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We set forth a polarization-sensitive quantum-optical coherence tomography(PS-QOCT) technique that
provides axial optical sectioning with polarization-sensitive capabilities. The technique provides a means for
determining information about the optical path length between isotropic reflecting surfaces, the relative mag-
nitude of the reflectance from each interface, the birefringence of the interstitial material, and the orientation of
the optical axis of the sample. PS-QOCT is immune to sample dispersion and therefore permits measurements
to be made at depths greater than those accessible via ordinary optical coherence tomography. We also provide
a general Jones matrix theory for analyzing PS-QOCT systems and outline an experimental procedure for
carrying out such measurements.
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I. INTRODUCTION

Optical coherence tomography(OCT) has become a well-
established imaging technique[1–4] with applications in
ophthalmology[5], intravascular measurements[6,7], and
dermatology[8]. It is a form of range finding that makes use
of the second-order coherence properties of a classical opti-
cal source to effectively section a reflective sample with a
resolution governed by the coherence length of the source.
OCT therefore makes use of sources of short coherence
length (and consequently broad spectrum), such as superlu-
minescent diodes(SLDs) and ultrashort-pulsed lasers. As
broad bandwidth sources are developed to improve the reso-
lution of OCT techniques, material dispersion has become
more pronounced. The deleterious effects of dispersion
broadening limits the achievable resolution as has been re-
cently emphasized[9].

To further improve the sensitivity of OCT, techniques for
handling dispersion must be implemented. In the particular
case of ophthalmologic imaging, one of the most important
applications of OCT, the retinal structure is located behind a
comparatively large body of dispersive ocular media[10].
Dispersion increases the width of the coherence envelope of
the probe beam and results in a reduction in axial resolution
and fringe visibility [11]. Current techniques for depth-
dependent dispersion compensation include the use of
dispersion-compensating elements in the optical setup
[10,12] or employa posteriori numerical methods[13,14].
For these techniques to work, however, the object dispersion
must be known and well characterized so that the appropriate
optical element or numerical algorithm can be implemented.

Over the past several decades, a number of nonclassical
(quantum) sources of light have been developed[15,16] and
it is natural to inquire whether making use of any of these
sources might be advantageous for tomographic imaging. An
example of such a nonclassical source is spontaneous para-
metric down-conversion(SPDC) [17–22], a nonlinear pro-
cess that produces entangled beams of light. This source,
which is broadband, has been utilized to demonstrate a num-
ber of interference effects that cannot be observed using tra-
ditional classical sources of light. We make use of this
unique feature in quantum-optical coherence tomography
(QOCT) [23], where fourth-order interference is used to pro-
vide range measurements analogous to those currently ob-
tained using classical OCT, but with the added advantage of
even-order dispersion cancellation[24–26]. We have re-
cently demonstrated the dispersion immunity of these tomog-
raphic measurements in comparison to standard optical co-
herence tomography techniques[27].

In this paper, we present a method for polarization-
sensitive QOCT(PS-QOCT) measurements, where one can
detect a change in the polarization state of light reflected
from a layered sample[28]. This state change arises from
scattering and birefringence in the sample and is enhanced in
specimens that have an organized linear structure. Tissue that
contains a high content of collagen or other elastin fibers,
such as tendons, muscle, nerve, or cartilage, are particularly
suited to polarization-sensitive measurements[29]. A varia-
tion in birefringence can be indicative of a change in func-
tionality, integrity, or viability of biological tissue.

