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We explore the behavior of the fractal-shot-noise-driven doubly stochastic Poisson point process
(FSNDP), for which the associated impulse response functions assume a decaying power-law form.
For a variety of parameters of the process, we obtain expressions for the count-number distribution
and moments, Fano factor, normalized coincidence rate, power spectral density, and time probabili-
ty densities. A number of these measures exhibit power-law dependencies, indicating fractal behav-
ior. For certain parameters the power spectral density exhibits 1/ f-type behavior over a substantial
range of frequencies, so that the process serves as a 1/f point process for a in the range 0 <a <2.
We consider two physical processes that are well described by the FSNDP: Cherenkov radiation
from a random stream of charged particles, and diffusion of randomly injected concentration pack-

ets.

I. INTRODUCTION

Stochastic point processes are useful for describing
phenomena that occur at random points in time or space.
Examples include the emission or absorption of photons
or electrons, the arrival of customers at a queue and their
subsequent departures from it, the detection of nuclear
particles, the production of neural impulses in the ner-
vous systems of living organisms, the occurrence of earth-
quakes, and the registration of vehicles passing through
intersections. A point process is a complete mathemati-
cal description of these occurrence times. In general, the
randomness is exhibited in varying times between events,
varying numbers of events in a prespecified time, and
more complex statistics such as how the events cluster to-
gether.

The most familiar stochastic point process is perhaps
the one-dimensional homogeneous Poisson point process
(HPP).! The HPP is characterized by a single, constant
quantity, its rate, which is the number of events expected
to occur in a unit interval. It plays the role that the
Gaussian process does for continuous stochastic process-
es. Indeed, sums of independent point processes ap-
proach the homogeneous Poisson process under certain
weak conditions, just as sums of independent continuous
processes tend to a Gaussian limit in most cases. A fun-
damental property of the HPP is that it is memoryless;
knowledge of the entire history and future of a given real-
ization of a HPP yields no information about the behav-
ior of the process at the present.

Other point processes do not share this memoryless
property and therefore cannot be described in terms of a
constant rate. An important example of an nonhomo-
geneous point process is the doubly stochastic Poisson
point process (DSPP).? For this point process, the rate it-
self varies stochastically. Thus the DSPP displays two
forms of randomness: that associated with the stochasti-
cally varying rate and that associated with the underlying
Poisson nature of the process even if its rate were con-
stant. The DSPP is useful for modeling phenomena rang-
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ing from photodetection® to sensory information process-
ing.*> A more detailed treatment of the history and
properties of the DSPP is provided in Ref. 6 and the
references therein.

One particular DSPP model which is appealing for its
tractability, and yet lends itself to sophisticated analysis,
is the shot-noise-driven doubly stochastic Poisson point
process (SNDP).%7 In this special case, the rate of the
Poisson process is determined by shot noise, which is it-
self a filtered version of another, homogeneous Poisson
point process. Figure 1 schematically illustrates the
SNDP as a two-stage stochastic process. The first stage
is a HPP with constant rate u. Its output becomes the in-
put to a linear filter, which then produces shot noise at its
output. This shot-noise process becomes the time-
varying rate for the last stage, a second Poisson point
process. The resulting point process is not homogeneous,
but rather exhibits the variations of the shot-noise driving
process. Thus the two forms of randomness inherent in
the DSPP are explicitly separated into two Poisson pro-
cesses in the SNDP, linked by a linear filter. The SNDP
has been studied extensively and has applications ranging
from ecology (in a two-dimensional version)® to photon
and electron detection in a number of physical processes.®

In this paper we explore the properties of the fractal-
shot-noise driven doubly stochastic Poisson point pro-
cess, denoted fractal SNDP, FSNDP, or FSND-DSPP.
In this case the linear filter used to generate the shot
noise which drives the final Poison point process is de-
scribed by a decaying power-law impulse response func-
tion, which imparts unique and useful properties to the
resulting point process.

We examine various statistics of the FSNDP, including
the time probability densities, number moments and dis-
tributions, Fano factor, normalized coincidence rate, and
the power spectral density. Many of these statistics ex-
hibit power-law dependencies on the counting or delay
times over a significant range of times, indicating fractal
behavior. We have identified several processes in which
power-law behavior of the kind predicted by the FSNDP
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FIG. 1. A primary homogeneous Poisson point process M (t)
with constant rate u serves as the input to a linear filter with im-
pulse response function 4 (t). The continuous-time stochastic
process I(t) at the output of this filter is shot noise, which
serves as the random rate for another Poisson point process,
whose output is N(¢). N(t) is a special doubly stochastic Pois-
son point process (DSPP), known as a shot-noise-driven Poisson
point process (SNDP). If i (z) decays in power-law fashion,
then I (t) is fractal shot noise and N (¢) is a FSNDP.

is observed. We discuss two such processes: Cherenkov
radiation, which arises from a random stream of high-
velocity charged particles as they pass through a medi-
um, and diffusion of randomly injected concentration
packets across a distance. The FSNDP provides one
promising model for describing the sequence of action
potengtia]s in primary fibers of the auditory nerve in mam-
mals.

II. CASCADE AND STOCHASTIC
RATE FORMULATIONS

A DSPP may be defined in terms of a Poisson point
process with stochastic rate as illustrated in Fig. 1. Al-
ternatively, it can be described in terms of a two-stage
cascade model in which a primary point process is viewed
as directly generating a stochastic number of events in a
secondary point process. The DSPP is a special case of a
cluster point processes, the complete specification of
which requires knowledge of three quantities: the pri-
mary event times at which each cluster begins, the proba-
bility distribution of the number of secondary events in
each cluster, and a description of the times of occurrence
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of events within a cluster. In the Bartlett-Lewis cluster
process,'®!! primary events result from a HPP and the
times between successive events in a given cluster are in-
dependent, identically distributed positive random vari-
ables. Thus the cluster resulting from a single primary
event is a segment of a renewal process. In some other
types of cluster point processes, the times between each
secondary event and the primary event which produced it
are specified. If these times are independent, identically
distributed positive random variables, and the primary
events are again described by a HPP, the result is a
Neyman-Scott cluster process.!>!* In general, for both
types of cluster processes, the secondary events associat-
ed with different clusters are interleaved. Finally, any
number of stages may be cascaded, yielding tertiary,
quaternary, and higher-order processes.!* !°

The SNDP may be formulated as a cluster process of
the Neyman-Scott type, as defined above, or as a Poisson
process with a stochastically varying shot-noise rate. The
two formulations are isomorphic, as shown in Appendix
A.

The stochastic rate formulation of the SNDP N (¢) is
displayed schematically in Fig. 1. A primary homogene-
ous Poisson process M (t) generates events dM () at a
mean rate pu. These events then pass through a linear
filter with impulse response function % (z). The output of
this filter, denoted by I (2), is shot noise, which serves as
the input to the secondary Poisson process, which gen-
erates events dN (¢) at a time-varying rate equal to I (z).
Thus the SNDP is completely characterized by the
primary-process rate u and the impulse response function
h(t). For the FSNDP in particular, the impulse response
function of the linear filter takes the form of a decaying
power-law function. The fractal shot noise itself may also
be completely characterized by its driving rate p and as-
sociated impulse response function k4 (t); the characteris-
tics of the FSNDP point process therefore stem directly
from those of fractal shot noise,'®~!® which we now
proceed to examine.

III. FRACTAL SHOT NOISE
A. Power-law impulse response functions

A fractal-shot-noise process I (¢) may be expressed as
an infinite sum of impulse response functions,

o

Ih= 3

j=—w

h(K.,t—t;)

J? ]77?

(1)

where the times ¢; are random events dM(z) from a
homogeneous Poisson process M (t) of rate u, as shown in
Fig. 1.197!18 We define the impulse response function
h(,)tobe

Kt B A<t<B

h(K,t)= )
0, otherwise .

(2)

A sketch of a particular power-law impulse response
function is provided in Fig. 2(a). The quantities {K;} in
Eq. (1) represent a random sequence of amplitudes that

are identically distributed and independent of each other
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FIG. 2. (a) Linear plot of a particular power-law impulse
response function A (¢) vs time ¢. (b) Linear plot of the associat-
ed integrated impulse response function A(¢) vs time t. (8= %,
A=1,B=100,K,=1, T=20.)

and of the Poisson process. In some cases we will require
that K be deterministic (all K; are fixed and equal to each
other), and we indicate this with the zero subscript (K).
Otherwise, K is a random variable. The impulse response
function A (, ) is itself deterministic, and the parameters
A, B, and B are deterministic and fixed. For all 3, the
range of the function may extend down to 4 =0 or up to
B =0, and 3 may range between 0 and « exclusive. It is
useful to define several auxiliary parameters. For <1
we define a=2(1—p), and for B> 1 we define D=1/p.
In general, we define a to be the mean area of the impulse
response function

a=( [ nKnde)=CK) [ 't Par 3)

where the angular brackets ( ) without any subscript
represent expectation taken over the distribution of K.
The mean and variance of the shot-noise process I (¢) are
given by Campbell’s theorem.!®2° All properties are val-
id after I (¢) has reached steady state—that is, for finite z.

For most impulse response functions it is also useful to
define a characteristic time, denoted Tp- Heuristically, T,
represents the time scale at which change in the value of
an impulse response function takes place. One con-
venient definition of characteristic time depends on aver-
aged quantities of the impulse response function and is
given by

mp= (L war) /([ " wwar) @)

For an exponential impulse response function,
h(t)=Kexp(—t/7), we obtain 7, =27, while for a rec-
tangular impulse response function Eq. (4) returns the
width of the impulse response function itself. For
0< 4 <<B < «, the characteristic time of the power-law
impulse response function as defined in Eq. (4) will de-
pend on B for =1 and on 4 for 82 1. For a true fractal
process, however, we require that 4 =0, B= o, or both;
in that case, one or both of the integrals in Eq. (4) will not
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exist, depending on 3. Rather than defining 7, to be ei-
ther zero or infinite, T, is left undefined if either of the
two integrals in Eq. (4) is undefined. No useful
definitions for 7, have been found which will work for
power-law impulse response functions with 4 =0 and
B = . Indeed, the notion of characteristic time has lim-
ited applicability for a fractal process, which by definition
exhibits change on many time scales.

