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Entanglement, mixedness, and spin-flip symmetry in multiple-qubit systems

Gregg JaegerAlexander V. Sergienkd? Bahaa E. A. Salehand Malvin C. Teich?
'Quantum Imaging Laboratory, Department of Electrical and Computer Engineering, Boston University,
Boston, Massachusetts 02215, USA
2Department of Physics, Boston University, Boston, Massachusetts 02215, USA
(Received 14 May 2003; published 27 August 2003

A relationship between a recently introduced multipartite entanglement measure, state mixedness, and spin-
flip symmetry is established for any finite number of qubits. It is also shown that, for those classes of states
invariant under the spin-flip transformation, there is a complementarity relation between multipartite entangle-
ment and mixedness. A number of example classes of multiple-qubit systems are studied in light of this

relationship.
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[. INTRODUCTION where p* is the complex conjugate of the-qubit density

matrix p and o, is the spin-flipping Pauli matrix15]. Its

State entanglement and mixedness are properties centr@nnection to tha@-tangle, another multipartite entanglement
to quantum information theory. It is therefore important, measure, defined in Reff10], will be discussed below. We
wherever possible, to relate them. The relationship betweenow discuss this measure in relation to the well-established,
these quantities has been previously investigated for the siniipartite measures of entangleméhf.
plest case, that of two-qubitsee, for example, Refgl—4]), In the simplest case of pure states of two qubiAsand
but has been much less well studied for multiple-qubit state8), entanglement has most commonly been described by the
because multipartite entanglement meas{Be8] have only  entropy of either of the one-qubit reduced density operators,
been recently given in explicit forrtsee, for example, Refs. which is obtained by tracing out the variables of one or the
[7-10). Here, we find a relationship, for any finite number other qubits from the total system state described by the
of qubits, between a multipartite entanglement measure angrojector P[|W ag)] =|V ag){ W ag|. For mixed two-qubit
state mixedness, through the introduction of a multiple-qubittatesp,g, the entanglement of formatioi,, is given by
measure of symmetry under the spin-flip transformationthe minimum average marginal entropy of all possible de-
Here, several classes of two, three, and four qubit states ammmpositions of the state as a mixture of subensembles. Al-
examined to illustrate this relationship. Since quantum decoternatively, one can use a simpler measure of entanglement,
herence affects the mixedness and entanglement propertittge concurrenc€, to describe two-qubit entanglemedtl].
of multiple-qubit states, our results provide a tool for inves-For pure states, this quantity can be written as
tigating decoherence phenomena in quantum information
processing applications, which utilize just such states. C(| V) =V gl 02@ 02| VAp) = (W ag| V ag)|, (4

The purity P of a general quantum state can be given in
all cases by the trace of the square of the density matrix

and the mixedness! by its complement: wherel\TfAB> is the spin-flipped state vector. It has been

shown that the concurrence of a mixed two-qubit state,

P(p)=Tr p2, C(pag), can be expressed in terms of the minimgm average
pure-state concurrenc€(|¥ 5g)), Where the minimum is

taken over all possible ensemble decompositiong,gfand

that, in generalC(p)=maxXO0\;—N,—A3— A4}, where\;

: . are the square roots of the eigenvalues of the product matrix

Entanglement can be captured in several ways, which may or~ . y . .

may not be directly related, with varying degrees of coarsef?: the “singular values,” all of which are non-negative real

ness(see, for example, Ref9]), depending on the complex- quantltles[ll]. It has .also been shown that .the entanglement

ity of the system describe@ee, for example, Ref§l1—14). of forma’qon of a mixed state of two qubits can be ex-

Here, we will measure entanglement by a recently introduceBresseOI in terms of the concurrence as

measure of multipartite entanglement, the

SL(2,)*Minvariant quantity Et(p)=h(C(p)), (5)

M(p)=1-Trp*=1-P(p). .Y

whereh(x) = —x log,x— (1—x) log,(1—x) (see Ref[11]).

