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Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems

Gregg Jaeger,1 Alexander V. Sergienko,1,2 Bahaa E. A. Saleh,1 and Malvin C. Teich1,2

1Quantum Imaging Laboratory, Department of Electrical and Computer Engineering, Boston University,
Boston, Massachusetts 02215, USA

2Department of Physics, Boston University, Boston, Massachusetts 02215, USA
~Received 14 May 2003; published 27 August 2003!

A relationship between a recently introduced multipartite entanglement measure, state mixedness, and spin-
flip symmetry is established for any finite number of qubits. It is also shown that, for those classes of states
invariant under the spin-flip transformation, there is a complementarity relation between multipartite entangle-
ment and mixedness. A number of example classes of multiple-qubit systems are studied in light of this
relationship.
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I. INTRODUCTION

State entanglement and mixedness are properties ce
to quantum information theory. It is therefore importa
wherever possible, to relate them. The relationship betw
these quantities has been previously investigated for the
plest case, that of two-qubits~see, for example, Refs.@1–4#!,
but has been much less well studied for multiple-qubit sta
because multipartite entanglement measures@5,6# have only
been recently given in explicit form~see, for example, Refs
@7–10#!. Here, we find a relationship, for any finite numb
of qubits, between a multipartite entanglement measure
state mixedness, through the introduction of a multiple-qu
measure of symmetry under the spin-flip transformati
Here, several classes of two, three, and four qubit states
examined to illustrate this relationship. Since quantum de
herence affects the mixedness and entanglement prope
of multiple-qubit states, our results provide a tool for inve
tigating decoherence phenomena in quantum informa
processing applications, which utilize just such states.

The purityP of a general quantum state can be given
all cases by the trace of the square of the density matrr
and the mixednessM by its complement:

P~r!5Tr r2,

M ~r!512Tr r2512P~r!. ~1!

Entanglement can be captured in several ways, which ma
may not be directly related, with varying degrees of coar
ness~see, for example, Ref.@9#!, depending on the complex
ity of the system described~see, for example, Refs.@11–14#!.
Here, we will measure entanglement by a recently introdu
measure of multipartite entanglement, t
SL(2,C)3n-invariant quantity

S(n)
2 5Tr~rr̃ !, ~2!

where the tilde indicates the spin-flip operation@7#. The mul-
tiple qubit spin-flip operation is defined as

r→ r̃[s2
^ nr* s2

^ n , ~3!
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where r* is the complex conjugate of then-qubit density
matrix r and s2 is the spin-flipping Pauli matrix@15#. Its
connection to then-tangle, another multipartite entangleme
measure, defined in Ref.@10#, will be discussed below. We
now discuss this measure in relation to the well-establish
bipartite measures of entanglement@1#.

In the simplest case of pure states of two qubits (A and
B), entanglement has most commonly been described by
entropy of either of the one-qubit reduced density operat
which is obtained by tracing out the variables of one or
other qubits from the total system state described by
projector P@ uCAB&][uCAB&^CABu. For mixed two-qubit
statesrAB , the entanglement of formation,Ef , is given by
the minimum average marginal entropy of all possible d
compositions of the state as a mixture of subensembles.
ternatively, one can use a simpler measure of entanglem
the concurrenceC, to describe two-qubit entanglement@11#.
For pure states, this quantity can be written as

C~ uCAB&)5u^CABus2^ s2uCAB* &u5u^CABuC̃AB&u, ~4!

where uC̃AB& is the spin-flipped state vector. It has be
shown that the concurrence of a mixed two-qubit sta
C(rAB), can be expressed in terms of the minimum avera
pure-state concurrenceC(uCAB&), where the minimum is
taken over all possible ensemble decompositions ofrAB and
that, in general,C(r)5max$0,l12l22l32l4%, wherel i
are the square roots of the eigenvalues of the product ma
rr̃, the ‘‘singular values,’’ all of which are non-negative re
quantities@11#. It has also been shown that the entanglem
of formation of a mixed stater of two qubits can be ex-
pressed in terms of the concurrence as

Ef~r!5h„C~r!…, ~5!

whereh(x)52x log2x2(12x) log2(12x) ~see Ref.@11#!.
Here, we measure multipartite entanglement involvingn

qubits by S(n)
2 ~see Ref.@7#!, which is invariant under the

group corresponding to stochastic local operations and c
sical communications~SLOCC! @16#. For two-qubit pure
states, this measure~with n52) coincides with the square
concurrence~or tangle!:
©2003 The American Physical Society18-1
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S(2)
2 ~P@ uc&#)5t (2)~P@ uc&#)5C2~P@ uc&#), ~6!

whereP@ uc&][uc&^cu is the projector corresponding to it
state-vector argumentuc&.