B. Fractal shot noise

Two results from fractal shot noise are of particular in-
terest. First, for impulse response functions with 4 =0,
B = o0, and 8> 1, the resulting shot-noise process has an
amplitude probability distribution that takes the form of
a Lévy-stable random variable?! of extreme asymmetry
and dimension D =1/ with 0<D <1, for all rates p of
the Poisson driving process.!”!® The associated moment
generating function?” is

O;(s)=(exp(—sI));=exp[ —u{KP)T(1—D)sP], (5

where the subscripted angle brackets { ), represent ex-
pectation taken over the distribution of the subscripted
variable or process x. For B < o the amplitude probabil-
ity distribution approaches this Lévy-stable random vari-
able in the limit g— o0.!”"!® This result is surprising be-
cause the amplitude probability distribution does not
converge to Gaussian form in the limit g— o and be-
cause it is not degenerate even though the impulse
response function has infinite area a.

Second, for B < « and < 1, the resulting power spec-
tral density S;(f) varies as 1/f¢ for a substantial range
of frequencies f, where a=2(1—f3) lies in the range
0 <a <2, and thus the process serves as a source of gen-
eralized 1/fnoise. '*!8

C. Integrated fractal shot noise

The time average of the shot-noise process 7 (t) forms
another random process that is important in the study of
the FSNDP. Indeed, all of the first-order statistics of the
FSNDP, including the time and number distributions,
may be obtained from the first-order moment generating
function of the integrated shot-noise process W (t).°
Noting that the time integral (time average) of a shot-
noise process is another shot-noise process, we define

t+T

wn=["""Iwdu , (6)

1
with a corresponding impulse response function,

t+T

he(K,0= [ h(K,u)du . (7)

t

A representative integrated impulse response function is
sketched in Fig. 2(b).

The first-order moment generating function of the in-
tegrated shot-noise process W () is given by®



= (exp(—sW))
=exp [,u(fjo {exp[ —sh (K

Qwl(s)
u)]—l}du>

© T
=exp [,u<fﬁw exp —sfuu+ h(K,t)dt]—
B min(u +TB) _
=exp u<fA_ exp | —sK fmax(u o By
uB B—1 min(y +uT,uB
= —sK
exp {(pryT exp SRH max(y,u A)

where x and y are dimensionless variables defined by
x =ut and y =puu, respectively. In general, Eq. (8) can-
not be evaluated in closed form, although simplifications
are available for deterministic K, in some special cases.
We consider first the case =1. Here the moment gen-
erating function has the form

Qw(s)=exp ,uf A/u ~1]du
+,qu+T[(1—T/u)SK°—1]du
+uf [(u/B)™°—1]du ©)

In the special case =2, A =0, and B = w0, on the other
hand, a closed-form expression emerges. It is

1, s=
2sK
expl—ﬂ—‘usKO exp TO
Qulis)= 2
2sK 2sK

s#0, (10)
where #/y( ) and ¥ () are the modified Bessel functions
of the second kind of order zero and unity, respectively.
A detailed derivation of this expression is given in Ap-
pendix B.

IV. STATISTICAL PROPERTIES
OF THE FRACTAL SNDP

The moment generating function Q, (s) for the number
of events occurring in a counting time T may be derived
from the moment generating function of the integrated

rate Qp(s). The number of events is just the Poisson
transform of the integrated rate,?® so that
Q,(s)=(exp(—sn)),=Qp(l—e %) (11)

(see Appendix A). The first-order time statistics may in
turn be determined from the first-order number statistics
if they are known for all time 7.

)
|1 o)
x| 1 | ay) ] ,
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A. Infinite-area impulse response functions

The moment generating function Qy(s) in Eq. (10) is
discontinuous at s =0. In fact, Qy (s) will be discontinu-
ous at s =0 for 4 =0, f= 1, arbitrary B, and arbitrary K,
either stochastic or deterministic. Since the impulse
response function A4 (z) then has infinite area in the
infinitesimal interval after ¢+ =0, any time integral con-
taining that interval will be infinite. The integrated shot-
noise process W (t) is obtained from I(¢) by integrating
over a moving window of fixed length 7, so it will be
infinite for a period T after each primary event dM (¢).
Since these primary events arise from a Poisson point
process with average rate u, the probability that no such
events have occurred in an interval of length T is
exp(—uT), resulting in

lir%QW(s)=Pr{W<oo}zexp(—,uT) . (12)
5—

Thus the integrated-rate amplitude W has a semidegen-
erate amplitude probability density function. However,
in the limit 7—0, the integration which produces W (t)
from I(t) may be approximated by a simple multiplica-
tion by T, yielding W (¢)=TI (t), so that

Qu(s)=exp[—uTP(KP)r(1—D)s?], (13)
while for the number of counts #,
Q,(s)~exp[ —uTP(KP)T(1—D)1—e 5P]. (14)

For B=<1, with 4—0 and B— o, it is tempting to
construct a limiting process since many interesting prop-
erties of the FSNDP occur within the time scale
A << T <<B. In this case, however, the resulting process
N (2) is trivial, since the shot-noise processes I(t) and
W (t) are degenerate. For B=c and B=1, the shot-
noise process I (z) is infinite with probability one,'®'® and
therefore the integrated shot-noise process W (t) will also
be infinite and will have the completely degenerate mo-
ment generating function

1’
07

s =0
s7#0 .

(15)

Owl(s)

This result holds in general for any impulse response
function with infinite area in its tail, as shown in Appen-
dix C.
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This problem may be circumvented by decreasing the
height of the impulse response function, keeping the area
in the tail finite. For example, if <1, 4 =0, and K is
proportional to BP7!, then the area of the impulse
response function will be fixed and finite even if B is in-
creased without bound. However, in this case, the shot-
noise process I(t) will approach a constant value in the
limit B— oo, as shown in Appendix D. In either case,
the amplitude distribution of I(z) will be trivial. There-
fore, its time average W (t) will also be trivial, and so will
the resulting FSNDP, N (z). In the first case, with infinite
area in the tail of the impulse response function, N (¢) will
be degenerate; with probability one there will be an
infinite number of events occurring in any finite interval,
and zero time between adjacent events. For the renor-
malized process, W (t)= W, a constant, and N (¢) will be a
simple HPP with deterministic rate pa.

B. Counting statistics

The counting statistics describe the number of events n
observed in a particular point process in a specified fixed
time interval 7. This reduces the point process to a
discrete random number which may then be described in
terms of its probability distribution, moments, or other
statistical parameters.

1. Count probability distribution

The probability distribution of the count random vari-
able n for any SNDP is given by the recurrence relation®

1

+1)= = =
plm+1)=Pr{in=m +1} p——

c;plm —i),

IV

(16)

where the coefficients c; are defined by
¢ = %(ffm[hT(K,n]f“exp[ —hT(K,t)]dt> (17)

and

p(0)=0,(1)
u<ff° {eXp[—hT(K,t>]—1}dt>] .ag)

Explicit formulas for p (0) and ¢; for the FSNDP are pro-
vided in Appendix E. These have been used to compute
representative count probability distributions for the
FSNDP for B=1, 1, and 2 for various counting times T,
which are shown in Figs. 3, 4, and 5, respectively. For all
plots, the mean number of counts {n ), in the specified
interval T is set to 10, and the impulse response function
begins at 4 =1, ends at B = 10°, and has a deterministic
K, such that the area a =10.

As indicated in Refs. 6 and 24, for any SNDP, if both
the impulse response function area and mean number of
counts are fixed while the counting time 7 is decreased,
then the counting distribution will approach a Poisson
distribution with the same mean as T/7,—0. For long
counting times (T /7, >>1), the distribution approaches
the Neyman type-A distribution?> with the same mean.

=exp
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This distribution has a variance equal to (1+a) times the
mean, where a is the area of the impulse response func-
tion.® Each plot includes the Poisson distribution with a
mean of 10, and the Neyman type- A distribution with a
mean of 10 and a variance of 110 for comparison. The
SNDP count probability distribution therefore interpo-
lates between the Poisson and Neyman type- A4 distribu-
tions. Indeed, the two-parameter Neyman type- A distri-
bution has been explicitly shown to serve as an excellent
approximation for the counting statistics of the SNDP
when the impulse response function 4 (¢) is exponential or
rectangular.?®

As the counting time is decreased, the rate of the pri-
mary Poisson process p must increase to keep the total
mean number of counts constant, since

(n),=paT . (19)
For impulse response functions with
<f0°°h2(1<,z)dt> <o (20)

and a < o0, the distributions of both the shot-noise ampli-
tude probability density I and the integrated rate W will
approach Gaussian forms, as provided by the central lim-
it theorem.