Here, we measure multipartite entanglement involving
gubits byS(Zn) (see Ref[7]), which is invariant under the
group corresponding to stochastic local operations and clas-
sical communicationgSLOCQ [16]. For two-qubit pure
~ on s on states, this measufgith n=2) coincides with the squared
p—p=0, proy (3 concurrencdor tangle:

Sty=Tr(pp), )

where the tilde indicates the spin-flip operat{ai. The mul-
tiple qubit spin-flip operation is defined as
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5(22)(p[|¢>]): 7(2)(p[|¢>]):(;2(p[|¢>]), (6)  subscripts on these matrices either will be suppressed or re-
placed by more descriptive labels, the numhbeof qubits
whereP[|#)]=|¢)(¢] is the projector corresponding to its being otherwise specified. _
state-vector argument). Like this measure of entanglement, the state puFtis
In Sec. II, after providing another expression Sﬁg) for also naturally captured in terms of the. g.enerallzed Stqkes
all values ofn for both pure and mixed states, we show thatParameters. The subgroup of deterministic local operations
for pure states this length coincides with the multipartite gen@nd classical communicationd OCC) [20] on qubits,
eralization of the tangle defined for pure states of any finitd'@Mely, the unitary grougsU(2)] of transformations on den-
number of qubitsp, that is, the pure statetangle[10,8]. We sity matrices, corresponds to the subgroup of ordinary rota-
discuss the geometrical propertiesﬁ?;) and of the purityP tions[SQO(3)] of.Stokes parameters that preserve the.Euchd-
that allow us to find the general relationship between multj-Sa"n length derived from these parameters. The purity for a

partite entanglement and mixedness in terms of a spin—fligger}fr?ln'q%bt'tssttaie is the Eutcl|d§an length in the space of
symmetry measure. In Secs. Il and IV, we examine a rang@1u Ipie-qubit Stokes parameters:

of classes of two-, three-, and four-qubit states to illustrate 1 3
the results of the Sec. Il. p(p):TrPZZFi Ei . 321”% (10)
1owee n~
II. DEFINITIONS AND THE GENERAL CASE (see Ref[7]).

The multiple-qubit SLOCC invariant given in E¢Q) is The multiple-qubit state purityEq. (10)] and the en-
most naturally defined in terms afqubit Stokes parameters tanglementEgs. (8) and (9)] can be related by theenor-
[17,18, malized Hilbert-Schmidt distance in the space of density

matrices(arising from the Frobenius norfi21]):

Sl"'in:Tr(pUil(X)'.'®O-in)’ il# ...,in:0,1,2,3, , \/ﬁ

(7) Duslp—p")=VzTrl(p—p")“]. (11

In particular, the multipartite entanglement and mixedness
gether with the identityoo=1,,, and %Tr(oMaV)= 3. are related by the square of the Hilbert-Schmidt distance be-

These directly observable parameters forrmgrarticle gen- twee~n the statp and its corresponding spin-flipped counter-
eralized Stokes tensdsS; , . ; }. Under SLOCC transfor- partp:

mations[5], density matrices undergo local transformations ~2 , ~,_1 N2 1 2 ~2 ~
described by the group SL(2, while the corresponding Dis(p=p)=2Trl(p=p)"1=3[Trp"+ Trp"=2Tr(pp)]
Stokes parameters undergo local transformations described =Tr p?=Tr(pp)=P(p)— S p). (12)

by the isomorphic group §01,3), the proper Lorentz group

[19], that leave the Minkowskian length unchanged. TheThus, we have the following relation between the chosen
Minkowskian squared-norm of the Stokes ten$8rl B 'in} measure of multipartite state entanglement and the state pu-
provides this invariant lengtfiz] (here renormalized by the rity:

factor 27" for convenience

where oi=1, ©n=0,1,23, are the three Pauli matrices to-

. Si(p)+Dis(p—p)=P(p), (13
n
S(Zn)E% (So... 02— > 2 (SO___ik,__o)z whereD?%4(p—p) can be understood as a measure of distin-
k=110=1 guishability between the-qubit statep and the correspond-
n s ing spin-flipped state [as defined in Eq(3)].
+ E ' 2 (SO...ik...il...O)z The relation of Eq.(13) can be recast as the following
kI=1 =1 simple, entirely general, relation between multipartite en-
3 tanglemen‘S(zn)(p) and mixednes$/ (p)=1—"P(p):
—H (=D X (S, )P ®) , -
i1, in=1 Siny(p) +M(p)=1(p,p), (14)