In Sec. II, after providing another expression forS(n)
2 for

all values ofn for both pure and mixed states, we show th
for pure states this length coincides with the multipartite g
eralization of the tangle defined for pure states of any fin
number of qubits,n, that is, the pure staten-tangle@10,8#. We
discuss the geometrical properties ofS(n)

2 and of the purityP
that allow us to find the general relationship between mu
partite entanglement and mixedness in terms of a spin
symmetry measure. In Secs. III and IV, we examine a ra
of classes of two-, three-, and four-qubit states to illustr
the results of the Sec. II.

II. DEFINITIONS AND THE GENERAL CASE

The multiple-qubit SLOCC invariant given in Eq.~2! is
most naturally defined in terms ofn-qubit Stokes parameter
@17,18#,

Si 1 . . . i n
5Tr~rs i 1

^ •••^ s i n
!, i 1 , . . . ,i n50,1,2,3,

~7!

wheresm
2 51, m50,1,2,3, are the three Pauli matrices t

gether with the identitys05I 232, and 1
2 Tr(smsn)5dmn .

These directly observable parameters form ann-particle gen-
eralized Stokes tensor$Si 1 , . . . ,i n

%. Under SLOCC transfor-
mations@5#, density matrices undergo local transformatio
described by the group SL(2,C), while the corresponding
Stokes parameters undergo local transformations descr
by the isomorphic group O0(1,3), the proper Lorentz grou
@19#, that leave the Minkowskian length unchanged. T
Minkowskian squared-norm of the Stokes tensor$Si 1 . . . i n

%
provides this invariant length@7# ~here renormalized by the
factor 22n for convenience!:

S(n)
2 [

1

2n H ~S0 . . . 0!
22 (

k51

n

(
i k51

3

~S0 . . . i k . . . 0!
2

1 (
k,l 51

n

(
i k ,i l51

3

~S0 . . . i k . . . i l . . . 0!
2

2•••1~21!n (
i 1 , . . . ,i n51

3

~Si 1 . . . i n
!2J . ~8!

As mentioned above, this quantity can be compactly
pressed in terms of density matrices, as

S(n)
2 5Tr~r12 . . .nr̃12 . . .n!, ~9!

where r12 . . .n is the multiple-qubit density matrix an
r̃1 . . .n5(s2

^ n)r1 . . .n* (s2
^ n) is the spin-flipped multiple-

qubit density matrix. Here, we consider these positive, H
mitian, trace-one matrices as operators acting in the Hilb
space (C 2) ^ n of n qubits. For the remainder of this pape
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subscripts on these matrices either will be suppressed o
placed by more descriptive labels, the numbern of qubits
being otherwise specified.

Like this measure of entanglement, the state purityP is
also naturally captured in terms of the generalized Sto
parameters. The subgroup of deterministic local operati
and classical communications~LOCC! @20# on qubits,
namely, the unitary group@SU~2!# of transformations on den
sity matrices, corresponds to the subgroup of ordinary ro
tions @SO~3!# of Stokes parameters that preserve the Euc
ean length derived from these parameters. The purity fo
generaln-qubit state is the Euclidean length in the space
multiple-qubit Stokes parameters:

P~r!5Tr r25
1

2n (
i 1 , . . . ,i n50

3

Si 1 . . . i n
2 ~10!

~see Ref.@7#!.
The multiple-qubit state purity@Eq. ~10!# and the en-

tanglement@Eqs. ~8! and ~9!# can be related by the~renor-
malized! Hilbert-Schmidt distance in the space of dens
matrices~arising from the Frobenius norm@21#!:

DHS~r2r8![A1
2 Tr@~r2r8!2#. ~11!

