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We present theoretical and experimental second- and fourth-order interference patterns for entangled photons
of different colors entering single and dual Mach-Zehnder interferometers in which dispersive elements have
been deliberately placed. Although photon wave packets are generally broadened, as well as delayed, by
passage through dispersive optical elements, coincidence measurements made with entangled photon pairs can
be frée of such broadening. This occurs for materials with particular dispersive behavior, as well as when the
dispersion is balanced in both arms. This nonlocal behavior arises from the entanglement in the frequencies of
the down-converted pair photons. We also show that nonlocal pump-frequency oscillations are present in the
coincidence rate patterns for long path-length-difference times, confirming the robustness of this phenomenon
in the presence of dispersion. However, the magnitude of these oscillations is reduced when an arbitrary
dispersive material is used in an unbalanced configuration. Difference-frequency oscillations are also robust in
the presence of dispersion, although they decay for large path-lefigth-difference times.

PACS number(s): 42.50.—p

1. INTRODUCTION

It is well known that the entangled nature (nonfactorizable
state) of the photon pair produced in parametric down-
conversion results in a variety of nonlocal phenomena [1-3].
In an example recently discussed by Franson [4], the two
photons of the pair can be detected in coincidence even when
they are passed through separate dispersive elements.

A schematic diagram of the configuration envisioned by
Franson [4] for displaying this effect is shown in Fig. 1.
Photons from a laser pump beam are converted into en-
tangled photon pairs by spontaneous parametric down-
conversion in a x® nonlinear optical medium [1-5]. The
photons of the entangled pair, created nearly simultaneously
[6], exit the nonlinear medium in what are traditionally
called signal and idler beams. They travel through two dis-
persive optical elements, with thicknesses z; and z,, which
impart phase shifts to them, before reaching two photon de-
tectors (labeled DET A and DET B in Fig. 1). The individual
photon wave packets are delayed and broadened in time by
the dispersive elements in the same way that a classical elec-
tromagnetic pulse is broadened. Nevertheless, the photons
remain coincident in the special case when their dispersion
coefficients are equal in magnitude and opposite in sign [4].
This nonlocal behavior arises from the anticorrelation in the
frequency components of the two photons, engendered by
energy conservation. ,

Steinberg, Kwiat, and Chiao examined, from both a theo-
retical and an experimental point of view [7], the case in
which only one of the photons of a degenerate entangled
photon pair traversed a dispersive medium of thickness z;,
imparting a phase shift to the beam. This photon was then
interfered with its twin at a single beam splitter before coin-
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cidence detection (see Fig. 2). Except for the dispersive ele-
‘ment, this configuration is the same as that used by Hong,
Ou, and Mandel {8] to demonstrate fourth-order interference
at a beam splitter. The effect is revealed by the presence of a
narrow dip in the coincidence rate, as one of the twin pho-
tons is delayed with respect to the other [8,9].

Shapiro and Sun [10] investigated the behavior of this
configuration from a theoretical point of view, using
quantum- and classical-field models for the signal and idler
beams, in conjunction with the quantum and classical theo-
ries of photodetection, respectively. They showed that a
small dispersion-free dip in the coincidence rate could be
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COINC

DET B

FIG. 1. Schematic diagram of the configuration envisioned by
Franson [4]. Entangled photons, generated by spontaneous paramet-
ric down-conversion in a x'® nonlinear optical medium, pass
through dispersive optical elements of thicknesses z; and z,, which
introduce phase shifts. Photon detectors A and B record the events
in the signal and idler beams, respectively, and coincidence events
are monitored. For particular selections of the dispersive media, the
photons remain coincident.
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FIG. 2. Schematic diagram of the configuration considered by
Steinberg, Kwiat, and Chiao [7]. A dispersive element of thickness
z;, which introduces a frequency-dependent phase shift, is placed
in one of the down-converted beams. This beam ‘- also subjected to
a variable path-length change relative to the other beam before they
interfere in fourth order at a beam splitter. The narrow 'dip in the
coincidence rate is not broadened by the presence of the dispersive
element; its presence requires only that the centers of the wave
packets meet simultaneously in the beam splitter.

understood in terms of a classical pulse-compression effect
arising from the integration time of the coincidence gate, but
that the magnitude of the dip could be substantial only in the
quantum theory. This dip then reflects the tendency of two
indistinguishable photons to stick together [11] (it can be-
come a null only for degenerate photons).