As mentioned above, this quantity can be compactly exynhere we have introduceb(p,fw)zl—Dﬁs(p—f)), which
pressed in terms of density matrices, as measures the indistinguishability of the density maipix
> ~ from the corresponding spin-flipped statel (p,p) is clearly
St =Tr(p12.. nP12.. 0 © also a measure of the spin-flip symmetry of the state.
For pure state =M =0, and we have
where pi» , is the multiple-qubit density matrix and P Mp) (9o
p1..n=(03")pT n(03") is the spin-flipped multiple- Sty (I ) =1, [9) (D). (15
qubit density matrix. Here, we consider these positive, Her-
mitian, trace-one matrices as operators acting in the Hilbern this case, the Minkowskian IengEBfn)(p) is also seen to
space (?)®" of n qubits. For the remainder of this paper, be equal to ther-tangle 7,y , as mentioned above:
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S(zn)(l¢><¢|)=Tr[(|tﬂ){tﬂI)(ITﬁ)(TM)]=<¢|(|Tp)(<~p|)|¢> wherew [ 0,1], and mixtures of three Bell states,
= (Y P)|2= 70y (16) pa=W1P[|® )] +WP[[® )] +wsP[[¥T)],  (21)

where 7= 2" 4*) and _ 72 is the pure state whergwie[o,l], .andw1+w2+w3=1, were both consid-
n—tangl|e¢>Th(J§ |\/l\f/e >a|so sgg)thl\iﬁfﬁure stateg ered in Ref[4]. Since both cases fall within the same larger
' ' class, the Bell-decomposable states

7 =1(p,p), 17 peo=W1P[|® )] +W,P[|® )] +wsP[|¥ )]

that is, then-tangle coincides with the degree of spin-flip +W,P[| W], (22)
symmetry.

From Eq.(14), one obtains an exact complementarity re-where w; [0,1] and w;+w,+wz+w,=1, we consider
lation for those classes af-qubit states, whether pure or them via this general case. For these states, the general rela-

mixed, for whichp=1p [and thusl (p,p)=1]: tion, Eq.(14), tells us that, within this class, as the entangle-
ment increases, the mixedness must decrease, as expressed
S(Zn)(p)Jr M(p)=1, (18 by Eqg.(18), since all of these states are symmetric under the

_ spin-flip operation:p=p. That is,M(pgp)=1—S{, (psp)-
since therD5(p— p) =0. For the special case of pure statesThese states can be studied in particular cases by performing
M(p)=0; this result can be understood as expressing th8ell-state analysis, say on qubit pairs within pure states of
fact, familiar from the set of Bell states, that pure states othree particles, and can characterize, for example, the en-
more than one qubit invariant underqubit spin flipping semble of states transmitted during a session of quantum
have full n-qubit entanglement. The Bell staf@ *) is the = communication using quantum dense coding. The Werner
most obvious example from this class. By contrast, for thosetateq 22], such as
statesp that are fullydistinguishablefrom their spin-flipped

~ . - ~\_ ] - 1-w
counterpartsp, i.e., for whichl(p,p)=0, one finds instead Pwerme= WPL| )] + 2 Lo, 23)