For large counting times (7/7,>>1) and for deter-
ministic K,, however, the integrated impulse response
function is approximately rectangular:

= — <
by 1) fo h(Kg0)dt=a, —T<t<0 o1
0, otherwise ,

so the integrated rate W will be Poisson distributed, tak-
ing on values equal to integer multiples of the area a.?’
The count probability distribution will then be the Pois-
son transform of the Poisson distributed rate W, resulting
in the Neyman type- 4 distribution.®

For the FSNDP, holding the counting time 7, the
mean number of counts {n),, and the impulse response
function area a all fixed, but varying the power-law ex-
ponent 3, yields a family of counting distributions span-
ning the range between the Poisson and the Neyman
type-A distributions. This results from the nature of
power-law impulse response functions. For 3< 1, most of
the area a of the impulse response function is in the tail,
with correspondingly little of the area near the onset.
Thus this impulse response function exhibits less varia-
tion over its duration compared to an impulse response
function with 8> 1, and the resulting shot-noise process
will have correspondingly less variance, leading to a
Poisson-like distribution, all other parameters remaining
unchanged. For impulse response functions with B> 1,
the amplitude characteristics will exhibit more variation,
leading to a larger variance and therefore the counting
distribution will approach the Neyman type-A4 form.
This relation may also be expressed in terms of the
characteristic time of the impulse response function, 7,.
A small power-law exponent 3 will lead to a large 7,.
Therefore, if the counting time T is held fixed as 8 de-
creases, the counting distribution will tend to the short
counting time limit, leading to a Poisson distribution.
Conversely, for large 3, the characteristic time will be
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FIG. 3. Semilogarithmic plot of the counting distribution
p(n) vs count number n in Egs. (16)-(18) for /3=% and three
values of the counting time T: 10°, 10% and 10°. (4 =1,
B=10% a=10, {(n),=10.) For small values of the counting
time 7 relative to the characteristic time 7,, the distribution ap-
proaches the Poisson; for larger values it approaches the Ney-
man type A. Poisson and Neyman type- A4 distributions are in-
cluded for comparison.

small, leading to the long counting time limit and the
Neyman type-A distribution. This progression from
Poisson to Neyman type- 4 distributions may be seen in
the curves labeled “T" =10 in Figs. 3-5.

2. Count moments

For the SNDP, the factorial moments, defined by

m—1

F,g'")z< I (n

i=0

—i)>,, , (22)

are given by the recurrence relation®
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FIG. 4. Semilogarithmic plot of the counting distribution
p(n) vs count number n in Egs. (16)-(18) for =1 and three
values of the counting time 7: 10', 10?, and 10°. (4 =1,
B=10°, a =10, {n),=10.) For small values of the counting
time T relative to the characteristic time T,, the distribution ap-
proaches the Poisson; for larger values it approaches the Ney-
man type 4. Poisson and Neyman type- 4 distributions are in-
cluded for comparison.

m
i

m
(m—+1)—
Fn “Ebz
i=0

Fm=h, FO=1 (23)

where the coefficients b; are defined by

b; EFL< fjo

o

[hT(K,n]f“dz) . (24)

The formulas for b; for the FSNDP are provided in Ap-
pendix E. The standard moments (n™), may be ob-
tained from the factorial moments. In particular, the
mean and variance are

(n >,,=F;“=b0=,L<fj°th<1<,z>dt>=yr<f0°°h (K,t)dt>=/,taT : (25)
var[n], =F2+(n) —(n )ﬁ=b0+bl=paT+,u<f_w [hT(K,t)]zdt>
T ©
=uaT+2u [T —w( [ “hK.OBK, o +wde)du 26)

3. Fano factor

The Fano factor F, defined as the ratio of the variance
to the mean of a random variable, provides a measure of
the variation a random variable exhibits with respect to
the Poisson random variable, which has F =1.?? Similar-
ly, the Fano factor of a point process over a counting
time T is the variance of the number of counts in an in-
terval of duration T divided by the mean. Thus the Fano
factor as a function of the counting time, also called the
Fano-factor time curve, is defined as

var[n],

F(T=——7—.
(7) (n).

(27)

r

For the homogeneous Poisson point process both the
mean and the variance of the number of events in the
process over a time interval T are equal to uT, so F(T) is
always unity for all rates u and counting times 7. More
generally, the Fano factor varies with the counting time
T.

For the SNDP Fano-factor calculations, we assume
that the mean and variance integrals exist and are finite.
In general, the Fano factor of the counting process, N (¢),
is related to the Fano factor of the integrated-rate pro-
cess, W (t), by the simple relation

F(T)=1+var[W]y, /{ W), . (28)
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FIG. 5. Semilogarithmic plot of the counting distribution
p(n) vs count number n in Egs. (16)-(18) for =2 and three
values of the counting time 7: 30, 10°, and 10°. (4 =1,
B=10°, a=10, {n),=10.) For small values of the counting
time T relative to the characteristic time 7,, the distribution ap-
proaches the Poisson; for larger values it approaches the Ney-
man type 4. Poisson and Neyman type- A distributions are in-
cluded for comparison.

The Fano factor is then®
2 T
F(T)=1+-= [(r—
(M=1+= [T —u)

X( [ “h(K,0h(K,t +u)dt )du ,
0

(29)
and, in particular, for the FSNDP we obtain

2{K?)

F(T)=1+
(T) aT

fmin(T,B*A)(T_u)
0
X [ 77 2+ ur) Pt du.
A

(30)

For any SNDP the Fano factor does not vary with the
rate u of the driving Poisson process, but generally varies
with the counting time 7.

Exact closed-form expressions for the FSNDP Fano
factor do not exist except for certain values of the
power-law exponent 3. We calculate the Fano factor ex-

(1—B)
(1—2B) B
1B~V [In(B/D)IT, B=

“PT, 0<p<i

hs
2

(K?) T(1—B)T(2B—1) 4 _
F(T)=1+ X B=1p21=5)
D (K) (3—2B)T(B) B
InXT/A) _
In(B/A)’ p=1
1 AV7E B>1.

(B—1)
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plicitly for the cases =1 and =2 and find approxima-
tions in the limit of small, medium, and large counting
times 7. Proofs and more detailed derivations are pro-
vided in Appendix F. For 8=1 (a=1)and TZB — 4,

F=1+%(3T—B+A)(BW~A”2). (31)
For =1 (a=1)and T <B — 4,
_ (K?)
3T(K)(B'?— 417%)
X |3T%n jjj:ii;?:z —2(B?— 4%
—(5T —2B)(B*—BT)"”?
—(5T+2A4) A%+ AT)>+6T(B+ 4) | .
(32)
For B=2(D=1)and T>B — 4,
2
F=l+ AB(B<—KA§T<K>
X[T(B— A)?+4AB(B— A)
—2AB(B+ A)In(B/A4)] . (33)
For=2(D=1)and T<B— 4,
2
F=1""75s <—KA)>T2<K>
X[T* A*+B?)+2ABT(B — A)
—2ABXA+T)In(1+T/A4)
—2A4°B(B—T)In(1—T/B)] . (34)

For T << A, and for any B and f3, the Fano factor ap-

proaches a form linear in T:

j'Bt‘ZBdt}Y‘.
A

2
F(T)z1+<—1i~>~ (35)

In the range A << T <<B, the Fano factor approaches a
simpler form which depends on :

1<B<1
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For the range L <B<1 (0<a<1), the Fano factor de-
pends on T in a power-law fashion, where the power-law
exponent varies with 8. Given in terms of a=2(1—/),
the Fano factor becomes

(KH)T(a/2)T(1—a)
(KY1+a)T(1—a/2)

For T>>B, and for any A4 and f3, the Fano factor ap-
proaches the constant value

(K?)
(K)?

This is the Neyman type- A4 limit.

The excess Fano factor F(T)—1 as a function of the
counting time 7 is shown in Fig. 6. The results are
displayed in this manner because much of the power-law
behavior in the Fano factor would be obscured by the
constant unity term in the Fano-factor expression for the
parameters used in the plot. For all graphs the impulse
response function begins at 4 =1, ends at B =10°%, is
deterministic, and has an area a equal to unity. For short
counting times, in the range T < A, the excess Fano fac-
tor increases linearly with the counting time 7, as provid-
ed in Eq. (35). As the counting time is increased, in the
range A <<T <<B, the excess Fano factor varies in ac-
cordance with Eq. (36). For <1 the excess Fano factor
is still linear with T, and with 8= 1, the increase with T is
slightly less than linear. For { <[ <1, the excess Fano
factor varies as T9=T?1"A=T1/2 in this example.
While no clear functional relation is apparent for B=1,
that provided in Eq. (36) is plausible. For 3=2 the excess
Fano factor is constant in this range of counting times.
Finally, for large counting times (7> B — A), the excess
Fano factor is constant and equal to the area of the im-
pulse response function (which in this case is unity), as
provided by Eq. (38). Thus the excess Fano factor exhib-
its a range of power-law behavior with various power-law
exponents over the range of counting times 7.

F(T)=1+ B~e?2T%  (37)

F(I=1+ (38)

C. Normalized coincidence rate

The normalized coincidence rate g ®)(7) of a point pro-
cess plays a role in time statistics analogous to that
played by the Fano factor in count statistics; both func-
tions are constant and equal to unity for a homogeneous
Poisson process. It is related to the autocorrelation func-
tion used with continuous processes.?’ The normalized
coincidence rate is a measure of the correlation between
events with a specified time delay between them, regard-
less of intervening events. It is defined as®

@) lim PrLE(r.T+AT) and 6(0,AT)]
& = T 0 Pr{6(r, 7+ AT)|Pr{6(0,AT)]
where &(x,y) represents an event in the interval (x,y).
J

(39)

142 <K2> Bl/2+(B_|T])I/2
g(Z)(T): IuGZ A1/2+(A +]TI)1/2
1, |7|=zB—4 .
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FIG. 6. Double logarithmic plot of the excess Fano factor
F(T)—1 vs counting time T in Eq. (30) for five values of the
power-law exponent f3: %, %, %, l,and2(4=1,B=10%a=1).
The Fano factor exhibits a range of power-law behaviors as the
counting time T and the power-law exponent 3 are varied, in ac-
cordance with Eqgs. (35)—(38).