Since the occurrence of the dip depends only on the cen-
ters of the wave packets meeting simultaneously at the beam
splitter [7], the subpicosecond measurement resolution of
arrival-time differences of pair photons at a fourth-order
beam-splitter interferometer is not degraded by the presence
of the dispersive element. Dispersive elements more com-
plex than a simple dielectric plate lead to similar results [12].

In this paper we examine the behavior of second- and
fourth-order interference patterns, and in particular the non-
local character of the coincidence rate, at the output of a
dispersive Mach-Zehnder interferometer (MZI) into which
down-converted beams are fed. We consider two MZI con-
figurations. The first, shown in Fig. 3(a), has the two beams
overlapping fully within the interferometer [denoted full spa-
tial overlap (FSQ)], whereas the second, shown in Fig. 3(b),
has the two beams passing through the interferometer with
no spatial overlap (NSO). This latter configuration is there-
fore equivalent to dual MZIs. Dispersive media with differ-
ent thicknesses zj and z, introduce phase shifts into the op-
tical beams traveling through the arms of the interferometer.
The experimental arrangement is similar to that used in our
earlier MZI measurements [13,14], except that in these ex-
periments dispersion is purposely introduced.

The interference pattern is traced out by changing the
path-length difference between the arms of the interferom-
eter. This is effected by moving one of the interferometer
mirrors (indicated by the double-sided arrows in Fig. 3). The
output beams from the interferometer are directed to detec-
tors A and B, as shown in the figure. The events at the
detector outputs are counted during a time duration 7, both
marginally (in second order) and as coincidences (in fourth
order), as a function of the path-length-difference time 7.

In Sec. II, the effects of dispersion on the second- and
fourth-order interference patterns are considered from a theo-
retical point of view. Experimental results are provided in
Sec. III. The conclusion is presented in Sec., I'V.
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FIG. 3. Schematic diagram of the MZI experiments considered
in the present paper. Dispersive elements of thicknesses z; and z,
are placed in one or both arms of the interferometer. The photons
emerging from the ports of the interferometer are directed to photon
detectors A and B. The detector output events are counted, both
marginally and as coincidences, as the path-length-difference time
T is varied (by moving the mirror in the interferometer indicated
with a double-edged arrow). Two MZI configurations were used. (a)

. The two beams overlapped fully within the interferometer; this con-
~ dition is denoted full spatial overlap (FSO). (b) The two beams

passed through the interferometer with no spatial overlap (NSO).
The latter configuration was obtained by slightly rotating one of the
mirrors that guides the light into the interferometer. It is equivalent
to using two separate MZIs.

II. THEORY

The light at the inputs to the interferometer is represented
by the state [11,15,16]

7 7]7‘1'1-1»):f:f:{(w,w')illiw)[ljw:>dw do' (1)

which approximately describes entangled photon pairs gen-
erated by parametric down-conversion excited into field
modes (ports) i and j. The quantity {(w,w’) is a joint com-
plex amplitude characterizing a joint Gaussian spectral den-
sity function |{(w,w’)|? with center frequencies w; and
w,, marginal spectral widths o, and correlation parameter
7= —1 (representing complete anticorrelation as required by
energy conservation). As illustrated in Fig. 3, (i,/)=(1,2)

~ for the case of FSO, whereas (i,7)=(5,2) for NSO.

We calculate singles and coincidence rates using tech-
niques similar to those employed by Campos, Saleh, and
Teich [11]; they are modified by incorporating the
(frequency-dependent) phase shifts imparted by the disper-
sive optical elements into the unitary transformation imposed
on the input fields by the interferometer. The dispersive me-
dium, along with the excess path length introduced by the
movable mirror, imparts an excess phase shift to each beam.
Defining B(w) as the frequency-dependent propagation con=
stant of light of angular frequency @ in the dispersive mate-
rial, the excess phase shift is simnply

D12(0)=wT,— B(w)z12 , )
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where ¢y 5 is the excess path length in vacuum with ¢ the
speed of light in vacuum. It is assumed that only a single
type of dispersive material is used in any experiment.

