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Femtosecond solitons in nonlinear optical fibers: Classical and quantum effects
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We use the time-dependent Hartree approximation to obtain solutions to a quantized higher-order
nonlinear Schrédinger equation. This equation describes pulses propagating in nonlinear-optical fibers
and, under certain conditions, has femtosecond soliton solutions. These solitons travel at velocities that
differ from those of the picosecond solitons obtained from the standard quantized nonlinear Schrodinger
equation. Furthermore, we find that quadruple-clad fibers are required for the propagation of these soli-
tons, unlike the solitons of the standard nonlinear Schrodinger equation, which can propagate in
graded-index optical fibers. From the quantum solution, we find that the soliton experiences phase

spreading and self-squeezing as it propagates.

PACS number(s): 42.50.Dv, 42.50.Rh, 42.81.Dp, 42.65.Re

I. INTRODUCTION

There is considerable interest in nonlinear-dynamical
processes in terms of both classical and quantum phe-
nomena [1-11]. Early theoretical work investigated
quadrature squeezing for the nonlinear Schrodinger equa-
tion (NLS) assuming a continuous-wave input; it was ob-
served that the squeezing was enhanced in the anomalous
dispersion region [3]. Drummond and Carter used a nu-
merical technique to investigate quadrature squeezing for
solitons in optical fibers [4]. Rosenbluh and Shelby have
experimentally demonstrated this squeezing [5]. Kita-
gawa and Yamamoto [6], and also Tanas and Kielich [7],
investigated number-phase minimum-uncertainty states
for self-phase modulation (SPM) in a Kerr medium.
Kennedy and Drummond have developed exact theories
describing the quantum-statistical properties of a con-
tinuous wave including SPM [8]. Further analytical re-
sults were obtained by Yurke and Potasek for the initial
value problem for the quantum NLS using the Gutkin
formalism [9]. However, this applied to pulses in the nor-
mal dispersion region where bright solitons cannot form.
Lai and Haus developed a quantum theory of solitons in
optical fibers using the time-dependent Hartree approxi-
mation and also using Bethe’s ansatz [10]. Wright fur-
ther investigated the theory using the time-dependent
Hartree approximation by considering the case of a pulse
whose initial profile is the classical solution [11].

However, the NLS is generally not valid for pulses
with durations shorter than the picosecond time scale.
Yet the recent development of optical sources that gen-
erate pulses in the femtosecond domain makes possible
the exploration of many phenomena [12]. Therefore the
investigation of solitons arising from the higher-order
NLS (HNLS), which can be used in the femtosecond time
domain, are of interest. We use the time-dependent Har-
tree approximation to develop a quantum theory of fem-
tosecond solitons. We compare this to the NLS theory
and discuss the applicability of this solution to optical
fibers. We find that the graded-index fibers used by
Rosenbluh and Shelby for their initial experiment cannot
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be used for our case of femtosecond solitons. Rather, the
higher-order dispersion term must be negative, requiring
a quadruple-clad fiber [13]. Using the numerical beam
propagation method (NBP), we examine the propagation
of classical solitons for various parameters and observe
that the higher-order terms affect the velocity of the soli-
ton relative to the group velocity obtained from the NLS.
Furthermore, we use the NBP to show that on the scale
at which the quantum behavior is of interest, the effects
of the soliton self-frequency shift can be neglected.

Assuming an initial coherent state, we calculate the
quasiprobability density and plot its behavior as a func-
tion of distance along the fiber. As with the NLS, self-
squeezing occurs as the soliton propagates. However, in
our case the distance at which self-squeezing occurs is
shorter than that for the NLS, partly because of the
shorter pulses required.