For finite, stationary point processes, the normalized
coincidence rate may be obtained from the Fano factor
by the relation®

1 d?

(2 ) —
g'(r) 2 412

[TF(T)] (40)

T=r

For the SNDP, the normalized coincidence rate is given
by

gm(T):H%U_‘” h(K,0h (Kt +r)dt> ., @1

ua
as shown in Appendix G. In particular, for the FSNDP,

2 — |7

1+ K2 2 2y =bar, (el <B - 4

g(Z)(T): ua A ) (42)
1, |7|=B—4 .

Closed-form expressions for the FSNDP coincidence
rate do not exist except for certain values of the power-
law exponent 3. We solve for g'?(7) in the three cases

=1, 1, and 2. Proofs for most of the expressions below
may be adapted from those for power-law shot noise (Ref.
18, Appendix D), since the forms of the coincidence rate
for the FSNDP and those for the autocorrelation func-
tion for power-law shot noise are linearly related. The
exception is the case 4 <<7<<B and B> 1, which is con-
sidered in Appendix G.

For =1 (a=1),

, 0Z|r|<B—4

(43)
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For =1,
2
1+<K2>(A‘1—B—1>, =0
na
)y = 2
LA P <K2 ) In[(1—|7[/B)1+|7|/4)], O<|7|<B—4 (44)
pa’|7|
1, |71[ZzB—4 .
For =2 (D =1),
2
14K 2>(A—3—B—3), =0
3ua
(2) — 2 —
g () 1+<K2) 22A+|T| -2 7 + 2 n[(1— |7l /B)1+ 7]/ 4)] |, O<|rl<B—4 (45)
pa’ | |rPACA+I)  IPBB—I7) |7l
1, |[7f[Z2B—4 .

For small delay times 7, and for any power-law exponent f3, the normalized coincidence rate approaches a constant

value

2
g<2>(7>=1+—<K2> J b
pa® 4

(46)

In the region A <<|7| <<B, the normalized coincidence rate approaches a simpler form which depends on 3. In that

case,
M —1 < 1
(1—2p? > 05F<z
1B 'In(B/|7|), B=1
2

D(r)=1+ (K?) (1—B)T(2—B)T(2B—1)

g ul{K)? (B
In(|7]/4), -
[ininh N S B At s :1
w0 P
(B—1)AP Y778, B>1.

In the range ; <fB<1 (0<a<1), the normalized coin-
cidence rate depends on 7 in a decaying power-law
fashion, where the power-law exponent varies with fS.
Given in terms of a, the coincidence rate becomes

alK3)T(1+a/2)T(1—a)
2u{K )’ T(1—a/2)

gH(r)=1+ B~ erlat,

(48)

For all B< 1, the normalized coincidence-rate dependence
on T differs from that of the Fano factor by a constant
T'—that is, if F(T)—1=T? then g?(r)—1x7*"1 If
B =1, then the impulse response function has infinite area
near the onset time A in the limit 4 —0, so Eq. (40) does
not apply.

The excess normalized coincidence rate g'?(r)—1, as a
function of delay time 7, is shown in Fig. 7. As with the
Fano factor, we graph excess values to highlight the
power-law dependencies in the coincidence rates. For all
graphs the impulse response function begins at 4 =1 and
ends at B =5X10°, and the rate p of the primary Poisson
process M (t) is equal to unity. For short delay times the
excess normalized coincidence rate is constant, as provid-

B2 7|17 L<p<l 47)

f

ed in Eq. (46). This holds approximately for |7| < 4. As
the counting time is increased, in the range 4 <<|7| <<B
the excess normalized coincidence rate varies in accor-
dance with Eq. (47). For 0<f3 <1 the excess normalized
coincidence rate is still constant with 7, whereas with
=3, it decreases slightly with 7. For ; <<, the ex-
cess normalized coincidence rate varies as
|7|'728=|7|*~1__that is, as |7| 7“2 in this example. For
B=1, the excess normalized coincidence rate decreases
slightly more slowly than 1/|7|, and for 8> 1 it varies as
|7| 7B, Finally, for delay times larger than B — A, the ex-
cess normalized coincidence rate is zero. Thus, like the
Fano factor, the excess normalized coincidence rate also
exhibits a range of power-law behavior with various
power-law exponents over the range of delay times 7.

D. Power spectral density

The power spectral density Sy (f) of the FSNDP is ob-
tained with the help of the Wiener-Khintchin theorem.
The Fourier transform of the coincidence rate in Eq. (42)
is
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FIG. 7. Double logarithmic plot of the excess normalized
coincidence rate g'¥(7)—1 vs delay time 7 in Eq. (42) for five
values of the power-law exponent [3: %, %, %, 1,and 2 (4 =1,
B=5X10% pu=1). The autocorrelation functions exhibit ap-
proximate power-law behavior with various exponents for a
good portion of their range, in accordance with Eq. (47). Note
the abrupt decrease in g ?(r)—1 near 7=B — A =5X10°, at
which point g'?(7) becomes unity.

(K?)
pa’

Sy(f)=8(f)+ ID(1—pB,j2mf A4)

—T(1—=B,j2mfB)*2mf P2,
(49)
where I'(, ) is the incomplete gamma function defined by
Ia,x)= fxwe_’t""ldt . (50)

For the case when 8<1 (a>0), 4 =0, and B is finite, the
above form reduces to

(K*)
pa’

X (27 f )P 2

Sy(I=8(H+

IT(1—B)—T(1—B,j27fB)|?

_ (K?) . 2
=8(f)+-—"IT(a/2)—T(a/2,j27fB)]|
ua

XQ2mwf) . (51)

In the limit f—0 the spectrum approaches the constant
value (K?2)/u{K)* by the definition of the Fourier
transform, and in the limit f — c the incomplete gamma
function approaches zero, yielding

201 2
SN(f)w»F(l B{K?*)

e (52)
na’(2m)® 4

Thus the FSNDP can serve as a source of generalized im-
pulsive 1/f noise, and the power spectral density has the
same form as that of fractal shot noise.'®!® This is expect-
ed, since the last stage of the SNDP model is a Poisson
transform, which does not alter the power spectral densi-
ty of a process.

Figure 8 shows the shot-noise power spectral densities

102 107" 10° 10" 102

103

FREQUENCY f

FIG. 8. Double logarithmic plot of the power spectral densi-
ty Sy(f) vs frequency f for B=1 (A4 =0, B =1000). Note that
the power spectral density exhibits 1/f% behavior with ex-
ponent a=1 for high frequencies and that the abrupt cutoff in
the impulse response function gives rise to oscillations in the
frequency domain.

obtained with a=1 (f=1) with 4 =0 and B =1000.
The power spectral density takes the form 1/f for high
frequencies. Note that the abrupt cutoff in the time

domain gives rise to oscillations in the frequency domain.

E. Time statistics

A point process may also be reduced to a single ran-
dom number by considering the relative times associated
with event occurrences. The most important of these is
the interevent time, defined as the time between adjacent
events. The forward recurrence time, the time to the
next event from a random starting time (chosen indepen-
dently of the point process), is also important. Both of
these random times may be described in terms of their
probability densities, moments, and other statistical pa-
rameters, as with number statistics. For the homogene-
ous Poisson process, both the forward recurrence and in-
terevent times have exponential probability densities with
mean values equal to the reciprocal of the rate of the pro-
cess.

The forward recurrence and interevent time probabili-
ty densities, denoted P,(7) and P,(r), respectively, are
given below. We begin with the probability of observing
no events in a SNDP in a time interval of length 7, which
is Pr{n =0} from Eq. (18),

Py(1)=p(0)
=Qu(1)
,u<fjo {exp[—hAK,u)]—l}du)

The forward recurrence time has a probability density
function given by the rate at which the probability of ob-
serving zero events decreases:

=exp (53)
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d
Pl(T): ——‘;;PO(T)

—_4d .
dr P

,u<f_woo{exp[——h,(K,u)]—l}du>

(54)

The probability density function for the interevent time is
the normalized rate of change of the above value and is
given by

—__ 1 d
Pz(T)_ <I>I dTPl(T)
1 d?

p [/,L<f‘ww{exp[—hr(K,u)]—1}du>

=———e¢
pa dr? *

(55)
where I (t) is the shot-noise process at the output of the
linear filter (see Fig. 1). The formulas for Py(7), P(7),
and P,(r) for the FSNDP are listed in Appendix E. For
7=0 we have

P (0)=1/{7),,

(56)
P,(0)=1/{7)+{7) var[I]; .

In the limit 7— o, both probability density functions ap-
proach an exponential form

P (r)—>pu(l—e Yexp[—ur(l—e 9],

(57)
__—a\2
PZ(T)—»j“L(l—;—h)exp[—pT(l—~e‘“)] .

Probability density functions for forward recurrence
times are shown in Figs. 9 and 11, while those for in-
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FIG. 9. Double logarithmic plot of the forward recurrence
time probability density function P,(7) vs 7 in Eq. (54) for four
values of the power-law exponent f3, labeled B=%, =1, =2,
and 8=3. The degree of overlap is 10 (4 =1, B =10°, a =100,
(7),=100, u=10"*%). At time limits short compared to the
characteristic time 7, the distributions approach an exponential
form with a mean value of 100. Exponential distributions with
mean field values of 100 and 10 labeled {7)=10% and
(7)=10% are included for comparison.