For most dispersive materials it is reasonable to assume
that, within a narrow band of frequencies, @ around w;, and
o’ around w,, B(w) varies only slightly and gradually, in
which case the analysis can be cast into familiar form by
approximating B(w) by the first three terms of a Taylor-
series expansion about an appropriate center frequency, de-
noted wq for convenience. In either of the beams, Eq. (2)
then becomes {17]

B(@)] ymwy= @0 7= Bo(wg)z+ (0= wo)[ 7= B1(wy)z]
~ Ho—w)?Bx(wo)z , 3
where

Bo@o) =Bl wmay  B1(00)=dB(@)/de]gm uy,

,Bz(wo)=dzﬁ/dw21w=wo . (4)

A. Unbalanced dispersion

We first consider the case of unbalanced dispersion, in
which a dispersive element of thickness z, is placed in the
lower leg of the interferometer with no compensating disper-
sive element in the upper leg. Since the movable mirror is
also in the lower leg, the excess phase shift in this leg is
¢r(w)=wr~ B(w)z, at frequency w. The excess phase
shift in the upper leg is ¢(w)=0. The net overall phase
shift between the two paths of the interferometer is therefore
P(w)=¢y(w)— $(w)=wT—B(w)z, With T=1,—T1=7;
and z=z,.

For FSO [Fig. 3(a)] with 50%-50% beam splitters, in the
nondegenerate case, we then calculate the probabilities of
marginal photon detections, at ports 3 and 4, respectively, to
be

Pyn) =3+ f(ro)-fro)l ., 5

(D) ={1+0*[ Ba(w;) — Ba(w;) 1?22}~ Viexp

—20%{m= 3 B1(w;) + B1(wy)]2}?
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Pyn)=1—ilf(r,0)~f(r,03)] , (6)

where the quantity f(7, ) depends on the center frequencies
of the photon wave packets and is given by

— [ 17— B1(w)z]?
2[1+c*B,(w)?2?]

*By(w)zl 7= By(w)z]?
2[1+0%Bo(w)*2%]

flr,w)=[1+ 04132(60)222]"”467(9[

X cos{ oT— Bo(w)z+

1 :
— sarctan] a?B,( w)z]] . (7
The coincidence probability is

Piy(m)=3+5i[g(nN+h(D)] . @)

The quantity g(7) consists of a contribution at the pump (or
sum) frequency (w,=w;+ w,) that does not decay with in-
creasing path-length-difference time 7:

g(1)={1+0*[Bs(ws) + Ba(w)]?2%}
- o[ B1(w2) — Vﬂi](wl)]zzzr )
2{1+0*[ By w;y) + Ba(w;) °2%}

X exp(

XCOS( w, 7= [Bo(wy) + Bo(wy)]z

o*[ Ba(w3) + Ba(w1)12] B1(w;) — By (w1)]*2*
2{1+ 0" By wy) + Bar(w) 2%}

1 L
—Earctan{az[ﬁz(wz)+,32(w1)]2}) ) )

whereas the quantity 4(7) consists of a contribution at the
difference frequency w;=@,~ w; that does decay with in-
creasing 7 ’

{1+ [ Bo(wr) — Bolw) 2%}
N 20* By(wy) — Ba( 1) 1z{7— 3 B1(wy) '*‘,31(691)]2}2 1

) COS( 0,7 [ Bo(wz) — Bo(wy)]z

{1+ 5[ B2(@3) — Bo( 1) )Pz%}

For NSO [Fig. 3(b)] with 50%-50% beam splitters, these
probabilities are, at ports 3 and 8, respectively,

P3(T)=%_%f(7’w2) ’ (11)
P8(T)=%_%f(’r’w1) ) (12)

and

E‘arctan{crz[ﬁz(wz)—-ﬁz(wl)]z}) . (10)

Pag(7)=5—3[f(m,01)+ f(7,02)]+ [g(7) +h(T)],(13)

where f(7), g(7), and A(7) are as defined in Egs. (7), (9),
and (10) above.