Sty (P)+M(p)=0, (19

which describe weighted mixtures of Bell states and fully
implying thatboth the entanglemerdnd the mixedness are mixed states, wherese[0,1], also have the spin-flip sym-
zero,S(zn)=0 andM(p)=0, since both quantities are Non- metry property, that is) (pPwermer Pweme) =1. Because of
negative and sum to zero. An arbitramfold tensor product thejr symmetry, all the above examples obey the exact
of stateq0) and|1) is ann-qubit example from this class. A complementarity relation, E¢18): entanglement and mixed-
third noteworthy case is that when the mixedness and indisness are seen to be strictly complementary. However, not all
tinguishability are nonzero and equii(p)=1(p,p). Inthat  two-qubit states possess full symmetry under spin flips.
case the entanglemerﬁ(zn) is obviously zero. The fully Therefore, only the full three-way relatidrieq. (14)] will
mixed n-qubit state(described by identity matrix normalized hold in general.
to trace unity is an example from this last class. Let us now proceed further by considering two example
classes where the state net invariant under the spin-flip
operation, one class of pure states and one class of mixed
states. For the two-qubit generalized Sclinger cat states

Relations between entanglement and mixedness have prdefined by

viously been found for limited classes of two-qubit states
using the tangler,) as an entanglement meas(ge-4]. In |®(a))ag=a|00)+ V1—a?|11), (24)
particular, for two important classes of states, the Werner
states and the maximally entangled mixed states, it Wa§herea [0,1], considered in Ref4], clearlyp+ p in gen-

found analytically that as mixedness increa;es, entanglemegis For them, one has for the state distinguishability
decrease$2]. By exploring more of the Hilbert space of

two-qubit systems by numerical methods, it was also founcPHssp_p):Eaz_l'z’ and2 for. the indistinguishability,
that a range of other states exceed the ratio of entanglemekft?,p) =1—Dyps=4a“(1—a”). Since these states are pure,
to mixedness present in the class of Werner states including)e mixednes#1 =0 and the relation given by E¢l4) (with

in particular, the maximally entangled mixed states. We now?=2) reduces to an expression for state entanglerftent
use our results above to provide further insight into the rela{15)], that is,

tionship between entanglement and mixedness in two-qubit

lll. TWO-QUBIT SYSTEMS

systems, before going on to examine larger multiqubit sys- Sy (p) = T2y =4a*(1—a?), (29
tems.
Mixtures of two Bell states, in accordance with Eq17). This shows the entangleme(mt
this case coinciding with the tangtg,,) to be parametrized
p2=WP[|® )]+ (1—w)P[|D )], (200 by a?, reaching its maximum at the maximally entangled
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pure state of this clasls\;f*), asit s_hould. We will see below |W9) is manifestly distinguishable frofi\%), so the indis-
tSha; ..st_'m'lar expressions obtain for larger integnal- g ishapility | (Pwg Pwg) is Clearly zero as well, in accor-
chralinger cat states. dance with Eq(14) with M (py,g) =0. Since this three-qubit

i Nlov(\; co_ns:jdert ihe "classc,j cf)f tng'qlg)'t maﬁ]mallgl ten- state is pure, this is an instance of E@9), the uniquely
angled mixed states,” as defined in Re8] as the states three-qubit entanglement s, is seen to be zero. Further-

possessing the greatest' possiple amount of entgnglemem)re’ for the two-qubit subsystems of this three-qubit sys-
among those states having a given degree of purity. Thes[%m’ which are in mixed states, the entanglement measures

can be written as for n=2, 8(22), calculated using their two-qubit reduced
_ states , , , are
Pmemd ¥)=3[29() + YIP[|® )] + 3[29(7) — YIP[| D )] P(AB) :P(BC) P(AC)

+[1—2g(y)]P[|OD], (26) Stasy(P(agy) =4lal?| BI°=C*(pap),
whereg(y)=1% for 2>9>0 andg(y)=y/2 for y=2 [3]. S%BC)(p(BC)):4|:8|2|')’|2:C2(F’BC)-
For these states, we find thdi(p,p)=1—D2g(p—p)
=4g(y)[1-9(y)], so that Stacy(Pac) =4l al?|y[*=C?(pap), (30

5(22)(Pmem9 + M (premd =49(Y)[1—g(7)]. 27) each taking the valug for the traditionalW state[that is, the
state of Eq(28) with a=B=y= \/g].
The formal similarity of the expressions for degree of sym- On the other hand, for generalized GH@r three-cat
metry | (p,p) in the above two cases, the generalized SchroStates, defined by
inger cat and maximally entangled mix tates, is notewor-