II. GENERAL MATRIX THEORY FOR PS-QOCT

We present the theory for PS-QOCT according to the sim-
plified diagram for an experimental setup given in Fig. 1.
Using a Jones-matrix formalism similar to that in Ref.[30],
we start by defining a twin-photon Jones vectorJin
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Jin = F âssvdes

âisv8dei
G , s1d

whereâssvd andâisv8d are the annihilation operators for the
signal-frequency modev and the idler-frequency modev8,
respectively. The vectorial polarization information for the
signal and idler field modes are contained inej s j =s, id. For
example, if we utilize collinear type-II SPDC from a second-
order nonlinear crystalsNLCd to generate a pair of orthogo-
nally polarized photons,ej reduce to the familiar Jones vec-
tors

es = F1

0
G sverticald

ei = F0

1
G shorizontald

for signal and idler, respectively.
The twin photons collinearly impinge on the input port of

a polarizing beam splitter(PBS) from which the signal pho-
ton is reflected into the sample arm and the idler photon is
transmitted into the reference arm. We assume that the po-
larization in each arm is independent of that in the other arm
until the final beam splitter. We also assume that all optical
elements within the interferometer are linear and determinis-
tic.

The delay accumulated by the signal and idler beams in
each path is represented by the 232 matrix

D = Fd1svd 0

0 d2sv8d
G , s3d

where d1svd and d2sv8d represent the Jones matrices that
describe the delay for the sample and reference arms, respec-
tively. The polarization state in each arm is represented by
the matrix

U = FU1svd 0

0 U2sv8d
G . s4d

In the experimental realization of PS-QOCT, the matrix
U1svd represents the properties of the sampleplus any other
polarization elements in the sample arm, whereasU2sv8d
represents the user-selected polarization state in the reference
arm.

The mixing of the polarizations from each path, which
occurs at the final beam splitter, is represented by the trans-
formation matrix

TBS = FT31 T32

T41 T42
G , s5d

where each elementTkl sk=3,4 andl =1,2d is a 232 matrix
that represents the mixing of independent polarization modes
from the input paths 1 and 2 prior to detection in paths 3 and
4. For example,T31 is the Jones matrix that represents the
transformation of input spatial mode 1 into output spatial
mode 3.

The Jones vectorJout that describes the field operators at
the output of the final beam splitter, can be computed from
the product of the previously defined matrices in Eqs.(3)–(5)
as

Jout = TBS U D Jin = FT31U1d1 T32U2d2

T41U1d1 T42U2d2
G Jin. s6d

From this equation, the fields in paths 3 and 4 arriving at
each of the two detectors can be written in the time domain
as

Ê3
s+dst3d =E dv e−ivt3 âssvde3s +E dv8 e−iv8t3 âisv8de3i ,

s7d

Ê4
s+dst4d =E dv e−ivt4 âssvde4s +E dv8 e−iv8t4 âisv8de4i ,

s8d

where

e3s = T31 U1 d1 es, e3i = T32 U2 d2 ei ,

e4s = T41 U1 d1 es, e4i = T42 U2 d2 ei ,

describe each of the transformations of the signal and idler
polarizations that contribute to the final fields in 3 and 4 at
the detectors.

FIG. 1. Conceptual diagram of polarization-sensitive quantum-
optical coherence tomography(PS-QOCT). The system is based on
a Mach-Zehnder interferometer in which twin photons from SPDC,
represented by the vectorJin, are separated into two arms at a po-
larizing beam splitter(PBS). The signal photon at angular fre-
quencyv travels in the sample arm and experiences a path delayd1

as well as an arbitrary polarization rotation described byU1. The
reference arm contains the idler photon at angular frequencyv8
which experiences a path delayd2 and a user-selected polarization
rotation U2. Paths 1 and 2 impinge on a final beam splitter(BS)
which mixes the spatial/polarization modes into paths 3 and 4.Jout

represents the final twin-photon Jones vector from which the fields
at the detectors and the final coincidence rate are computed.
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From the field at each of the detectors, the two-photon
amplitude can be written as

Ajkst3,t4d = k0uÊ3j
s+dst3dÊ4k

s+dst4duCl, s10d

where j and k represent two orthogonal polarization bases
such as horizontal/verticalsH/Vd, right/left circularsR/Ld, or
s45° /−45°d. The ketuCl represents the two-photon state at
the output of the nonlinear crystal, defined as

uCl =E dV FsVdâs
†sv0 + Vdâi

†sv0 − Vdu0l, s11d

whereFsVd is the state functionf31g that governs the spa-
tiotemporal properties of the signal and idler photons at an-
gular frequencyv0±V. The state function is given by
FsVd=L sincfDkzsVdL /2g, where L is the crystal length
and DkzsVd is the wave-vector mismatch in thez- or
phase-matching direction. If the state functionFsVd is
symmetric about the center frequency orFs−Vd=FsVd,
the SPDC spectrum becomesuFsVdu2.