The quantities f(7), g(7), and k(7) all take the form of a
product of three factors: the first is a constant, the second is
a Gaussian function of 7 [except for g(7), where this factor
is also constant], and the third is a harmonic function of 7

whose phase is a second-order polynomial in 7[again, except
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for g(7)]. The first factor, which depends on 2 3,z, simply

serves to reduce the magnitude of all three components. For

f(7), which determines the singles rates and contributes to
the coincidence rate for NSO, the Gaussian function is trans-
lated in path-length-difference time 7 by the value 8,z. For
h(7), which is the difference-frequency contribution to the
coincidence rates, the Gaussian function is similarly trans-
lated by B;z, but with a value of B, that is the mean of those
at the two center frequencies. Both of these Gaussian func-
tions are broadened by a factor that depends on o?8,z. For
g(7), which is the pump-frequency contribution to the coin-
cidence rates, the Gaussian is independent of 7 and its pres-
ence therefore simply serves to modify the magnitude of the
contribution. The harmonic functions associated with f(7),
g(7), and A(7) vary with respect to the path-length-
difference time 7, respectively, at the individual wave-packet
center frequencies, the pump frequency, and the difference
frequency. All exhibit a phase shift that depends on B¢z and
0?B,z, and a chirp that depends on o?B,z. Setting z=0 in
Egs. (7), (93, and (10) leads to results for Egs. (5), (6), (8),
and (11)~(13) that accord with those obtained previously in
the absence of dispersion [11,13].

B. Balanced dispersion

We now consider the case of balanced dispersion, in
which dispersive elements of identical thicknesses
z=2z,=z; are placed in both legs of the interferometer. The
excess phase shift in the Jower leg is then
$r(w)=wT,— B(w)z,, whereas the excess phase shift in
the upper leg is ¢;(w)=— B(w)z,. The net overall phase
shift between the two paths of the interferometer is then
Gpa(w) =y (w) — P1(w)= wT, where again 7= 7,. This is
true whether the system is quantum mechanical or classical.

The results are therefore identical to those obtained in the
nondispersive case, i.e., a complete cancellation of disper-
sion occurs both in second and in fourth order. Thus the
second-order interference patterns for balanced dispersion re-
veal oscillations at one, or both, of the center frequencies of
the photons (depending on whether the interferometer is op-
erated with NSO or FSO) and these die away when the path-
length-difference time exceeds the second-order coherence
time.

For short path-length-difference times, the fourth-order
interference patterns (coincidence rates) exhibit spectral
components at the difference and sum of the center frequen-
cies of the photon wave packets for both FSO. and NSQ; in
the case of NSO, individual spectral components at w; and
w, are also present. Finally, for both FSO and NSO, the
coincidence rate exhibits pump-frequency oscillations that
extend to path-length-difference times that exceed the
second-order coherence times and indeed continue indefi-
nitely in the ideal case.

C. Examples

The significance of the theoretical results is perhaps best
illustrated by graphical example. In Fig. 4 we present a quar-
tet of plots of the marginal and coincidence detection prob-
abilities for full spatial overlap [schematized in Fig. 3(a)l.
The four quadrants of the plot represent different values of
the dispersion medium thickness z,. In all cases z;=0 so
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that the dispersion is unbalanced. Graphs are presented for
the marginal detection probability P;(7) at detector B [Egs.
(5) and (7)] and for the coincidence detection probability
P, (7)[Egs. (8)—(10)] vs the path-length-difference time 7
of the interferometer. Graphs for the marginal detection

" probability P,(7) at detector A [Eq: (6)] are not shown since

they differ from those of P3(7) only by a phase factor. The

- details of the harmonic variation, such as chirping, are not
_ observable at this scale. ’

These plots were generated using numerical values that
are appropriate for the experiments reported in Sec. IIL. The
pump-beam wavelength was fixed at A,=413.1 nm and the
signal-beam wavelength at A ;=840.0 nm; energy conserva-
tion then set the idler-beam wavelength at A,=812.8 nm.

. The radian-frequency bandwidths of both the signal and idler

beams were chosen to be =1.25X10"* s™!. The dispersive
material was taken to be Schott type-BK7 glass. A fourth-
order polynomial fit to the refractive-index values tabulated
for this glass in_the Schott Optical Glass Catalog [18] was
used to estimate the values of the group velocities and
dispersion coefficients, which, of course, depend on
the frequency about which the expansion is made. For
A=840.0 nm, we obtained By=1.1300X107 m!,
B1=5.0914X107° sm™!, and B,=1.5580X 10726 s? m~1;
for A=812.8 nm we obtained B,=1.1681X10" m~!,

B1=5.0927%10"° sm~!, and B,=1.8077X 10726 2 m~1.

The result calculated for the nondispersive case
(zy=2z5=0) is shown in the upper-left quadrant of Fig. 4.
Both the marginal response registered by detector B and the
coincidence response are centered symmetrically about the
balanced path-length-difference time 7=0. These results are
identical to those calculated [11] and measured [13] previ-
ously (with use of the appropriate parameters). They are also
applicable for the balanced dispersion case as discussed
above.