STEVEN B. LOWEN AND MALVIN C. TEICH

43
n
=
[a
>_
-
(2]
z Oy k=3
L -
o -e[m=10 .
>_
}‘—
-
(an]
& 2
e -12 (T>=10"—
m 10 1 1 1 1 n ‘1"-
o = 0 2 7 6
1072 10 10 10 10

INTEREVENT TIME T

FIG. 10. Double logarithmic plot of the interevent time
probability density function P,(7) vs 7 in Eq. (55) for four
values of the power-law exponent 3, labeled = %, B=1, B=2,
and B=3. The degree of overlap is 10 (4 =1, B =10°, a =100,
(7),=100, u=10"%. Exponential distributions with mean
values of 100 and 10%, labeled {7)=10% and (r)=10% are in-
cluded for comparison. The probability density exhibits a wide
range of power-law behaviors as the time 7 and the power-law
exponent 3 are varied.

terevent times are displayed in Figs. 10 and 12. In all
cases the power-law impulse response function % (¢) be-
gins at 4 =1 and ends at B =10° and each figure is
parametrized by the power-law exponent 3. For Figs. 9
and 10 the rate u of the primary Poisson process M (t) is
10~ * and for all the impulse response functions the area a
is 100, yielding an expected interevent time {7)_ for N (z)
of 100. For Figs. 11 and 12, the corresponding values are
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FIG. 11. Double logarithmic plot of the forward recurrence
time probability density function P,(7) vs 7 in Eq. (54) for four
values of the power-law exponent f3, labeled B= %, =1, =2,
and B=3. The degree of overlap is 0.1 (4 =1, B =10° a =10,
(7),=10°, u=10"%. At time limits short compared to the
characteristic time 7,, the distributions approach an exponen-
tial form with a mean value of 10°. Exponential distributions
with mean values of 10° and 10° labeled {(7)=10° and
(1) =105, are included for comparison.
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FIG. 12. Double logarithmic plot of the interevent time
probability density function P,(7) vs 7 in Eq. (55) for four
values of the power-law exponent f3, labeled :%, B=1, B=2,
and B=3. The degree of overlap is 0.1 (4 =1, B=10% a =10,
(7),=10°, £=10"°). Exponential distributions with mean
values of 10° and 109, labeled (7)=10° and (7) =109, are in-
cluded for comparison. The probability density exhibits a wide
range of power-law behaviors as the time 7 and the power-law
exponent f3 are varied.

u=10"% @ =10, and (7),=10°. Exponential density
functions with mean values equal to 1/u and {7)_ are in-
cluded in all figures for comparison.

Significant differences among the various curves in
Figs. 9—12 result from the varying amounts of clustering
exhibited by the FSNDP. A large degree of clustering in-
creases the probability of very short and very long in-
terevent times at the expense of times near the mean
value, when compared with an exponential density of the
same mean value. Such clustering derives from varia-
tions in the fractal shot-noise rate I(¢), and in Figs. 9-12
depends explicitly on two factors. Increasing the power-
law exponent f3 increases the clustering. For larger f3,
particularly B> 1, most of the area a of the impulse
response function is concentrated in the small region near
the onset A, with proportionately less area in the tail.
For smaller (3, the value of the impulse response function
does not change as much over its duration B — 4. Thus
the shot-noise rate I(¢) exhibits more variation, and the
FSNDP exhibits more clustering for large values of f3, all
other parameters being held constant.

The degree of overlap of the impulse response func-
tions also contributes to the clustering when < 1. For
u(B — A) <<1, the expected time between events of the
primary Poisson process M (¢) is 1/u, which far exceeds
the duration of the impulse response function, which is
B — A. Thus successive contributions to Eq. (1) will rare-
ly overlap. Then I(¢) will be positive only for relatively
short intervals (B — A) separated by much longer inter-
vals (1/u) during which it will be zero, and the events
dN (t) of the FSNDP will be restricted to those relatively
shorter intervals, thereby leading to clustering. If
u(B — A)>>1, however, the successive contributions to
Eq. (1) will tend to overlap, resulting in a smoothing of
the variation in amplitude seen in the individual impulse
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response functions. Indeed, the coefficient of variation of
I, defined as the standard deviation divided by the mean,

varies as ,uf”z. For 3> 1, however, the tail of the im-
pulse response function has little area, and whether or

not it overlaps another impulse response function is much
less important. In Figs. 9 and 10 the degree of overlap
w(B — A) is 10, while in Figs. 11 and 12 it is 0.1.

The forward recurrence time and interevent time prob-
ability density functions of the FSNDP exhibit various
kinds of behavior over the range of times 7. Starting at
7=0, we have PI(O)=1/< T).r, which is constant with f3,
but

P,(0)=1/{1),+{7) var[I], ,

which increases with 3, reflecting the increased clustering
for larger 3. This effect is enhanced in Fig. 12, where the
degree of overlap is much smaller than in Fig. 10. For
small times 7 compared with the characteristic time 7,,
and small power-law exponents 3, P,(7) follows an ex-
ponential density of the same mean, since over this short
time scale the intensity 7 (¢) appears relatively constant.
Agreement with the exponential density is closer for
smaller 8. Similarly, for small 3 the interevent time prob-
ability density P,(7) also follows an exponential form for
small times 7. The mean of the approximated exponen-
tial density is higher, reflecting the conditional intensity
I(t); given that an event has just occurred, the instante-
ous rate is likely to be increased, since P,(0)> P (0).

For large times 7 the effects of the primary Poisson
process M (t) become important. For 8> 1, the area of
the impulse response functions a being concentrated near
the onset time A causes the events dN (¢) of the FSNDP
to be clustered tightly after the primary events. Thus the
long intervals are essential those of the primary process
M (1), and P,(7) follows an exponential density with asso-
ciated mean 1/u. The interevent time probability density
P, (1) follows the same exponential form, but with values
decreased by a factor equal to the area of the impulse
response function a. Each primary event dM (¢) gives
rise to a number of secondary events, and therefore an
equal number of intervals, with mean number equal to
the area of the impulse response function a, only one of
which is the long interval before the next primary event.
In Figs. 11 and 12 the degree of overlap is so small that
long intervals during which the shot-noise rate 7(¢)=0
are common. At these times no events are possible in the
SNDP. Here the form of the impulse response function
is not important, and all converge to an exponential form
associated with the primary Poisson process for times
7>B — A. Finally, for large times (7>>B — A4), regard-
less of the impulse response function shape or primary
process rate u, both P,(7) and P,(7) approach the ex-
ponential forms given by Eq. (57).

F. Gaussian FSNDP

Under suitable conditions, the underlying power-law
shot noise I (¢) converges to a Gaussian probability densi-
ty, and therefore the resulting process N(T) will be a
Gaussian-driven FSNDP. This is important because
Gaussian processes are ubiquitous, well understood, and
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may be completely described by their means and autoco-
variance functions. The process I(¢) will approach a
Gaussian amplitude density in the limit pu— o if
(K") < o foralln, A >0, and B < o for 8= 1,'® as pro-
vided by the central limit theorem. Indeed, expansions
about the Gaussian density quantify the approach to the
Gaussian limit as u, the rate of the primary process M (t),
increases without bound.!® Furthermore, the resulting
FSNDP will not have trivial properties, and in particular
will not approach the HPP limit. The Fano factor of
N (t), for example, will not change as u increases; expres-
sions for the Fano factor F(T) in Egs. (29)-(38) do not
involve u. Thus suitable parameters 3, 4, B, K, and u
may be chosen to obtain an amplitude probability density
for I which follows the Gaussian arbitrarily closely and
simultaneously deviates from the HPP by any desired
amount. In this case the FSNDP closely approximates a
fractal-Gaussian-driven DSPP and may be completely
defined by the corresponding mean and autocovariance
function'®

<I>,=ua=<K)fjt_ﬁdt ,

cov[T],=(K2>ff“"](t2+|r|z)—ﬁdt ,

which indeed exhibits power-law behavior over a wide
range of times 7.

V. APPLICATIONS

The FSNDP provides a well-defined framework model-
ing a number of physical processes. In this section we ap-
ply our model to two areas: Cherenkov radiation result-
ing from the motion of a random stream of charged parti-
cles, and diffusion of randomly injected concentration
packets. In Cherenkov radiation, the particles induce
fields with power-law decay characteristics, which in turn
emit photons. In diffusion, the concentration of a sub-
stance diffuses away from an initial location as a decaying
power-law function of time, and secondary events may be
generated in proportion to this concentration.

A. Cherenkov radiation from a random stream
of charged particles

Charged particles traveling faster than the group veloc-
ity of light in a transparent medium emit photons, often
in the visible range. This phenomenon was first examined
systematically in a series of experiments conducted by
Cherenkov beginning in 1934. We use semiclassical elec-
tromagnetic theory to show that the photons produced
by Cherenkov radiation, arising from a random stream of
charged particles, may be modeled by the FSNDP.