We assume that the detection apparatus is slow and inde-
pendent of polarization so that the final coincidence rateR is
computed as the magnitude square of the two-photon ampli-
tude summed over each polarization mode, integrated over
time:

R=E dt3E dt4o
j

o
k

uAjkst3,t4du2. s12d

III. SIMPLIFIED CONFIGURATION FOR PS-QOCT

It is now useful to consider a specific experimental con-
figuration from which we can define expressions for the
Jones matrices in Eqs.(3)–(5) and calculate the quantum
interferogram. One particular experimental configuration for
PS-QOCT is based on the Mach-Zehnder interferometer and
is shown in Fig. 2.

The elements of the Jones matrix in Eq.(3), representing
the delay in each path, are given simply byd1svd= I eivzs/c

andd2sv8d= I eiv8zr/c, whereI is the identity matrix,c is the
speed of light in the medium, andzs, zr are the path lengths in
the sample and reference arms, respectively. We define a
path-delay differencet=szr−zsd /c between the reference and
sample arms that becomes our experimental parameter in the
final expression for the measured coincidence rateRstd. We
assume that the final beam splitter faithfully transmits and
reflects each input polarization mode. The elements ofTBS in
Eq. (5) thus becomeT31=T42

† = t I and T32=−T41
† =r* I ,

where † designates a matrix transpose and conjugation, andt
and r represent the amplitude transmittance and reflectance
of the beam splitter, respectively.

FIG. 2. Possible implementation of polarization-sensitive quantum-optical coherence tomography(PS-QOCT). A narrow-band pump
laser at a wavelength of 400 nm pumps a 1.5-mm-thickb-barium borate(BBO) nonlinear crystal(NLC) oriented for type-II, collinear SPDC
with a center wavelength of 800 nm. The pump beam is removed from the SDPC by use of a highly reflective mirror(HR 400) centered at
the pump wavelength concatenated with a long pass filter(LP 695). The vertical and horizontal components in the SPDC beam are separated
by a polarizing beam splitter(PBS) into the reference arm and sample arm of a Mach-Zehnder interferometer. The reference arm consists of
a variable path-length delay comprised of a half-wave plate(HWP), a second polarizing beam splitter(PBS), a quarter-wave plate(Q), and
a translational mirror. The final polarization of the reference beam(indicated as() can be oriented to either vertical or horizontal by a linear
rotator prior to the final beam splitter(BS). The sample arm consists of a beam splitter and a quarter-wave plate(Q) so that circularly
polarized light is normally incident on the sample. The back-reflected light from the sample, which in general has elliptical polarization,
mixes with the delayed reference beam at the final beam splitter(BS). The outputs from the BS are directed to two single-photon counting
detectors. The coincidence rateRstd for photons arriving at the two detectors, as a function of the path-length delayct, are recorded in a time
window determined by a coincidence-counting detection circuit(indicated aŝ ).
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Without having to specify the elements ofU in Eq. (4), an
expression for the measured coincidence rate as a function of
the path-delay differencet is calculated to be

Rstd ~ L0 − VBS RefLs2tdg, s13d

whereL0 andLstd are defined as

L0 =E dV uFsVdu2fes
† U1

†sv0 + VdU1sv0 + Vdesg

3sei
† U2

† U2 eid s14d

and

Lstd =E dV uFsVdu2 Fsv0 + VdF*sv0 − Vde−iVt s15d

representing constant and varying contributions to the quan-
tum interferogram, respectively. The functionFsvd, which
includes all of the sample properties, is given by