II. CLASSICAL ANALYSIS

The general equation describing the propagation of
femtosecond pulses in nonlinear optical fibers is given by
[14,15]
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where C, d, €, €,, and €5 are constants and ¢ represents
the normalized envelope of the electromagnetic field. We
follow the conventional notation in the mathematical
literature, which uses ¢ and x to represent normalized
space and time, respectively. The time variable x is nor-
malized by the group velocity defined by
(v, )~ ! =813/aw|wo. The quantities C, d, €,, €,, and €; are

given by
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B, and B; are dispersion parameters given by the second
and third derivatives of the propagation constant with
respect to frequency, respectively, evaluated at the carrier
frequency w, and for bright solitons we have found that
both must be negative. n is the linear index of refraction,
n, is the nonlinear index of refraction, o is the 1/e width
of the pulse intensity, 4 is the frequency-dependent radius
of the fiber mode, I is the peak amplitude of the pulse,
and c is the speed of light. Primes denote the derivative
with respect to frequency and all parameters are evalu-
ated at w,. Ty is a parameter related to the slope of the
Raman gain curve [16].

Equation (1) reduces to the NLS for d =€, =¢,=¢€;=0.
When €,=¢€;=0 and €;=6d Eq. (1) gives rise to a HNLS
of the form
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This equation has soliton solutions [14]. The effects of
the soliton self-frequency shift (SSFS) [16] (the €; term),
and the €, term, on the solution of Eq. (3) will be dis-
cussed in Sec. IV using the NBP. The SSFS is a continu-
ous downshift of the mean frequency of subpicosecond
pulses. It has been explained in terms of the Raman
effect through which the soliton can self-induce gain for
the lower-frequency part of its spectrum at the expense of
the higher-frequency part [16]. This effect has been ob-
served experimentally [17]. We focus on Eq. (3) to exam-
ine the soliton properties.
The general solution of Eq. (3) has the form [14]

¢ =d¢gsech[e(x —xq)+ Pt lexpli[y(x —x4)+8¢]} , (4)

where €, B, v, and 8 are constants and x is the zero of
time. Substituting this in Eq. (3) yields the following rela-
tions:

2
2 €
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d=e’—y2—3dye*+dy?, (5)

B=e(2y +de*—3dy?) .

These results will be used in later sections of the paper.
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III. QUANTUM ANALYSIS

In this section we use the time-dependent Hartree ap-
proximation to obtain the quantized HNLS and compute
the quasiprobability density function [18]. We proceed
by considering the quantum version of Eq. (3) from a
mathematical point of view. The initial portion of our
analysis closely follows that of Lai and Haus [10] for the
NLS. To obtain the quantum version of Eq. (3), the
quantities ¢(z,x) and ¢*(¢,x) are replaced by the field
operators $(t,x and ¢*(t,x), which satisfy the boson
commutation relations

[$(t,x'),$7(t,x)]=8(x—x') R

. N . N (6)
[d(e,x"),de,x)]1=[(t,x"),81(2,x)]=0,

where $(t,x) and $T( t,x) are the photon annihilation
and creation operators, respectively, at ¢ and x.
The quantized equation can be written as

., 0 A A~
lﬁ‘é7¢(t,X)=[¢(t,x),I?] ) (7)
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FIG. 1. Plots of B, and B; vs wavelength A for a typical
graded-index fiber.
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where the subscripts x and xx signify differentiation and double differentiation, respectively.
In the Schrédinger picture, the state of the system | ¥ ) evolves according to

i# Wy =1, 1)
at
where

a, fi[f (x)dx —C [ $"(x)8"x)(x )(x)dx

+id[f¢x )y (x)dx —3C [ ¢70x)87x ) $x(x)dx”.
In general, any state of this system can be expanded in Fock space as
W)= Eanf%mfn(xl, e x, D) 8Tk, )dx, - dx, 0)
The quantity |a, |? is the probability of finding n photons in the field and we require

> {an|2=1 .

f, obeys the normalization condition

f|f,,(x1,...,x,,,t)f2dx] ceedx, =1
Substituting Eqgs. (10) and (11) into (9) we obtain
i—a-f,,(xl,...,x,,,t)= — i a—Z—ZC > 6(x;—x;)
ot j=1 asz 1<i<j<n !
—id i a—3—61Cd > Zi(xj--xi)i folxy, oo o,x,,0) .
i=1 ax 1<i<j<n ox;

We solve Eq. (14) using the time-dependent Hartree approximation [19]. We define a Hartree wave function
n
FiB(x o x,,t)= I1 ®.(x;,t
j=1
where ®, has the normalization
Jlo,(x,0)2dx=1.