The result computed for a 2.54-cm-thick glass plate in-

-serted in the lower arm of the interferometer is shown in the

upper-right quadrant of Fig. 4. As a result of first-order dis-
persion, the center frequencies of the marginal and coinci-- -
dence oscillations are translated to a higher path-length-
difference time by the amount 8z, so that the center lies at
7=129.34 ps. As in the absence of dispersion, the oscilla-
tions registered by detector B comprise a superposition of the
two individual photon wave packets. Aside from the shift,
the patterns are virtually indistinguishable from those with-
out dispersion for this thickness of glass. Thus the presence
in the apparatus of a few centimeters of a dispersive material,
such as a corner-cube beam splitter, is expected to have little
effect on the behavior of the system. In particular, the sum-
frequency oscillations persist.

The results for z,=725.4 cm, an increase of a factor of 10,
are shown in the lower-left quadrant. As expected, the center
is shifted to 1293.4 ps. The significant separation of the wave
packets alters the shape of the interference pattern substan-
tially. The coincidence rate continues to reveal difference-
frequency oscillations that decay. The pump-frequency oscil-
lations do not decay, but their visibility is reduced relative to
that of the nondispersive case. Only for the special case
Bi(w1)=PB1(wz) and By(w;)=—B,(w;) do the pump-
frequency oscillations have the same visibility as in the ab-
sence of dispersion, as is evident from Eq. (9).
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_FIG. 4. Margmal and commdence detec-
" tion probabﬂmes for full spatial overlap [sche-
<& matized in Fig. 3(a)]. Graphs are presented for
the marginal detection probability P;(7) at
) . A i, detector B and for the coincidence detection
0.2 ps 0.0ps 0.2 ps 129.1ps 129.3ps 129.5ps probability Ps,(7), vs the path-length-differ-
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scale shown.
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Finally, the interference pattern computed for 254 cm of
glass is displayed in the lower-right quadrant of Fig. 4. As
expected, the center is shifted yet higher to 12 934 ps. The
thickness of the glass in the lower-right quadrant is suffi-
ciently large so that the individual wave packets are com-
pletely separated. The pump-frequency oscillations remain,
but their visibility diminishes further as more (unbalanced)
dispersion is introduced, in accordance with the calculated
result.

Almost imperceptible in these graphs is the broadening of
the envelopes of the individual wave packets, and of the
difference-frequency oscillations, arising from second-order
dispersion (0?83,2), as evidenced by the denominators of the
Gaussian exponents in Egs. (7) and (10), respectively. This
broadening is not present in the coincidence rate when

Ba(w1)=Br(ws).

In Fig. 5 we present the analogous plots for no spatial
overlap [schematized in Fig. 3(b)]. Graphs are presented for
the marginal detection probabilities P3(7) at detector B and
Pg(7) at detector A [Egs. (11), (12), and (7)], as well as the
coincidence detection probability Psg(7) [Egs. (13), (7), (9),
and (10)], vs the path-length-difference time 7. The param-
eter values are identical to those used in Fig. 4.

The results for the nondispersive case (z{=2z,=0), in the

upper-left quadrant of Fig. 5, are again identical to those
reported previously (with appropriate choice of parameters)
[11,13]. They are also applicable for the balanced dispersion
case as discussed above. Each of the detectors “sees™ a dif-
ferent photon wave packet. The coincidence response con-
tains oscillations at the pump, difference, and individual fre-
quencies.

Q
o’ T
~ FIG. & AMlwegivai and coincidence detec- |
“fion’ provshi el 10 no spat1a1 overlap [sche-
P matlzed in Fig. 3(b)]. Graphs are presented for
a v the marginal detection probabilities P3(7) at
X T ' ™ . detector_B_and Pg(7) at detector A, along
-0.2 ps 0.0 ps 0.2 ps 129.1 ps 129 3 ps 129.5 ps with the coincidence detection probability
B 1 — = .P33(7), vs the path-length-difference time .
° EETB - The four quadrants represent different values
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o % scale shown.
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FIG. 6. Visibility of the pump-frequency
oscillations in the limit of large 7, for both
full spatial overlap and no spatial overlap, as
a function of the parameters in Eq. (9):
o[Bu(w)=Bi(w)]z and 307 By(w;)
+ Baw1)]z.
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The computed result for a 2.54-cm-thick glass plate in-
serted in the lower arm of the NSO interferometer is shown
in the upper-right quadrant of Fig. 5. As a result of first-order
dispersion, the two marginal responses appear at shghtly dif-
ferent path-length-difference times, but the patterns are vir-
tually indistinguishable from those without dispersion.
Again, the sum-frequency oscillations persist.