Fsvd = ei
† U2

† U1svdes. s16d

The parameterVBS=2sur u2utu2d / sur u4+ utu4d in Eq. s13d repre-
sents a visibility factor for a lossless beam splitter with
arbitrary transmittancesVBS=1 when ur u2= utu2=1/2d. We
assume that the optical elements in the reference arm are
frequency independent across the bandwidth of the light-
source spectrum. Equations15d is a generalization of Eq.
s8d in Ref. f23g, where the function F contains
polarization-dependent information about the sample.

It is clear from Eq.(15) that the sample is simultaneously
probed at two frequencies,v0+V andv0−V, and that for a
frequency-entangled two-photon state such that produced by
SPDC, even-order dispersion from the sample is canceled in
PS-QOCT. The effectiveness of even-order dispersion can-
cellation is related to the spectrum of the source used for
SPDC. Since we assume a cw-pump source in Eq.(11), this
leads to signal and idler photons that are exactly frequency
anticorrelated. In this case, even-order dispersion cancella-
tion is perfect. As the bandwidth of the SPDC pump source
is increased, the requirements for exact frequency anticorre-
lation are relaxed and dispersion cancellation is degraded. It
is apparent that the delayt can be adjusted to target specific
regions in the sample from which polarization information
can be extracted by scanning the parameters of the user-
selected polarization rotatorU2. This experimental method is
similar to those used in quantum ellipsometry, as discussed
in Ref. [30].

In the following section, we consider a specific construct
for Eq. (4) that defines the optics in the experimental setup
represented in Fig. 2. Once we derive an expression valid for
an arbitrary sample, we consider several special cases in an
effort to understand the nature of the information contained
in the quantum interferogram.

IV. ROLE OF POLARIZATION IN PS-QOCT

To facilitate the description of PS-QOCT, we make use of
the Pauli spin matrices

s1 = F0 1

1 0
G, s2 = F0 − i

i 0
G, s3 = F1 0

0 − 1
G ,

s17d

from which any 232 Hermitian matrix can be defined as
A =c0 I +c·s, where c;sc1,c2,c3d, s;ss1,s2,s3d, and
c·s denotes the scalar product of vectorsc ands. We first
define Eq.s4d for N reflective layers, where each reflection is
assumed to be isotropic, then consider the special cases of a
single and double reflector.

A. N reflective layers

We begin with a sample comprised ofN reflective layers,
each with an interface defined by a reflectance matrixr msvd,
as shown in Fig. 3. The material properties of each layer are
represented by a Jones matrixSm that is assumed to be de-
terministic. The Jones matrixSm is a product of: an average
phase delay; rotation matricesRm to account for the orienta-
tion am of the fast axis of the sample with respect to the
horizontal axis; and the Jones matrixbm for a linear retarder
with its fast axis oriented along the horizontal axis[32]. If
we ignore losses due to absorption, then for a single layer of
thicknessdm=szm−zm−1d, the Jones matrix is given by

Smsdm,am,vd = eiDmsdm,vd RmsamdbmsdmdRm
† samd

;eiDmsdm,vd Bmsdm,am,vd, s18d

whereDmsdm,vd=vn̄dm/c is the average phase delay of the
signal photon at angular frequencyv attained by propagating
through a layer with average refractive indexn̄=sno+ned /2.
The single-pass retardation in the layer is given by
dmsdm,vd=v Dn dm/c, whereDn=no−ne is the difference in
refractive indices along the fast and slow axes of the me-
dium. The rotation matrixRmsamd and the Jones matrix
bmsdmd for the linear retarder are given by

Rmsamd = e−iam s2 and bmsdmd = eisdm/2ds3, s19d

respectively, where in generale−ig s=scosgdI −si sin gds.