In particular, the multipartite entanglement and mixedn
are related by the square of the Hilbert-Schmidt distance
tween the stater and its corresponding spin-flipped counte
part r̃:

DHS
2 ~r2 r̃ !5 1

2 Tr@~r2 r̃ !2#5 1
2 @Tr r21Tr r̃222Tr~rr̃ !#

5Tr r22Tr~rr̃ !5P~r!2Sn
2~r!. ~12!

Thus, we have the following relation between the chos
measure of multipartite state entanglement and the state
rity:

Sn
2~r!1DHS

2 ~r2 r̃ !5P~r!, ~13!

whereDHS
2 (r2 r̃) can be understood as a measure of dis

guishability between then-qubit stater and the correspond
ing spin-flipped stater̃ @as defined in Eq.~3!#.

The relation of Eq.~13! can be recast as the followin
simple, entirely general, relation between multipartite e
tanglementS(n)

2 (r) and mixednessM (r)512P(r):

S(n)
2 ~r!1M ~r!5I ~r,r̃ !, ~14!

where we have introducedI (r,r̃)[12DHS
2 (r2 r̃), which

measures the indistinguishability of the density matrixr

from the corresponding spin-flipped stater̃; I (r,r̃) is clearly
also a measure of the spin-flip symmetry of the state.

For pure states,M (r)5M (uc&^cu)50, and we have

S(n)
2 ~ uc&^cu!5I ~ uc&^cu, uc̃&^c̃u!. ~15!

In this case, the Minkowskian lengthS(n)
2 (r) is also seen to

be equal to then-tanglet (n) , as mentioned above:
8-2
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S(n)
2 ~ uc&^cu!5Tr@~ uc&^cu!~ uc̃&^c̃u!#5^cu~ uc̃&^c̃u!uc&

5u^cuc̃&u25t (n) , ~16!

where uc̃&[s2
^ nuc* & and t (n)5u^cuc̃&u2 is the pure state

n-tangle. Thus, we also see that for pure states

t (n)5I ~r,r̃ !, ~17!

that is, then-tangle coincides with the degree of spin-fl
symmetry.

From Eq.~14!, one obtains an exact complementarity r
lation for those classes ofn-qubit states, whether pure o
mixed, for whichr5 r̃ @and thusI (r,r̃)51]:

S(n)
2 ~r!1M ~r!51, ~18!

since thenDHS(r2 r̃)50. For the special case of pure stat
M (r)50; this result can be understood as expressing
fact, familiar from the set of Bell states, that pure states
more than one qubit invariant undern-qubit spin flipping
have full n-qubit entanglement. The Bell stateuC1& is the
most obvious example from this class. By contrast, for th
statesr that are fullydistinguishablefrom their spin-flipped
counterparts,r̃, i.e., for whichI (r,r̃)50, one finds instead

S(n)
2 ~r!1M ~r!50, ~19!

implying that both the entanglementand the mixedness are
zero, S(n)

2 50 andM (r)50, since both quantities are non
negative and sum to zero. An arbitraryn-fold tensor product
of statesu0& andu1& is ann-qubit example from this class. A
third noteworthy case is that when the mixedness and in
tinguishability are nonzero and equal:M (r)5I (r,r̃). In that
case the entanglementS(n)

2 is obviously zero. The fully
mixedn-qubit state~described by identity matrix normalize
to trace unity! is an example from this last class.

III. TWO-QUBIT SYSTEMS

Relations between entanglement and mixedness have
viously been found for limited classes of two-qubit sta
using the tanglet (2) as an entanglement measure@2–4#. In
particular, for two important classes of states, the Wer
states and the maximally entangled mixed states, it
found analytically that as mixedness increases, entanglem
decreases@2#. By exploring more of the Hilbert space o
two-qubit systems by numerical methods, it was also fou
that a range of other states exceed the ratio of entanglem
to mixedness present in the class of Werner states includ
in particular, the maximally entangled mixed states. We n
use our results above to provide further insight into the re
tionship between entanglement and mixedness in two-q
systems, before going on to examine larger multiqubit s
tems.