The interference patterns computed for 25.4 and 254 cm
of glass are displayed in the lower-left and lower-right quad-
rants of Fig. 5. Their centers are shifted to 1293.4 and 12934

ps, respectively, and the difference-frequency oscillations in

the coincidence rate remain centered at the mean value, just
as in the case of FSO. The thickness of the glass in the
lower-right quadrant is sufficiently large such that the two
individual wave packets are completely separated. The de-
crease in magnitude imparted by second-order dispersion,
through the first factor in Eq. (7), is noticeable at the largest
thickness.

The coincidence rate reveals the presence of the. 1nd1-
vidual wave packets, difference-frequency oscillations that
decay as 7 increases, and pump-frequency oscillations that
do not decay. As with FSO, oaly for the special case

B1(w1)=B1(wy) and By(w))=—pB,(w;) do the pump-.

frequency oscillations have the same visibility as in the ab-
sence of dispersion. There is some broadening of the enve-
lopes of the individual wave packets and of the difference-
frequency oscillations, arising from second-order dispersion
(through the quantity crzﬂzz) just as in the case of FSO.

The hallmark of nonlocal fourth-order interference in the
MZI is the presence of pump-frequency oscillations for arbi-
trarily large path-length-difference times [11,13,14]. It is
therefore of special interest to examine the effect of disper-
sion on these oscillations.

The coincidence rates for FSO and NSO are given by Eqé. .

(8) and (13), respectively. For sufficiently large values of
7, the quantities f(7) and h(7) in Eqgs. (7) and (10) disap-
pear. In this limit, we obtain P3,(7)=3+ 3g(7) for FSO and

Py(n)=3+ §8(7) for NSO so that the essential behavior of
the nonlocal pump-frequency oscillations in the presence of
dispersion are contained in the quantity g(7) prov1ded in Eq.
(9). Since the first and second factors in this equa-
tion depend on the parameters ofB;(w;)— B1(w;)]z and
102[ Bo(w,) + Ba(w;)]z, Fig. 6 presents the parametric de-
pendence of the visibility on these quantities. The curves in
Fig. 6 apply for both FSO and NSO and the maximum value
of the visibility is ; in both cases. As the dispersion coeffi-
cients 3, become larger, an increased difference in the group
velocities B8; can be tolerated to achieve a given value of
visibility.

1. EXPERIMENT

‘We have conducted a set of experiments to examine the
second- and fourth-order interference patterns using en-
tangled photon pairs produced by parametric down-
conversion in the dispersive MZI.

A. Experimental arrangement

The experimental arrangement is shown in Fig. 3.-A Co-
berent Model 302 krypton-ion laser, operated on the
413.1-nm violet line, served as the pump. An intracavity éta-
lon ensured that the laser operated on a single longitudinal
mode and the spatial aperture was adjusted to obtain

. TEMy, transverse-mode operation. The optical power at the

laser output was set at 100 mW and power stabilization and
mode stabilization were activated.

After attenuation by a neutral-density filter, approximately
1 mW of pump power was focused onto a 10-mm-long
lithium iodate (LilO5;) down-conversion crystal oriented for
type-I (ooe) phase matching, with the extraordinary-
polarized pump incident at 42.8° to the optic axis of the
crystal. Unconverted pump photons passed straight through
the crystal and into a beam dump.



32 NONLOCAL CANCELLATION OF DISPERSIVE BROADENING ... ' 4151

25000 -

o’15000

b

5000 -

FIG. 7. Mach-Zehnder interference pat-
terns for unbalanced dispersion with FSO. Ex-

perimental data (black dots) and theoretical
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results (gray dots) with z,=2.54 cm of BK7
glass inserted in one arm of the interferometer
(zy=0). The upper panel shows the counts
recorded by detector B, the middle panel
shows the counts recorded by detector A, and
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recorded in 1 s for each path-length-difference
time 7 (corresponding to a different position
of the retroreflector).
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Down-converted photons emerge at an angle to the pump
beam, with degenerate photons emerging symmetrically in a
cone with a (external) half angle of about 9°; in most of our
experiments, however, we used nondegenerate photons,
which emerge asymmetrically in accordance with the energy-
and phase-matching conditions. With apertures of about 2
mm diameter, we selected out desired nondegenerate photon
pairs with center frequencies of about 813 and 840 nm. The
statistics of the marginal and coincidence detections using
this arrangement have been discussed previously [19].