FIG. 3. Sample comprised ofN reflective layers. The probe
beam is incident at the right. Each interface at positionzm is de-
scribed by a reflectance matrixr msvd. The optical properties of the
sample layers between interfaces are described by the Jones matrix
Sm.
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A complete transfer function describing the entire sample
in Fig. 3 is therefore constructed as

Hsvd = o
m=0

N

S1S2 ¯ Sm−1Sm r m S̃mS̃m−1¯ S̃2S̃1

= o
m=0

N

ei2wsmd
Bsmd r m B̃smd, s20d

wherews0d=0, Bs0d= I , and the tilde operation denotes a ma-

trix that takes an argument at a negative angle, viz.S̃msad
=Sms−ad. The accumulation of all phases up to interfacem is
given by

wsmd = o
l=1

m

Dlsdl,vd s21d

and the accumulated effect of birefringence up to interfacem
is expressed via

Bsmd = p
l=1

m

Blsdl,al,vd. s22d

Since the principal axes of the layers are generally un-
known, a quarter-wave plate(Q) set at 45° is used to convert
the signal photon to left circularly polarized light. A quarter-
wave plate is a polarization element, so that we must also
include its Jones matrix in the final expression forU1svd (see
Fig. 1),

U1svd = Qs45dHsvdQ†s45d

= o
m=0

N

ei2wsmd
Qs45dBsmd r m B̃smd Q†s45d, s23d

where the quarter-wave plate at 45° isdefined asQs45d
=eisp/4ds1 and Q†s45d=Qs−45d=e−isp/4ds1.

The reference arm only contains a half-wave plate that
can be set at an angleu to the horizontal axis(see Fig. 2), so
that U2 can be written as

U2sv8d = Rsudeisp/2ds3R†sud, s24d

where, for example, given a vertical input polarization, 2u
=0° selects vertical polarization and 2u=90° selects hori-
zontal polarization.

We can now write the expression in Eq.(16), assuming
frequency-independent isotropic reflection, i.e.,r m=rm s3,
as

Fsvd = ei
† U2

†o
m=0

N

ei2wsmd
Qs45dBsmd r m B̃smd Q†s45des

=ei
† U2

†o
m=0

N

ei2wsmd
rm umsvd, s25d

whereumsvd=Qs45dBsmd s3 B̃smd Q†s45des. For the sample
provided in Fig. 3, the general Eqs.s14d and s15d become

L0 = o
m=0

N

o
n=0

N

rn
* rmE dV uFsVdu2 ei2fwsmdsv0+Vd−wsndsv0+Vdg

3un
†sv0 + Vdumsv0 + Vd s26d

and

Lstd = o
m=0

N

o
n=0

N

rn
* rmE dV uFsVdu2 ei2fwsmdsv0+Vd−wsndsv0−Vdg

3Fn
*sv0 − VdFmsv0 + Vde−iVt, s27d

where Fmsvd=ei
† U2

† umsvd. By substituting Eqs.s26d and
s27d into Eq. s13d, we construct the final expression for the
quantum interferogram. In the following sections, we inves-
tigate several special samples to explain the features con-
tained in the quantum interferogram and to determine a
method for extracting sample information.

B. Single reflective layer

If we consider the special case of a single isotropic reflec-
tor buried under a birefringent layer of thicknessd1;z1, Eq.
(20) can be written as

Hsvd = S1 r 1 S̃1 = ei 2D1 B1 r 1 B̃1 s28d

whereupon Eq.s16d becomes

Fsvd = i r 1 ei 2D1hei
† U2

† fsi sin d sin 2a1dI + scosdds1

+ ssin d cos 2a1ds3g esj=i r 1 ei 2D1 F1svd, s29d

with

F1svd = cosdsvdcos 2u + sin dsvdsin 2u e2ia1. s30d

We have made use of the properties of the Pauli spin matri-
ces and the fact thates=s3es andei =s1es.

