[18] C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S.
Yuan, A. Goebel, T. Yang, and J.-W. Pan, Nat. Phys. 3, 91
(2007).

[19] Y.-F. Huang, B.-H. Liu, L. Peng, Y.-H. Li, L. Li, C.-F. Li, and
G.-C. Guo, Nature Commun. 2, 546 (2011).

[20] C. K. Law and J. H. Eberly, Phys. Rev. Lett. 92, 127903 (2004).
[21] S. L. Braunstein and P. van Loock, Rev. Mod. Phys. 77, 513

(2005).
[22] V. Giovannetti, S. Lloyd, and L. Maccone, Nature Photon. 5,

222 (2011).
[23] A. F. Abouraddy, T. Yarnall, B. E. A. Saleh, and M. C. Teich,

Phys. Rev. A 75, 052114 (2007).
[24] T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich,

Phys. Rev. Lett. 99, 170408 (2007).
[25] T. Yarnall, A. F. Abouraddy, B. E. A. Saleh, and M. C. Teich,

Phys. Rev. Lett. 99, 250502 (2007).
[26] J. G. Rarity and P. R. Tapster, Phys. Rev. Lett. 64, 2495 (1990).
[27] M. Fiorentino and F. N. C. Wong, Phys. Rev. Lett. 93, 070502

(2004).
[28] M. Fiorentino, T. Kim, and F. N. C. Wong, Phys. Rev. A 72,

012318 (2005).
[29] L. Neves, G. Lima, J. G. Aguirre Gómez, C. H. Monken,
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