The photons were then directed, by mirrors, into the two

input ports of the interferometer. The actual experiment

made use of a folded Mach-Zehnder interferometer in which
the beams were redirected onto a lower portion of the same
beam-splitter cube by two retroreflectors. One of the retrore-
flectors was mounted on a movable translation stage used to
change the path-length-difference time for the two interfer-
ometer arms. For the unbalanced-dispersion experiments, a
3 -in.-thick plate of BK7 glass was inserted into the movable
arm of the interferometer (thus z,=2.54 c¢m since the beam
makes a double pass through the glass). In the balanced-
dispersion experiment, a 3-in.-thick plate of BK7 glass was
inserted into each arm of the interferometer (z,=2z,=2.54
cm).

By adjusting the angle of one of the input mirrors, the
photon’s paths within the interferometer could be made to
exhibit either FSO [Fig. 3(a)] or NSO [Fig. 3(b)]. For both
types of experiment, the path length of only one arm of the
interferometer was varied (by changing the position of the
movable retroreflector).

The photons exiting the interferometer were passed
through focusing lenses and a pair of RG-695 filters to block
the pump light and then allowed to impinge onto two
custom-configured single-photon counting modules (RCA
type SPCM-100; now sold by EG&G). At the heart of these
detectors lie passively quenched avalanche photodiodes
whose diameter for peak photon-detection efficiency is about

100 pm.

After suitable compensation for electronic delay differ-
ences, the signals from the two photon-counting modules
were sent to a pair of Berkeley Nucleonics Corp. type 8010
pulse generators that produced standardized 10-ns-wide
pulses triggered by the leading edges of the detector-module
outputs. These standardized pulses were then sent to the dual
inputs of a Stanford Research Systems type SR400 Two-
Channel Gated Photon Counter and counted for 1 s to pro-
vide a measure of the rate of photon detections at each of the
output ports. They were also added together and sent to a
Hewlett-Packard type 5370A Universal Time-Interval
Counter, which, triggered by the gated photon counter,
counted for 1 s to provide a measure of the coincidence rate.

B. Unbalanced dispersion

The interference patterns for unbalanced dispersion, with
zp=2.54 cm and z;=0, are presented in Figs. 7 and 8 for
FSO and NSO, respectively. The upper panels show the
counts recorded by detector B (at output port 3), the middle
panels show the counts recorded by detector A (at output
port 4 for FSO and output port 8 for NSO), and the lower
panels show the coincidence counts (at output ports 3 and 4
for FSO and at output ports 3 and 8 for NSO). The black data
points fill out the envelopes of the interference patterns but
do not have the resolution to trace out the harmonic variation
at the scale of the figure. All of the data in each figure were
collected in the same experimental run.

The data in Figs. 7 and 8 may be compared with the
theoretical results embodied in Egs. (5), (6), (8), and (11)~
(13). The upper-right quadrants of Figs. 4 and 5 are the prob-
abilities for marginal and coincidence detections obtained by
applying these formulas using the experimental parameters.
The comparison is facilitated by renormalizing the theoreti-
cal formulas to account for imperfect visibilities and the fact
that the data were collected as a sequence of a large number
of measurements:

Ry(n)=Ny{ 5+ 2f(re)-fra)l . ()
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1
Ry(7)= N4{—— — Lf(701)— f(T,w2)]} (6"

1 Vs
R34(T)=N34[‘2‘+T[g(T)““h(T)] 8"
1
R3(7)= Ns{ 2f(7' wz)} (a1
1 Vg )
R8(7')=N8[5_7f(7:w1)} @1z7)
=
Rig(7)= Nss{—” [f(Twl)"'f(”'wz)]
Vag - - ,
+?[g(fr)+h(r)]] (137)

The quantities f(7), g(7), and h(7) are precisely those de-
fined in Egs. (7), (9), and (10) above. The visibilities of the
sum- frequency terms, in the region of large 7, are 1V, for
FSO and V34 for NSO.