For a single reflector, Eqs.(26) and(27) therefore become

L0 = ur1u2E dVuFsVdu2 s31d

and

Lstd = ur1u2E dVuFsVdu2 ei2fD1sv0+Vd−D1sv0−Vdg

3F1sv0 + VdF1
*sv0 − Vde−iVt, s32d

respectively. The varying term can be further simplified if
we expand the propagation constantbsvd in the expression
for the phase delay,D1svd=vn̄z1/c=bsvdz1. The quantity
bsv0+Vd is expanded to second order inV so thatbsv0

+Vd<b0+b8V+ 1
2b9V2, whereb8 is the average inverse of

the group velocitiesvo and ve at v0, and b9 represents the
average group-velocity dispersionsGVDd. It is clear that
second-order dispersion is canceled in the simplified expres-
sion for the varying term, which is given by
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Lstd = ur1u2E dV uFsVdu2

3F1sv0 + VdF1
*sv0 − Vde−iVst+4b8z1d. s33d

Figure 4 displays the expected curves for a single reflector
buried beneath 120mm of quartz with ne=1.546 61, no
=1.537 73, andur1u2=1, using the scheme shown in Fig. 2.
For this simulation, we ignore the frequency dependence ofd
fd;dsv0dg, assume thatedVuFsVdu2=1, and select the fast
axis of the quartz sample to be aligned with the horizontal
axis in the laboratory frame so thata1=0. The SPDC spec-
trum is calculated explicitly via solutions to the phase-
matching conditions using published Sellmeier equations for
b-barium borate(BBO). We are interested in the particular
case of degenerate, collinear type-II phase matching. The top
two curves represent the expected coincidence rate, normal-
ized by L0, when the sample photon is mixed with a verti-
cally polarized(RV, dash-dot curve) or a horizontally polar-
ized (RH, dashed curve) photon from the reference arm. The
solid curve represents the renormalized total coincidence rate
fRT=sRV +RH−L0d /L0g from which the reflectance of the
layer can be recovered.

The material properties are revealed by the relative values
at the center of the dip wheret=−4b8z1. At this value oft,
the path-length difference between the arms of the interfer-
ometer is zero and there is maximal quantum interference. If
we neglect any frequency dependence in the birefringence,
we can substitute Eq.(30) into Eq.(33) and write an expres-
sion for the coincidence rate at the center of the dip as

Lst = − 4b8z1d = uF1u2 = ucosd cos 2u + sin d sin 2u e2ia1u2.

s34d

In the particular case when we select the linear-rotator angle
2u to be either 0° or 90°,corresponding to a polarization of
the reference photon that is horizontal or vertical, respec-
tively, we obtain

LH = cos2d

LV = sin2d.

It is possible to determine the value ofd, or the birefringence
Dn, by forming a ratio of these rates atDz=0:

d = tan−1FLV

LH
G1/2

= v0 Dn z1/c. s36d

We can neglect the frequency dependence ofdsvd
=vDnsvdz1/c=dbsvdz1 when d8sv0dDV!1, whereDV is
the bandwidth of the SPDC spectrum. In this limit, the width
of the interference dip is larger than the delay between the
signal and idler fields resulting from the birefringence of the
layer. If the bandwidth of the SPDC spectrum is increased,
the opposite limit can be realized, namelyd8sv0dDV@1. In
this case, the interference pattern comprises of three regions:
the expected central dip att=−4b8z1 provides the value of
dsv0d;d as in Eq.(36); and two additional satellite interfer-
ence patterns centered att=−f4b8±2db8gz1, wheredb8 is
the coefficient of the first-order expansion ofdb in V, and
provide information about the group-velocity dispersion in
the layer.