The functions &, are determined by minimizing the functional

I= [, . x,,t) + 3 8x;—x,)

1<i<j<n
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axj
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which provides

3P, 3o, RR

el
— 2 : n i —1 2 " =0.
i o ) +2C(n —1)|®,|*®, +id P +6iCd(n N, | i 0

(15)

(18)

This is identical to the classical HNLS given in Eq. (3), with C replaced by C(n —1). Thus the solution to the quan-

tized femtosecond soliton equation is obtained directly from Egs. (4) and (5),
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@, (x,1)=[C(n—1)]""2esech{e[(x —xo)+(—3dy>+de*+2y)t]}
Xexp[ —i(—dy*+3dyet+yi—et +iy(x —x,)] . (19)
The normalization condition, Eq. (12), gives

_n—1
€= 2 C. (20)

Substituting Eq. (20) into Eq. (19) leads to

_ 1)1 _ 132
q>,,y(x,r)=i”——2”—c“2sech l(iil—)c (x —xo)+ —3dyz+d~(£4—l)cz+2y ¢ ]
3.3 .3 A2p2 a2 .(n—l)z 2 . _
Xexp | lidy’—izdy(n—1)°C*—iy*+i——/———C" |t +iy(x —x() 21
The Hartree product eigenstates are, using Egs. (11) and (15),
_ 1 N n (22)
sy, = | [ @yt )dx] 0) .
A superposition of these states, using a Poissonian distribution of » for a coherent-state pulse, gives
o« a0 a2 A~ n
WoR=3 e | [ @n 008 0ax |00 23)
where |a0|2=n0 is the mean photon number.
The quasiprobability density (QPD) for the amplitude of the envelope of the field is defined as
Qa,x,1)=a,x|¥)|?, (24)
where
a2 - oA n
jax)=e <2 3~ [8x)]70) (25)

n=0

is the local coherent state at the time x. Substituting Eq. (23), with Egs. (21) and (25), into Eq. (24) gives

Q(oz,x,t)=e_w2—|a°|2 néo (a;o!zo)" (n—21)1/2 C'"%sech E—Z——IC (x —x0)+ —3dy2+d(n—;mcz+27 t ] \
2
X exp ind7/3—in(n—l)z%dyCZ—iny2+inQ—;—l—)2C2 t+iyn(x—xq) (26)
[
IV. DISCUSSION For the quantum effects, we plot the QPD as a function

of distance and demonstrate self-squeezing; we also dis-

cuss the relationship of our solution to that of the NLS.
In this section we discuss the physical parameters for
these solitons and, using the numerical beam propagation
method to solve Eq. (1), we show directly the propagation We first discuss the applicability of the classical solu-
of these solitons for various experimental parameters. tion to optical fibers. To evaluate the parameter d we

A. Classical effects
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FIG. 2. Plots of 3, and f3; vs wavelength A for a quadruple-
clad fiber.
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need values for 3, and 3;. Figure 1 shows plots of 3, and
B; as a function of wavelength for a graded-index fiber
when the transverse field is modeled by a Gaussian func-
tion [20]. B; is evaluated by taking the derivative with
respect to frequency of the 3, curve. Since f3; is always
positive this type of fiber is not suitable for supporting
these bright solitons (3, and [3; must both be negative to
support bright solitons). This is significant inasmuch as
graded-index fibers are traditionally used in calculations
and experiments.