Satisfactory fits to the data in Flg 7 for FSO, shown as
gray dots, were obtained by using Eqgs. (5'), (6'), and
(8') with the values V3=V,=Vy3y=0.7, N;=29 684,
N,=29 088, and N3,=475.96. Satisfactory fits to the data in
Fig. 8 for NSO, also shown as gray dots, were obtained by
using Egs. (117), (12'), and (13') with the values
V3=Vg=0.8, V33=0.85, N3=33904, Ng=27628, and
N38— 1258.89. In both cases we chose A,=413.1 nm,

=840.0 nm, A\,=812.8 nm, and o=1.25X 1013 s~1, The
Values of By, By, and B, were provided in Sec. II C. =~

Though the fits of the data to the theory are reasonable,
they are hardly perfect. The lack of agreement is not unex-
pected because of the idealized nature of the simiple joint
Gaussian state used for the calculations presented here. We
have determined that the fits can be substantially improved
by phenomenologically incorporating additional parameters

129.54 ps

in the equations (though we do not demonstrate this here).
Indeed, a more thorough treatment of the down-conversion
process that accounts for finite pump-beam waist, pump
spectral width, and crystal length yields a state that contains
additional parameters [15,16]. The interference patterns ob-
tained by using this more sophisticated description are sub-
stantially more complex than those presented here and are
expected to provide a superior match with the experimental
results [20].

C. Balanced dispersion

In Figs. 9 and 10 we present the results of balanced dis-
persion experiments, with z,=2.54 cm and z;=2.54 cm, for
FSO and NSO, respectively. As discussed in Sec. II B, the
patterns should be the same as those obtained in the nondis-
persive case and indeed they are. They are well represented
by the results displayed in the upper-left quadrants of Figs. 4
and 5, respectively (z,=z;=0). The gray dots, which rep-
resent the fits to the data in Fig. 9 for FSO, were obtained by

“using Bgs. (57), (6"), and (8) with the values z,=z;=0,

Vi=V,=V3=0.7, N3=26692, N,=24998, and
N34=417.27. The gray dots in Fig. 10 for NSO were ob-
tained by usmg Egs. (117), (12’ ), and (13") w1th the values
Z9= 21—0 V3—V8—08 ) V38—085 N3—32254
Ng=25408, and N;3=1087.6. In both cases we agam set
A,=413.1 nm, )\1 840.0 nm, A,=812.8 nm, and
o=1. 25X 1013 ‘

—.. IV. CONCLUSION

We have observed a variety of unusual fourth-order inter-
ference patterns when nondegenerate photon palrs are fed
into single and dual Mach-Zehnder interferometers in which
dispersivé ‘elements have been deliberately placed. The
singles rates, reflecting second-order interference, are af-
fected by dispersion in the usual manner expected for clas-

terns for unbalanced dispersion with NSO.
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FIG. 9. Mach-Zehnder interference pat-
terns for balanced dispersion with FSO. Ex-
perimental data (black dots) and theoretical
results (gray dots) with 2.54 cm of BK7 glass
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sical fields. However, the anticorrelation in the frequencies
of the down-converted pair photons gives rise to nonlocal
behavior that can, under certain conditions, allow the cancel-
lation of dispersive broadening in the coincidence rate, re-
flecting fourth-order interference. Complete cancellation oc-
curs for dispersive materials that obey 8;(w;)= 8;(w;) and
Ba(w)=—Br(w,). In this case, the second- and fourth-
order interference patterns are the same as those obtained in
the nondispersive case. Although they decay, the difference
frequency oscillations are highly robust.

Many fourth-order interference experiments carried out
previously, using both degenerate and nondegenerate photon
pairs, have revealed the existence of nonlocal pump-
frequency oscillations in the coincidence rate that continue
for large path-length-difference times. We have shown, both

-Bi(wy)=B1(w3) and Br(w;)=

theoretically and experimentally, that these oscillations per-
sist in the presence of dispersion, although in general their
visibility is reduced. However, for unbalanced dispersion us-
ing materials that possess the special characteristics
— B2(w5), and for balanced
dispersion, the pump-frequency oscillations have precisely
the same visibility as they do in the absence of dispersion, as

is evident from Eq. (9).
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FIG. 10. Mach-Zehnder interference pat-
terns for balanced dispersion with NSO. Ex-
perimental data (black dots) and theoretical
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