Since we choose the linear-rotator angles 2u to be either
0° or 90°, any dependency of the coincidence rate according
to the orientation anglea1 is lost. It is possible, however, to
extract the value ofa1 by using a technique that is analogous
to null ellipsometry. In the reference arm, if we combine the
linear-rotator used to rotate the linear input polarization state
ei with a quarter-wave plate to transform the linear polariza-
tion into a general elliptical state, it is possible to exactly
match any polarization state in the sample arm. This trans-
formation is given by

U2 ei =
1
Î2
Fcos 2u + i cos 2sf − ud

sin 2u + i sin 2sf − ud G , s37d

wheref is the angle of the quarter-wave plate andu is the
angle of the linear-rotator fast axes with respect to the hori-
zontal axis. In the special case whenf=2u, we revert to the
case of a single linear rotator as in our previous example.

When the polarization in the reference arm is selected by
this cascade of polarization elements, we can write Eq.(30)
as

F1svd = hcosdsvdfcos 2u − i cos 2sf − udg

+ sin dsvdfsin 2u − i sin 2sf − udge2ia1j. s38d

If the values off andu are adjusted so that the polarization
state in the reference arm is exactly orthogonal to that in the
sample arm,uF1u2=0 and the coincidence count rate will be

FIG. 4. Simulation results for a single reflector buried beneath
120 mm of quartz with ne=1.546 61,no=1.537 73, andur1u2=1,
using the scheme shown in Fig. 2. The optical axis of the quartz
sample is aligned with the horizontal axis in the laboratory frame so
that a1=0. The top two curves represent the normalized coinci-
dence rate when the sample photon is mixed with a vertically po-
larized(RV, dash-dot curve) or a horizontally polarized(RH, dashed
curve) reference photon. The solid curve represents the total coin-
cidence ratesRTd from which the reflectance of the layer can be
recovered.

BOOTH et al. PHYSICAL REVIEW A 69, 043815(2004)

043815-6



maximized. The value fora can then be determined by solv-
ing the following conditions of orthonormality, namely, the
real and/or imaginary parts of Eq.s38d must equal zero

cosd cos 2u + sin d sin 2u cos 2a1

− sin d sin 2sf − udsin 2a1 = 0
s39d

− cosd cos 2sf − ud + sin d sin 2u sin 2a1

− sin d sin 2sf − udcos 2a1 = 0.

If the value ofd is known, then only one of these equations
is required.

C. Two reflective layers

A sample with reflections from two surfaces separated by
a birefringent material can be expressed as

Hsvd = r 0 + S1 r 1 S̃1=r 0 + ei 2D1 B1 r 1 B̃1, s40d

where the subscripts 0 and 1 denote the first and second
boundaries, respectively. In this case, the function in Eq.s16d
becomes

Fsvd = i r 0 F0 + i r 1 ei 2D1 F1, s41d

whereF0=cos 2u and F1 has been provided in Eq.s30d.
For two reflectors separated by a birefringent medium, the

constant and varying contributions from Eqs.(26) and (27)
become

L0 = ur0u2E dVuFsVdu2 + ur1u2E dVuFsVdu2

+ r0
* r1 ei2b0z1E dVuFsVdu2u0

† u1sv0 + Vdei2sb8V+b9V2dz1

+ c.c. s42d

and

Lstd = ur0u2 gs0dstd + ur1u2 gs1dst − 4b8z1d

+ r0
* r1 gd

s01dst − 2b8z1dei2b0z1 + c.c., s43d

respectively, where the subscriptd denotes a contribution
that is subject to even-order dispersion and c.c.indicates the
complex conjugate, with

gsmdstd =E dVuFsVdu2 Fmsv0 + VdFm
* sv0 − Vde−iVt

and

gd
smndstd =E dV uFsVdu2

3Fmsv0 + VdFn
*sv0 − Vdei2z1b9V2

e−iVt.