Mixtures of two Bell states,

r25wP@ uF1&] 1~12w!P@ uF2&], ~20!
02231
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wherewP@0,1#, and mixtures of three Bell states,

r35w1P@ uF1&] 1w2P@ uF2&] 1w3P@ uC1&], ~21!

where wiP@0,1#, and w11w21w351, were both consid-
ered in Ref.@4#. Since both cases fall within the same larg
class, the Bell-decomposable states

rBD5w1P@ uF1&] 1w2P@ uF2&] 1w3P@ uC1&]

1w4P@ uC2&], ~22!

where wiP@0,1# and w11w21w31w451, we consider
them via this general case. For these states, the general
tion, Eq.~14!, tells us that, within this class, as the entang
ment increases, the mixedness must decrease, as expr
by Eq.~18!, since all of these states are symmetric under
spin-flip operation:r5 r̃. That is,M (rBD)512S(n)

2 (rBD).
These states can be studied in particular cases by perform
Bell-state analysis, say on qubit pairs within pure states
three particles, and can characterize, for example, the
semble of states transmitted during a session of quan
communication using quantum dense coding. The Wer
states@22#, such as

rWerner5wP@ uF1&] 1
12w

4
I 2^ I 2 , ~23!

which describe weighted mixtures of Bell states and fu
mixed states, wherewP@0,1#, also have the spin-flip sym
metry property, that is,I (rWerner,r̃Werner)51. Because of
their symmetry, all the above examples obey the ex
complementarity relation, Eq.~18!: entanglement and mixed
ness are seen to be strictly complementary. However, no
two-qubit states possess full symmetry under spin fli
Therefore, only the full three-way relation@Eq. ~14!# will
hold in general.

Let us now proceed further by considering two exam
classes where the state isnot invariant under the spin-flip
operation, one class of pure states and one class of m
states. For the two-qubit generalized Schro¨dinger cat states
defined by

uF~a!&AB5au00&1A12a2u11&, ~24!

whereaP@0,1#, considered in Ref.@4#, clearly r̃Þr in gen-
eral. For them, one has for the state distinguishabi
DHS(r2 r̃)5u2a221u, and for the indistinguishability,
I (r,r̃)512DHS

2 54a2(12a2). Since these states are pur
the mixednessM50 and the relation given by Eq.~14! ~with
n52) reduces to an expression for state entanglement@Eq.
~15!#, that is,

S(2)
2 ~r!5t (2)54a2~12a2!, ~25!

in accordance with Eq.~17!. This shows the entanglement~in
this case coinciding with the tanglet (2)) to be parametrized
by a2, reaching its maximum at the maximally entangl
8-3
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pure state of this class,uC1&, as it should. We will see below
that similar expressions obtain for larger integraln
Schrödinger cat states.

Now consider the class of two-qubit ‘‘maximally en
tangled mixed states,’’ as defined in Ref.@3# as the states
possessing the greatest possible amount of entangle
among those states having a given degree of purity. Th
can be written as

rmems~g!5 1
2 @2g~g!1g#P@ uF1&] 1 1

2 @2g~g!2g#P@ uF2&]

1@122g~g!#P@ u01&], ~26!

whereg(g)5 1
3 for 2

3 .g.0 andg(g)5g/2 for g> 2
3 @3#.

For these states, we find thatI (r,r̃)512DHS
2 (r2 r̃)

54g(g)@12g(g)#, so that

S(2)
2 ~rmems!1M ~rmems!54g~g!@12g~g!#. ~27!

The formal similarity of the expressions for degree of sy
metry I (r,r̃) in the above two cases, the generalized Sch¨-
dinger cat and maximally entangled mixed states, is notew
thy, with the degree of spin-flip symmetry of the state be
of the same form but with different arguments,a2 andg(g),
respectively. This suggests that the maximally entang
mixed states of Eq.~26! could substitute for Schro¨dinger cat
states in situations requiring such entanglement and sym
try, but where decoherence is unavoidable.

The above example classes have previously been use
explore the relationship between entanglement and mix
ness of states for a given ability to violate the Bell inequa
@3,4#. The behavior of these properties for Be
decomposable states was previously shown@4# to differ in
that context from that of the Werner and maximally entang
ment mixed states@3#. Therefore, no general conclusio
could be drawn about the relationship of entanglement
mixedness for the general two-qubit state for a given amo
of Bell inequality violation. That is presumably because B
inequality violation indicates a deviation from classical b
havior ~see, for example, Ref.@23#!, rather than an inheren
property of the state. The results here show instead tha
degree of state symmetry governs the relationship of
tanglement and mixedness.