Consider a charged particle traveling along the positive
x axis through a transparent, nonferromagnetic medium
of refractive index n, at a speed v > ¢ /n, as shown in Fig.
13. We define the quantity J =[(nv /¢)>*—1]'/2, which is
a function of the amount by which the particle velocity
exceeds the Cherenkov limit v =c/n. The electric and
magnetic fields are calculated at a distance d from the x

STEVEN B. LOWEN AND MALVIN C. TEICH 43

V4
"xQBsERVAT|or§i‘*~\~
. . POINT N ADVANCING
S Jd WAVE FRONTS
. d /
X
t<o t=0 t>0

FIG. 13. A charged particle moving faster than the speed of
light in a medium emits Cherenkov radiation. At the point
{ —Jd,0,d}, the photon flux density will decay as an inverse
power-law function of time. Wave fronts are shown for a parti-
cle traveling along the x axis at t <0, t =0, and-t > 0.

axis, where the arbitrary point in the x-z plane
{—Jd,0,d} is chosen for algebraic simplicity. We as-
sume that the particle does not experience substantial de-
celeration while it is significantly close to this observation
point. Following Jelley*® and Zrelov,?! we obtain scalar
and vector potentials satisfying the Lorentz gauge condi-
tion

¢=2qn "[(x —vt)?—JXy2+zH]" 172, (59)

2
A= ”7v¢ , (60)

respectively, where g is the charge of the particle.
The corresponding electric field is

— _ g4 L10A
E Ve c ot
2

S Zqi [(x —vt)?—J2(p2+22)] 732 x —vt,,z]}

h

2
zz—q‘g—[(vt)2+2Jdut]‘3/z{(vt+Jd),0,‘d}

n

2

:1212{2[t2+211f]_3/2{t+t1’0’_d/’)} ’ (61)

where
ty=Jd/v=d(n’c2—v )12,

For a nonferromagnetic medium,
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H=B=VXA

=%[(x —vt)2—J 3 y?+22)]737%{0,J %2, — T %y}

2
=2q—dch[(ut)2+2Jdut]*3/2{o,1,0}
2
= 29907 1249 417370,1,0} . 62)
(1))

The foregoing is valid for times when the quantities in the
square brackets in Egs. (61) and (62) are positive—
namely, for t>0. For ¢t <0 the electromagnetic shock
wave generated by the particle has not yet reached the
observation point, so that all fields are zero and there are
no photons. The energy flux density and its direction are
determined by the Poynting vector

<

= EXH
S 47
2qJ? 2 _
=f;———nq2‘:2 —2321{ [(£2+26,2] 73t +1,,0,—d /v}
X 10,1,0}
g’dJ* -3
="——[t"+2t;t]7°{d /v,0,t +¢,} . (63)
TRV

The magnitude of the Poynting vector is
_ q 2dn 2J4
mot

S| [£24+2¢,¢]73

X [£242t,t +13+(d /v)*]'?

_ q2dn2J4

1’1’1)4

_ q2dn?J*

’ITU4

[t2+2¢,¢ ] 3[¢2 42t +(nd /v)*]' 2
(6242, ] 3[4 2e,0+¢212,  (64)

where t,=nd /c. The light will have a spectrum which
may be calculated by Fourier transform methods,’>?*!' or
from Eq. (49). If we define ¥ to be the average frequency
of the light, then the photon flux density as a function of
time may be approximated as

h(t)=|S|/h¥v . (65)

This photon-flux-density time function may be cast in
the form of a simple power-law impulse response function
as in Eq. (2). The magnitude of the Poynting vector, and
therefore the photon flux density, exhibits power-law de-
cay with a power-law exponent that increases at the
crossover time ¢ =t,, and decreases at time ¢ =¢,. No
real medium will pass frequency components of arbitrari-
ly high frequency, and indeed all systems have practical
limits to the frequency components which may be ob-
served at the output. The difference between the upper
and lower frequency limits is the system bandwidth Av.
Similarly, the onset time of the light pulse will be limited
to a value roughly equal to the inverse of the bandwidth;
we define t,=1/Av. In addition, the nonzero size of the
charged particle imposes a limit on the onset time,’! al-
though this limit will be relatively unimportant since we
can assume that the particle is smaller than the wave-

4205

length of the generated photons.

The photon-flux-density time function A (¢) exhibits a
range of power-law exponents as the time ¢ increases.
For times larger than the onset time ¢, but still less than
ty, h(¢) will decay approximately as a simple power law
with exponent f=3. For t, <t <t,, h(t) decays more
rapidly, with A (t)~t % Finally, for ¢ >¢,, h (¢) will de-
cay as ¢t °. Thus,

0, t<t,
t73, to<t<t,

(B~ 78 ot <t<t, (66)
t7 t>t, .

Even for relatively narrow bandwidths, the onset time
will often be several orders of magnitude smaller than ¢,
ensuring a large range of times for which ¢ ~? behavior is
observed. In the wavelength range 536 to 556 nm, as
studied by Cherenkov in 1938 for example, the onset time
is calculated to be 7, =50 fs. Particles traveling close to
the speed of light through materials with a refractive in-
dex as low as 1.2, with d as small as 1 cm to the observa-
tion point, yield a crossover time ¢, =22 ps. Most media
will have much larger bandwidths, and correspondingly
more of a difference between ¢, and ¢,. For such parti-
cles we can make the approximation that A (z)=0 for
t <tgy, and similarly h(¢)=0 for ¢ >¢,, since the power-
law decay exponent increases at ¢t =¢,. The energy-flow
time-response functions due to a single charged particle
emitting Cherenkov radiation may then be closely ap-
proximated by

Kt™3, A<t<B
h(t)=

0, otherwise , (67)

where we identify 4 =t, and B=t¢,.

In media whose index of refraction differs only slightly
from unity, the power-law crossover time ¢, of the im-
pulse response function A4 (¢) will be very small, possibly
smaller than the onset time ;. In that case A (¢) will lack
the ¢ ~3 portion and will be of the form

Kt 73, t>t,
h(t)= 0

However, since the energy production is proportional to
J*4, if the index of refraction differs only slightly from uni-
ty, then J will be small and the total light energy will be
small, thereby reducing the overall number of emitted
photons.

Thus a single particle gives rise to a photon flux densi-
ty that follows a decaying power-law time function. If a
number of particles travel along the x axis, they will
stimulate independent sets of photons, as long as these
particles are separated by a sufficient time interval so that
their respective electric and magnetic fields do not over-
lap significantly. Since the form of the Poynting vector
involves a vector multiplication, cross products between
the two sets of fields will appear, and the resulting se-
quence of photon generations will not be a simple linear
superposition of the photon generations that would result

otherwise . (68)
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from the two particles had they arrived separately. Ra-
dioactive sources, such as alpha emitters and beta
emitters, and particle accelerators operated at low
current levels, generate Poisson time sequences of ener-
getic charged particles with essentially identical positions
and velocities. When these particles pass through a
transparent medium under the conditions mentioned
above, the point process resulting from the generated
Cherenkov photon events will obey the FSNDP model.

B. Diffusion of randomly injected concentration packets

Diffusion provides a broad area of applicability for the
FSNDP model. In classical diffusion, particle concentra-
tions decrease in a power-law fashion. Consider a con-
centration U, of infinitesimal particles, all initially at
some point x=Xx, of a d-dimensional space (d <4), at
starting time ¢t =0. Then the concentration at x=0 at
some later time ¢ will be represented by a Gaussian densi-
ty with a variance that increases with time in a power-law
fashion,?

|Xo|2

U(t)=Uy(4mtA) "9 %exp

=Koexp(—ty/t)t 4%, (69)

where Ko=Uy(4wA)" 92, ty=|x0/?/44A, and A is the
diffusion constant. Except for a rapidly decaying tran-
sient near ¢ =0, negligible when ¢ > 5¢, the concentration
U(t) varies as ¢t~ 9/? and thus decays as a power-law
function. We assume that the particles have some life-
time ¢,, resulting in U(¢)=O0 for tr>t,. If secondary
events are generated proportionally to the local concen-
tration of particles, then the generation rate may be
identified as the impulse response function
Kot 792, A<t<B

h(t)= (70)
0, otherwise ,

where 4 =t; and B =t,. Finally, if new packets of con-
centration are deposited at x, at Poisson times, the secon-
dary event process will be accurately modeled by the
FSNDP. In general, the packets may arrive at points
x7Xx, for some processes, and they need not all have the
same initial concentration U,. The FSNDP model is
readily applied to this general case by using stochastic K
instead of deterministic K in the impulse response func-
tion. Thus diffusion yields a rich area of applicability for
the FSNDP, particularly with exponents =1, 1, and 3,
corresponding to diffusion in one, two, and three dimen-
sions, respectively. In particular, for the case B:%, the
power spectral density will be precisely 1/f; thus
diffusion in one dimension can give rise to a 1/f-type
spectrum. Other values of 5 may also be applicable if the
particles are constrained to remain on a fractal set or are
of two species which combine in pairs of opposite type.

1. Semiconductor high-energy particle detectors

Diffusion and the FSNDP are also important in
describing the behavior of semiconductor high-energy

STEVEN B. LOWEN AND MALVIN C. TEICH 43

particle detectors. A typical detector consists of a lightly
doped p-n junction across which a large reverse bias is ap-
plied.* Energetic charged particles enter the detector,
usually along the p-n axis, and create electron-hole pairs
within a large part of the semiconductor depletion region.
The higher the energy of the particle, the greater the
number of electron-hole pairs produced. These carriers
are then swept out of the depletion region of the diode by
the high reverse-bias field, electrons toward the n region
and holes towards the p region. This occurs before many
of the electrons and holes recombine. However, some of
the carriers do recombine, reducing the detected charge
created by the original energetic charged particle, so a
description of the recombination process is useful.

Consider a single energetic particle entering the detec-
tor at a time r =0. We assume that the electron-hole
pairs are created instantaneously throughout the semi-
conductor depletion region, distributed in a three-
dimensional Poisson fashion, and that they begin
diffusing as soon as they are created. Whenever an elec-
tron and a hole approach within some critical radius, the
two carriers either annihilate each other immediately or
first form an exciton and later recombine. In either case
they no longer carry current and may be considered to be
annihilated. For now we ignore the drift current; later
we will consider the case where drift current is impor-
tant.

The solution to this semiconductor recombination
problem may be adapted from a similar problem that has
already been solved: molecular reactions involving two
species which combine in pairs.’*3* A cursory analysis
for a diffusion process would suggest that the concentra-
tion of electrons and holes would decay in time as r ~ %/,
and indeed if the distributions of the two types of carriers
were highly correlated, then the concentration would fol-
low this form with d =3 for three-dimensional diffusion.
However, often the two carrier distributions are indepen-
dent of each other, at least over short distances. Consid-
er a subvolume of the depletion region which, due to the
variance of the Poisson distribution, has an excess of elec-
trons at £ =0. The holes in this section will be annihilat-
ed at some later time, but the remaining excess electrons
will have to diffuse out of this region before encountering
any additional holes, which will require more time, slow-
ing the annihilation process. This effect is seen on all
time and length scales and results in a concentration that
decays as ¢ ~?/* rather than ¢ ~9/2. If the particle concen-
trations are dependent over distances longer than some
dependence length /,, then the concentration will decay
as t %2 for time ¢t>1t,=12/A.3®> When an electron-
hole pair is created, the electron and hole are initially dis-
placed by a finite length, so the concentrations of elec-
trons and holes will be highly correlated over regions
larger than that mean length.