The first two terms in Eq.s42d are contributions to the con-
stant coincidence rate arising from each of the two interfaces
in the material. The third term introduces a contribution only
when these interfaces have a separation that is less than the

FIG. 5. Simulation results for a 145mm quartz sample with reflections from each interface using the scheme shown in Fig. 2. For this
calculation,ne=1.546 61,no=1.537 73, andur0u2= ur1u2. The optical axis of the quartz is aligned with the horizontal axis in the laboratory
frame so thata1=0. The top two plots represent the normalized coincidence rate when the sample photon is mixed with a horizontally
polarizedsRHd or a vertically polarizedsRVd reference photon. The bottom trace represents the total coincidence ratesRTd from which the
relative reflectance of each interface can be recovered. The separation of the dips is given by the optical path length of the quartzn̄L
.224 mm.
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coherence length of the signal photon. The first two terms in
Eq. s43d represent dips arising from reflections from the first
and second surfaces. The third term, which appears midway
between these dips, arises from the interference between
probability amplitudes associated with each of these reflec-
tions.

Figure 5 provides numerical results for a 145mm quartz
sample with reflections from each of the two surfaces. For
this calculation, againne=1.546 61,no=1.537 73, we ignore
the frequency dependence ofd, and the fast axis of the quartz
plate is aligned with the horizontal axis in the laboratory
frame so thata1=0. The magnitude of the reflectance from
each surface is assumed to be the same so thatur0u2= ur1u2.
The SPDC spectrum is calculated explicitly via solutions to
the phase-matching conditions using published Sellmeier
equations for BBO. We are interested in the particular case of
degenerate, collinear type-II phase matching. The top two
plots represent the expected rate of coincidence when the
sample photon is mixed with a horizontally polarizedsRHd or
a vertically polarizedsRVd reference photon. The bottom
trace represents the renormalized total coincidence ratefRT

=sRV +RH−L0d /L0g from which the relative reflectance and
positions of each interface can be determined.

In the RV curve (middle trace), there is no dip at the first
interface since the polarization mode reflected from this in-
terface is solely horizontal. The polarization state is altered
via propagation through the birefringent material and con-
tains both vertically and horizontally polarized photons at
reflection from the second interface. The peak between the
two interfaces inRH (top trace) and RT (bottom trace) is
result of interference between each layer. This peak(which
can alternatively become a dip depending on the phase accu-
mulated between the layers) is susceptible to dispersion in
the sample, unlike the dips that correspond to sample layers.
Thus the dispersion properties of the material can be ex-
tracted from this feature.

In summary, we ascertain that three experiments are re-
quired to completely determine the sample properties. We
first select the reference arm polarization to be horizontal(H)
and measure the quantum interferogramRH by recording the
coincidence rate of photons arriving at the two detectors as

the path-length delayct is scanned. The reference arm po-
larization is then rotated into the orthogonal vertical(V) po-
larization and a second measurement is made to measure the
quantum interferogramRV. The third measurement is made
by selecting a value ofct that coincides with the position of
a layer. The angles of the polarization elements in the refer-
ence arm are then adjusted to maximize the coincidence rate.

The sample properties are found as follows: by forming a
ratio of LV andLH at a value ofct that coincides with the
position of a layer, we can determine the value of the bire-
fringence contained in the parameterd; using the angles from
the polarization elements in the reference arm,a can be
found from solving the equations for orthonormality. This
technique is similar to nulling techniques in ellipsometry;
and the total quantum interferogramRT can be computed
from the sum ofRH andRV, then readjusted for the dc offset
given by the constant termL0, i.e., RT=sRV +RH−L0d /L0.
The RT curve provides the path-length delay between the
interfaces as well as the ratio of the relative reflectance from
each layer.

V. CONCLUSION

We have set forth a PS-QOCT scheme and provide a gen-
eral Jones matrix theory for analyzing its operation. PS-
QOCT provides a means for determining information about
the optical path length between isotropic reflectors, the rela-
tive magnitude of the reflectance from each interface, the
birefringence of the material between the interfaces, and the
orientation of the optical axisa of the sample. Inasmuch as
PS-QOCT is immune to sample dispersion, measurements
are permitted at depths greater than those accessible via or-
dinary optical coherence tomography.
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