We next consider the quadruple-clad fiber. These
fibers were developed to have two zero-dispersion wave-
lengths in two regions with relatively low loss: at about
1.3 and about 1.55 um. We use experimental results [13]
for 3, to evaluate 3;. Plots of B, and B; are shown in Fig.
2. In these fibers 3; does become negative above a certain
wavelength as required for our solution. In Fig. 3 we
show plots of d'=pf,/30|B,| for various values of the
pulse width. The parameter d in our equations is related
tod’ by d=|d’| [see Eq. (2)]. The parameter ¢, in Eq. (2)
also varies with pulse width and becomes significant only
in the femtosecond regime [15]. In Fig. 4 we show a plot
of loge; versus the wuniversal frequency ¥V where
V=(2A)1/2w0na /c, with a the geometric core radius and
A the normalized index of refraction difference between
the core and the cladding. The V number is an often-
used optical-fiber parameter [13]. We use the usual wave-
length A=1.55 pm, which corresponds to an angular fre-
quency w,=1.2X10'° rad/sec. Using experimental pa-
rameters and numerical analysis we have found that in
the wavelength region of 1.5-1.55 um, €, is fairly con-
stant [20]. The parameter d, on the other hand, varies

1.35 1.45 1.55 1.

A (um)

A (um)

FIG. 3. Plots of d’ vs wavelength A for quadruple-clad fiber for o values of (a) 500 fs, (b) 100 fs, (c) 50 fs, and (d) 10 fs.
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FIG. 4. Plot of loge, as a function of the fiber ¥ number as-
suming A=1.55 um. The solid curve corresponds to o0 =10 fs,
the dashed curve corresponds to o=50 fs, and the dotted-
dashed curve corresponds to o =100 fs.

most significantly in this wavelength region, as can be
seen in Fig. 3.

Next we use the NBP to investigate soliton propaga-
tion. We wish to verify our solution and to show that the
other higher-order terms not included in Eq. (3), i.e., the
€, and ¢€; terms in Eq. (1), do not affect the soliton on the
distance scale that quantum effects occur. The parameter
d affects the velocity of the pulse. Numerical calculations
of intensity as a function of time and distance ¢, and their
corresponding contour plots for d =0.25 and for d =0.5,
are shown in Fig. 5. As d increases the velocity decreases

(a)

INTENSITY

DISTANCE
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and shifts further from the group velocity as defined for
the NLS. These calculations are in agreement with
analytical results.

In addition, we use the NBP to investigate the other
higher-order terms in Eq. (1). For these calculations we
use the parameters d =0.5 and 0.25, and o =50 fs. We
first look at the €, term. Using the NBP we calculate
both the time and frequency spectra of the soliton includ-
ing this term with €,=0.5¢,. For typical parameters this
is a reasonable relationship [20]. These plots are shown
in Fig. 6 for d =0.25 and in Fig. 7 for d =0.5. We find
that this term does not substantially alter the soliton
properties on the distance scale used for our QPD plots.
For A=1.55 um, B,=—2.5 psz/km, o=50 fs, and
d=0.25, t=1 corresponds to 2 m. This is in contrast
with the NLS case with 0 =5 ps for which t=1 corre-
sponds to 20 m.

Similar calculations including the SSFS (e; term) in
place of the €, term are shown in Fig. 8 for d =0.25 and
in Fig. 9 for d =0.5. For optical fibers at A=1.55 um,
Tgr =6 fs [16]. We find that this effect, too, does not sub-
stantially alter the soliton on the distance scale used for
our plots. Alternatively, the SSFS may be compensated
for by bandwidth-limited amplification as recent classical
results have shown [21,22]. However, the amplification
terms complicate the quantum calculations and are
beyond the scope of our initial work. Recently, a quan-
tum theory of propagation in fibers for a NLS modified to
incorporate the Raman effect has been developed for pi-
cosecond pulses [23].

INTENSITY

DISTANCE

FIG. 5. (a) Numerical calculations of time and distance vs intensity and (b) the corresponding contour plot for d =0.25; (c) numer-
ical calculations of time and distance vs intensity and (d) the corresponding contour plot for d =0.5.
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FIG. 6. Numerical calculations for the HNLS with €,=0.5¢, for d =0.25: (a) propagation as a function of distance and (b) the
corresponding contour plot; (c) frequency spectrum as a function of distance and (d) the corresponding contour plot.