Including the effects of drift yields still other ex-
ponents. Here the distance traveled by a carrier along
the direction of drift increases from ~t!/? (diffusion
alone) to ~¢! (with drift). Since there are d dimensions,
the total volume swept out increases as ¢/ with diffusion
alone; with drift there are d —1 dimensions varying as
t1/2 each, and one varying as ¢!, for a total volume in-
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creasing as ¢'“ 7172, Since the particle concentration de-
cays as the inverse square root of the volume encoun-
tered, it varies as ¢ ~¢ 174 for independent electron and
hole distributions and as ¢t ~¢ /2 for dependent distri-
butions.*®

Now consider the point process corresponding to the
times of the electron-hole recombinations. The decay of
the number of electrons and holes is due to these recom-
binations, so the rate of recombination is equal to the rate
of decrease of the number of particles. In the presence of
drift and diffusion, the rate of recombination is therefore
given by

0, t<4
h(t)~{¢~17@+04 0 4 <t <B (71)
t‘l—(d+l)/2’ t>RB ,

where we identify 4 =x3/A and B =x?/A, x, being a
minimum separation for created electron-hole pairs, x,
being the maximum separation corresponding to a corre-
lation length, and A being a combined effective diffusion
constant. The impulse response function may be closely
approximated by the form in Eq. (2), where
p=1+(d +1)/4.

If energetic particles impinge on the detector at
discrete times corresponding to a one-dimensional Pois-
son point process, then the resulting recombination pro-
cess will be well described by the FSNDP. Thus the
FSNDP should prove important in understanding the
statistics of carrier recombination within the depletion
region of the semiconductor particle detector.

2. Diffusion on fractals

Finally we turn to diffusion on fractals and percolation
structures. In this case, the power-law exponent is given
by B=d, /2, where d is the spectral dimension of the
fractal set, defined by

where d, is the standard (Hausdorff) fractal dimension
and d; is the exponent describing the power-law varia-
tion of the diffusion constant with distance.’*’ For per-
colation clusters at threshold, the spectral dimension lies
between 1 and 2, and approaches a limit of 4 for an
infinite-dimensional embedding space.*°

V1. CONCLUSION

In this paper we defined a new stochastic process, the
FSNDP, which has unique properties. We then derived
some of the statistical properties of the FSNDP, includ-
ing its moment generating function, count moments and
distribution, Fano factor, interevent time density, coin-
cidence rate, and power spectral density. We showed
that many of these statistics, especially the Fano factor
and coincidence rate, exhibit power-law behavior over a
significant range of times, indicating that the FSNDP is
indeed fractal. In particular, for 0 < <1 the resulting
power spectral density varies as f~ %, where the exponent
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a is defined by a=2(1—/) and varies between O and 2.
For the particular case a=1, the power spectral density
is precisely 1/f. Moreover, such power-law behavior is
prevalent in experimental time sequences, and thus the
FSNDP is expected to be useful in understanding them.
Finally, we considered two applications for the FSNDP
of current interest in physics.

ACKNOWLEDGMENTS

This work was supported by the Joint Services Elec-
tronics Program through the Columbia Radiation Labo-
ratory.

APPENDIX A: EQUIVALENCE OF STOCHASTIC-
RATE AND CASCADE FORMULATIONS
FOR THE SNDP

The SNDP may be formulated as a cluster process of
the Neyman-Scott type or as a Poisson process with a sto-
chastically varying shot-noise rate. These two formula-
tions are isomorphic. We consider the moment generat-
ing function for the number of counts arriving in a time
interval of duration T for a cluster process and show that
this formulation yields results that are mathematically
equivalent to those obtained from the stochastic rate ap-
proach. We use the results for shot noise and the SNDP
number statistics as defined in Secs. III and IV B, respec-
tively.

Suppose that the events from a primary homogeneous
Poisson point process M (t) with constant rate u occur at
times {¢;}, indexed by j, where j ranges from —o to
+ . Each primary event yields a random number of
secondary events occurring at random delay times after
the primary event. Let the number of secondary events
occurring within the specified counting time window
[0,T], due to the primary event j occurring at ¢;, be
denoted by the random function A4 (z;). Since the secon-
dary events are the result of an (inhomogeneous) Poisson
process, A4 (¢;) is Poisson distributed with

T
Al g =hp(—1))= [ Th(t—1;)ds (A1)
and with the corresponding moment generating function
Qsii(9t;=explle "=1){A(t))l;) 4] . (A2)

The angular brackets with a subscript { ), represent ex-
pectation over the distribution of the subscripted variable
or process Xx.

The number of events n occurring in the interval [0, T]
is the sum of all the secondary events indexed by their
respective primary events

n——‘z A(e;) .
j

Similarly, the integrated rate at any time ¢ may be ex-
pressed as a sum of the integrated impulse response func-
tions

W)= hp(t—t;) .
j

(A3)

(A4)

The moment generating function for the number of
counts n becomes
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Q,(s)={exp(—sn)), =<exp

—s% A(t;) ]>n=<[jl exp[~—sA(tj)]>n=<I;[ (exp[—sA(tj)]|lj)A>,,/§

(e *—1) 3 hpl0)
J

>xr,-1

:<IjI QA(zj)(S) tj>§fj§:<rjl exp[(e S—1)( A(zj){tj)]>“j]:<exp

=(exp[le *—1)W])p=0Qp(l—e %) .

pl Dw=0w (A5)
Thus the number of counts occurring in an arbitrary interval of length T, calculated within the framework of a cascade
point process, is the Poisson transform of the integrated rate W, thereby demonstrating the equivalence of the two ap-
proaches. This result may be extended to encompass the multifold statistics of the SNDP, showing that the two formu-
lations of the SNDP are entirely equivalent.

APPENDIX B: INTEGRATED FRACTAL-SHOT-NOISE
CLOSED-FORM MOMENT GENERATING FUNCTION FOR =2

In the special case =2, 4 =0, B = oo, deterministic K, and nonzero and finite 7T, a closed-form expression exists
for the integrated fractal-shot-noise moment generating function Qy(s). If s =0, then Q;(0)=1 follows from the
definition of the moment generating function. For s >0, we begin with the form in Eq. (8),

_ro N y+uT 5 ]_ ] 0 y+uT _, ] ]
1 = K d 1|dy—+ —sK —1
n[Qy(s)] f*uT [exp { s O‘ufo x “dx y fo exp | —s O,ufy x “dx dy

© —sK
=—uT— [ |1—exp Z—B’L (B1)
0 y +uTy
After integrating by parts and performing the substitution
2
u=1+-WD/2 (B2)
y tuly
we obtain
172
2sK 2sK 2sK

— 7 T 20 o e xtl _ 2o

In[Qp(5)] uT B T fl - 1 |exp T x [9x
2sK 2sK
_ uT 0 ® 1 _ 0
=—uT+ ) usKexp T fl -1\~ exp T x |dx
25K w x 2sK
—usK gexp T fl 1) exp | — T x |dx
2sK 2sK 2sK
z—ﬂz—T—,usﬁo exp TO H '7{0 4 J H, TO (B3)

APPENDIX C: SHOT-NOISE AMPLITUDE 0<d= max{sh(l)|c StSw}<ewo . (C3)

DISTRIBUTION FOR INFINITE-AREA TAIL Th
en

For impulse response functions such that |—pd

f()m{l—exp[*sh(t)]}dtz [ “shindt=+

[ “h(vdt=w (C1) d .
for all ¢ < o, the shot-noise process I (¢) will be infinite (C4)
with probability one. To show this, we consider the mo- and, therefore,
ment generating function Q,(s) (Ref. 22) of the shot-noise
rocess I(t),
proce 0,(s)=exp(—p oo )=exp(— o )=0 . (C5)
Q,(s)=(e ™),
—exp [—pfow{l—exp[——sh(t)]}dt ) (C2) Thus Q,(s) is given by
= - irectly from th L, s=0
If s=0, then Q;(0)=1 follows directly from the Q,(s)= 0, 50, (C6)

definition. Otherwise, for s > 0, pick ¢ and d such that
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so that

Pr{I <x}=0 for all x < . (C7)

APPENDIX D: SHOT-NOISE AMPLITUDE
DISTRIBUTION FOR NORMALIZED
INFINITE-AREA TAIL

For impulse response functions such that

[ Tgdt= oo

c

(D1

for all ¢ < o, the normalized shot-noise process I (t) will
approach a constant value. To show this, we construct a
set of shot-noise processes I5z(t), depending explicitly on
the value of B, with corresponding impulse response
functions

qg(t), A<t<B

hp(t)= 0, otherwise ,

(D2)

where the normalizing constant g is defined by

—ln[Q,B(s)]=fj{l—exp[sqg(t)]}

> 1—exp[sgg (c)]

sqg (¢)

as B— . Thus for the limiting process, we have

s 1—exp[sqg(c)]

< _ <
542 (¢) < —In[Q;(s)]=as .
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J " hp(ndi=q [ g udu =

Thus the area a of the impulse response functions hg(¢) is
constant, while the duration B — A4 increases without
bound as B increases. The limiting process is then
defined as

I(t)= lim Igx(t) .