IV. THREE-QUBIT AND FOUR-QUBIT SYSTEMS

Let us first use the relation of Eq.~14! with n53 to study
three-qubit states. For pure states, this relation takes the
cial form given in Eq.~15! and provides the entangleme
measureS(3)

2 directly in terms of the spin-flip symmetry mea

sureI (r,r̃). For the generalizedW state with complex am-
plitudes,

uWg&5au100&1bu010&1gu001&, ~28!

with uau21ubu21ugu251, using Eq.~15!, we have

S(3)
2 5Tr~rWgr̃Wg!50, ~29!
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uWg& is manifestly distinguishable fromuW̃g&, so the indis-
tinguishability I (rWg ,r̃Wg) is clearly zero as well, in accor
dance with Eq.~14! with M (rWg)50. Since this three-qubi
state is pure, this is an instance of Eq.~19!, the uniquely
three-qubit entanglementt (3) is seen to be zero. Further
more, for the two-qubit subsystems of this three-qubit s
tem, which are in mixed states, the entanglement meas
for n52, S(2)

2 , calculated using their two-qubit reduce
states,r (AB) ,r (BC) ,r (AC) , are

S(AB)
2 ~r (AB)!54uau2ubu25C2~rAB!,

S(BC)
2 ~r (BC)!54ubu2ugu25C2~rBC!,

S(AC)
2 ~r (AC)!54uau2ugu25C2~rAB!, ~30!

each taking the value49 for the traditionalW state@that is, the

state of Eq.~28! with a5b5g5A1
3 ].

On the other hand, for generalized GHZ~or three-cat!
states, defined by

uGHZg&5au000&1A12a2u111&, ~31!

we find the entanglement behaves oppositely, that is

S(3)
2 5Tr~rGHZgr̃GHZg!54uau2~12uau2!5t (3) ~32!

@from Eq. ~16!, and analogously for two-cat states#, while
C(AB)

2 5C(BC)
2 5C(AC)

2 50 for all values ofa and S(3)
2 5t (3)

can reach the maximum value, 1@for the three-cat state with

a5A 1
2 , see Eq.~25!#.

Now consider the following class ofmixed three-qubit
states:

rm35wP@ u000&] 1~12w!P@ u111&], ~33!

with wP@0,1#. Being mixed, these states obey the gene
relation, Eq.~14!, rather than its special case, Eq.~15!. For
these states the mixedness is

M ~rm3!512Tr~rm3
2 !52w~12w!, ~34!

and the multipartite entanglement measure takes the val

S(3)
2 ~rm3!5Tr~rm3r̃m3!52w~12w!, ~35!

as well. In accordance with Eq.~14!, we also have

I ~rm3 ,r̃m3!54w~12w!. ~36!

In this case, we see that bothM andS(3)
2 vary proportionally

to the degree of spin-flip symmetry.
Note that the statesrm3 can be viewed as three-qubit re

duced states arrived at by partial tracing out one of the qu
from the class of generalized four-qubit Schro¨dinger cat pure
states~taking a2[w),

u4catg&5au0000&1A12a2u1111&, ~37!
8-4
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with aP@0,1#, for which the entanglement measureS(4)
2

takes the values

S(4)
2 5Tr~r4catgr̃4catg!54a2~12a2!. ~38!

Because these states are pure, the mixednessM (r) is zero;
we have that the four-qubit entanglement is the degree
spin-flip symmetryS(4)

2 5t (4)(r4catg)5I (r4catg ,r̃4catg), and
that S(3)

2 (rm3)5S(4)
2 (r4catg)/25 1

2 t4 is half that value, as is
the three-qubit mixedness.

V. CONCLUSIONS

By considering multipartite entanglement and mixedn
together with the degree of symmetry of quantum states
der then-qubit spin-flip transformation, a general relatio
was found between these fundamental properties. Multi
ys

s

.A

C.

02231
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tite entanglement, as described by a recently introduced m
sure, and state mixedness were seen to be compleme
within classes of states possessing the same degree of
flip symmetry. For pure states, the value of this multipart
entanglement measure, the degree of spin-flip symmetry,
the n-tangle were seen to coincide. These results can be
pected to be particularly useful for the study of quantu
states used for quantum information processing in the p
ence of decoherence.
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