INTENSITY
INTENSITY

S
0.2 M o5 0 0.5
FREQUENCY
(b) ) 1.0
1.0 T // -
08
0.8 // /
w
%’ 06 w 06
[}
2 Z
a 1
0.4 8 o4
0.2
0.2
1 2 0 a
L O
TIME 1 -0.5 0 0.5 1
FREQUENCY

FIG. 7. Numerical calculations for the HNLS with €,=0.5¢, term for d =0.5: (a) propagation as a function of distance and (b) the
corresponding contour plot; (c) frequency spectrum as a function of distance and (d) the corresponding contour plot.
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FIG. 8. Numerical calculations for the HNLS including the
SSFS (€3 term) for d =0.25: (a) frequency spectrum as a func-
tion of distance and (b) the corresponding contour plot.

B. Quantum effects

In this section we will use the results from Sec. III.
For simplicity, we ignore the n dependence of the ampli-
tude in Eq. (25) and replace n by n,. In Figs. 10 and 11
we show plots of Q with d =0.25 for increasing distance
t. Figure 10 shows the initial state at =0, which is a

C=0.25 d=0.25 t=0

o, =4 v =0

0.40

—

=

e v

e SO

S

=
=

==
=
S o
————

—
S e S
RSSO SS S SOSSSOSoN,
e e o S v
N ——
—
S

\S
AN —
LSS oSS S —
= =S <

4199

(@)

INTENSITY

(®)

0.6

DISTANCE

04 +

0.2

-1 05 0 0.5 1
FREQUENCY

FIG. 9. Numerical calculations for the HNLS including the
SSFS term for d =0.5: (a) frequency spectrum as a function of
distance and (b) the corresponding contour plot.

coherent state. As can be seen in Figs. 11(a) and 11(b), as
t increases the phase spreads and the soliton becomes
self-squeezed. As we increase ¢ further and the phase
spreading increases, the distribution begins to overlap it-
self and gives the appearance of interference as shown in
Figs. 10(c) and 10(d). To follows the center of the pulse
as t increases we must change x accordingly to keep the
argument of the sech term constant. The effects observed
in the HNLS case are qualitatively the same as those in

FIG. 10. Plot of the quasiprobability densi-
ty Q(a,x,t) vs the real and imaginary parts of
a for ay=4, C=0.25, y=0, (x—x,)=0,
d=0.25, and t =0.
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t=0.2

©
t=0.4

(@

t=1.0

0.06

%
e/
‘\hg“l

FIG. 11. Plots of the quasiprobability density Q(a,x,t) vs the real and imaginary parts of a for a,=4, C=0.25, y=0,
(x —x0)=0, and d =0.25 with several values of #: (a) t=0.1, (b) t=0.2, (c) t=0.4, (d) t=1.

the NLS case [10,11]. However, as a result of the
higher-order terms these effects occur at different dis-
tances along the fiber. Since d is a function of wavelength
and varies significantly in the region around 1.55 um, we
can choose the operating wavelength that provides the
effect we desire, i.e., more or less squeezing.

In addition, our solution in Eq. (4) allows for the possi-
bility of an additional frequency shift to the soliton by
having y nonzero. This is equivalent to frequency-
shifting the soliton before it enters the fiber and would
have the effect of slowing down or speeding up the phase
spreading depending on whether the frequency was shift-
ed up or down. This may be accomplished experimental-
ly by using an acoustic-optic modulator.

V. CONCLUSION

In conclusion, we have calculated the classical and
quantum properties of a HNLS and investigated its be-
havior for femtosecond pulses in optical fibers. Using the

NBP we calculated the classical behavior directly for
various parameters and found agreement with the exact
analytical expression. We also use the NBP to show that
on the distance scale of interest in the quantum analysis,
the effects of the SSFS and other terms are not
significant. We find that femtosecond solitons require a
quadruple-clad fiber for propagation rather than the
graded-index fiber traditionally used. The quantum
analysis involved using the time-dependent Hartree ap-
proximation to calculate the QPD. The plots of the QPD
showed self-squeezing with a distance scale influenced by
the higher-order dispersion terms.
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