'?hy,g \‘lavit(rﬁhz geg?ee o? s),/p‘ian-ffilpgsye/zﬁzmetf;1 gf?hees,st?iteobeeinciq |GHZ%) =a|000) + V1-@a*[111), (31)
of the same form but with different arguments’, andg(y),
respectively. This suggests that the maximally entangle
mixed states of Eq26) cp_uld substitute for Schrdinger cat > _ ~ _ 201 112y —
states in situations requiring such entanglement and symme- Sta)= Tr(parzgPatizg) =4l a| (1~ |al*) =7

try, but where decoherence is unavoidable. .
The above example classes have previously been used Ezom Eqé (16), aznd analogously for two-cat stazltesvhlle
caB) = Cec)=C{ac)=0 for all values ofa and Si3)= 7(3)

explore the relationship between entanglement and mixe > :
ness of states for a given ability to violate the Bell inequality " réach the maximum value/for the three-cat state with
[3,4]. The behavior of these properties for Bell- a= \/I see Eq(25)].

decomposable states was previously shddhto differ in Now consider the following class ahixed three-qubit
that context from that of the Werner and maximally entangle-states:

ment mixed stateg3]. Therefore, no general conclusion

could be drawn about the relationship of entanglement and Pms=WP[[000)] +(1-w)P[|11D)], (33
mixedness for the general two-qubit state for a given amount

of Bell inequality violation. That is presumably because Bellwith we[0,1]. Being mixed, these states obey the general
inequality violation indicates a deviation from classical be-relation, Eq.(14), rather than its special case, E5). For
havior (see, for example, Ref23]), rather than an inherent these states the mixedness is

property of the state. The results here show instead that the 5

degree of state symmetry governs the relationship of en- M(pmz) =1=Tr(ppz) =2w(1—-w), (34)
tanglement and mixedness.

yre find the entanglement behaves oppositely, that is

(32

and the multipartite entanglement measure takes the value
IV. THREE-QUBIT AND FOUR-QUBIT SYSTEM ~
© QUBIT SYSTEMS Sta)(Pme) = Tr(prapma) =2W(1-w),  (39)

Let us first use the relation of E¢L4) with n=3 to study ]
three-qubit states. For pure states, this relation takes the sp@s Well. In accordance with E¢14), we also have
cial form given in Eqg.(15 and provides the entanglement ~
measureSsy, directly in terms of the spin-flip symmetry mea- [(Pm3,Pm3) =4wW(1—w). (36)

surel(p,p). For the generalizetV state with complex am-

plitudes. In this case, we see that bathand S(3 vary proportionally

to the degree of spin-flip symmetry.
_ Note that the states,,; can be viewed as three-qubit re-
= + —+ m
|W?)=|100 + 5010 + +/001), 28) duced states arrived at by partial tracing out one of the qubits
. . from the class of generalized four-qubit Scitirmyer cat pure
2 2 2_
with |«|*+|B|*+]|y|*=1, using Eq.(15), we have states(taking a?=w),

Sy = Tr(pwgPwg) =0, (29) |4caf)= |0000 + 1 - a?|1111), (37)
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with @ €[0,1], for which the entanglement measui{é4) tite entanglement, as described by a recently introduced mea-

takes the values sure, and state mixedness were seen to be complementary
5 _ within classes of states possessing the same degree of spin-
Say=Tr(pacagPacag) =42’ (1—a?). (38 flip symmetry. For pure states, the value of this multipartite

) ] entanglement measure, the degree of spin-flip symmetry, and
Because these states are pure, the mixedkkgg is zero;  ne n-tangle were seen to coincide. These results can be ex-
we have that the four-qubit entanglement is the degree Qfected to be particularly useful for the study of quantum
spin-flip symmetryS(24)=7(4)(p4cag)=I(p4cag,p4cag), and states used for quantum information processing in the pres-
that S5 (pma) = Stay(Pacag) 2= 5 74 is half that value, as is ence of decoherence.
the three-qubit mixedness.
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