B—x

(D3)

(D4)

The moment generating functions Q;z(s) approach a sim-
ple form Q;(s)=exp(—as) in the limit B— . We con-
sider the negative logarithm of the moment generating
function of the representative shot-noise process Ip(t)
and first find an upper bound:

~In[Qy5(s)1= [ *{1~explsqg(n)]}dr

< fjsqg(t)dt=as .

For a lower bound we truncate the integral at some value
C’

(D5)

dthcB{I—exp[sqg(t)]}dt

f g1 )dt_l—exp sqg(c f

e [ Penar”

_, 1—exp[sgg(c)]

sqg(c) @

(D7)

Since we can pick ¢ to be any large number, the fraction in Eq. (D7) can be made as close to unity as desired, resulting

in
as = —In[Q;(s)]=Zas ,
which leads to

Q;(s)=exp(—as) ,

(D8)

(D9)

proving that the normalized shot-noise processes I (#) tend in distribution to a constant value equal to the area a of the

impulse response function as B increases towards infinity.

APPENDIX E: INTEGRALS FOR FRACTAL SNDP TIME AND NUMBER STATISTICS

Because the time and number statistics of the SNDP can become quite complex when the power-law form Kt ~# is

substituted for A (t), the details are provided in this appendix rather than in the body of the paper.

The pertinent

figures were generated by numerically integrating the resultant expressions.
For the time statistics we begin with p (0) and obtain its first two derivatives. We consider the case for deterministic

K,. From Egs. (18) and (53) we have

Pr{n=0}=p(0)=Qy(1)=Py(t)=exp

wf el

where f(T)
density is given by

—hp(t)]—1}du |=exp[pf(T)], (E1)

, implicitly defined in Eq. (El), is employed to simplify notation. The forward recurrence time probability
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—_d - df(7)

P(7) dTPO(T) . wuPy(1) dr

whereas the interevent time density is given by
2
1 d? i df (1) d*f(r)
P = — ——P T = P .
2(7‘) <I>I de ()( ) s a O(T) d’/' d7-2

Thus Py(7), P,(7), and P,(7) depend in turn on f (7) and its first two derivatives, which are provided below.
The function f(7) assumes four different forms, depending on the value of B and the relative magnitudes of A4, B,

and 7.
For B#1and B> A +7,
, K -, K
r@=[""exp — g A | du+ [ 777 exp e RN
K
+fBB—,~ exp | — I_OB(BIMB—uPB) —1|du ,
_, K K
—dj;(:) =K0ff (u+71)"Pexp | — 1_0/3[(14 +) T B—y B ldu+ [1—exp | — 1—~OB
d*f(r) _ K, _ _ _ K,
=KoB Pexp | ———=[B'" P—(B—1)""F] | =Ky(A4 +7) Pexp | —
de 0 P I_B[ ] 0 p 1__/3
+K fB (Bu P '+ Kyu *Pexp | — Ko (u' " P—(u—7)""P] |du
0 A+T 0 I*B :

ForfB#land B< A4 +r,

K
f(T):fj exp —ﬁ(ul_/’"A'_B) —1|du+(r+A4—B)e “—1)
K
+fj exp | — I_OB(BIVB—uFB) —1\|du ,
df(r) _
J— :1__ a’
dr ¢
Dy
dr?
Forf=land B> A+,
B KO A+ A KO B KO
-T u T u
= M —1|du+ 2 —1|du+ 21—
fir) fA u-+rt ]du fA u “ fB*'r B
K Ky
df (r) B—7 u ° A
— =K ———du — -1,
dr OfA (u+T)K°+1 “ A+T ]
K K K
d*f(r) _ . (B—1)° A4°° B—r  u°
) =K, Ko+i —K, K0+1_K0(K0+1)IA —mdu .
B (A +71) (u +71)
Forf=1land B< 4+,
Ky Ky K,
f(r)=fj % —I]du—l—fj % —1|du+(r+4—B) »l‘;l —1],
KO
_df |4
dr B ’
dzf('r):

dr*

(4 +7)"F—a'"F)

du

(4 +T)‘B—A‘"ﬁ]]

du ,

’

(E3)

(ES)

(E6)
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The counting distribution of the FSNDP is determined by a recursion relation. We again consider the case for deter-

ministic K. From Egs. (16) and (17) we have

m

1 .
T S antm =

pim+1)=

and

¢ E%(f‘w (R (K, )] exp[ —hT(K,t)]dt> .

(E8)

(E9)

The recursion coefficients ¢; have four different forms, depending on the value of 3 and the relative magnitudes of 4, B,

and T.
ForB#1and B> A4 +T,
_ BKp' A+T g 1—Byi+1 Ko o 1p 1-8
Ci—m fA (u — A ) Tlexp | — 1_B(u —A ) |du
_+_fB‘T 1-B_,, 1-Byi +1 K, 1-B_, 1-B
[(u+T) P—u I lexp|———[(u+T) P—u 1 1du
A 1—8
B 1=B__, 1-Byi+1 Ko 1-B__, 1—B
+ [ B TPmu T lexp | — g B Ut du (E10)
ForB#land B< A +T,
pK! B g 0 _ _
;= (u'"P— 417 B)*lexp | — (u+T)'"P— AP |du
=g | Pl gl ]
+fB 1-B_, 1-Byi+1 Ko 1-B__ 1-B
A(B u' ") Tlexp |— _B(B —u ") |du
1-8 1—Byi+1 Ko 1-B 1-8
+(T+A—B)B'"P—A4 7Py lexp | — 1__B(B —AF) (E11)
ForB=1land B> A+T,
c:‘uKéjL1 fBiT In utT o “ Kodu
! il 4 u u+T
e ) i+1 y K, . B i+ ) K,
+ [ | = dut [ | 5 | (E12)
ForB=land B< A4 +T,
; i +1 K i+ K i+1 K
_ BKG Bl [al]™, ra] [u 4] 5 u |0
=" {(T+A4=B)|In |~ 2|+ m S dut [ | = | et
(E13)

The count moments of the FSNDP are also determined
by a recursion relation, but in this case we can easily con-
sider stochastic K in addition to deterministic K,. From
Eqgs. (23) and (24) we have

Fr(tm +1)— g bi

m
i
i=0

Fim=0 FO=1 (E14)

b,-Ep<f_1[hT(K,t)]"+ldt> . (E15)

The recursion coefficients b; have four different forms,
depending on [ and the relative magnitudes of A, B,
and 7.

For f#1and B> A4 +T,

Lo —p) !

D TR S R R
+ [T B 4y
A

+fB (B B—y 17 B)itlgy
B—T

(E16)
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ForB#41and B< A4 +T,

b= ﬂ(Ki+1>

g (T+A4—B)B'"F—4'"F)it!
11—

+ [

I—B_A]*ﬁ)i-Fldu

+ [ B P (E17)
ForBf=1land B> A+T,
i+1 _ i+l
b= KD e | HET g
i! A u
4 i+1
A+T u
+ In |
fA n 1 du
i+1
B
+[ || du] (E18)
Forf=land B A+T,
i+1 i+l
b =KD Niry g —p) | | £
1!
i+1
B u
._+_ —_
fA 1 du
B i+1
+f = du (E19)

APPENDIX F: EXACT AND LIMITING FORMS
FOR THE FANO FACTOR

Closed-form expressions for the FSNDP Fano factor
do not exist in general, although such forms may be ob-
|
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tained in some special cases and limits. We present below
a more detailed treatment of these expressions than in the
body of the paper.

For 3= the Fano factor becomes

(K?)
T(K )(B1/2__ A 1/2)
L B—u

X T—u (t2+ut)""%dt du

Jy =],

where the upper limit of the outer integral is defined as

F=1+

(F1)

L=min(T,B—A) . (F2)
For the inner integral we have
fB*“(t2+ut)“/2dt
4
=2{In[¢"2+( +u)' 2187,  (F3)
so that the outer integral simplifies to
2f T —wn[1+(1—u /B)"/*)du
—2 —w)In[1-+(1+ 172
fo Wn[1+(1+u / A4)"*1du
172
+1In iz (2TL—L?) . (F4)
The remaining integrals are of the form
szL<T—u)nn[1+(1+u/c)1/2]du (F5)

We make the substitution v=(1+u/c)!/?, whereupon
the integral in Eq. (F5) becomes

172 172
4c(T+o) [ pin1+oiao —ae? [ 01 +viaw

=LQT —L)In[1+(1+L /c)'?]+c(2c+2T—

This yields the following for the Fano factor itself:

LL)1+L /e)'*—2c?—2cT—TL +1L* .  (F6)

_ <K2> Bl/2+(B _L)1/2 ) 1/2
F=1+ (KB A= 417 L(Q2T —L)n A (AL +4(L —6T+2B)B"—BL)
+(L —6T —2A4)(A*+ AL)'*—2(B*— 4*)+2T(B+ 4) (F7)
Finally, we substitute the smaller of B — 4 and T for L to obtain Egs. (31) and (32).
For =2 the Fano factor becomes
_ 2AB(K?) —2
F=l1+— (K>f —u)f “(2+un) "t du (F8)
with L defined as above. For the inner integral we have
B—u, — _(B-ul |u u 2 2
+ = — =t dt
fA (t°+ut)"“dt du fA BEN PO P
B_
—,, =3 u u ’
=u ——————=2In()+2In(t +u) , (F9)
t t+tu A
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so that the outer integral simplifies to
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L
L2 Lt —L v | D20 L hn—usB)+ - (F10)
u?> u Au u? u B Bu |,
The integral is not defined in the limit 4 —0, so we must use 'HGpital’s rule:
— . 1.
fim | | L2 ln(tu a)— L | =7 tim e/ mu/A oy OHu /A L a1 u s 4)
u—0 u? u Au u—0 u? U0 u A u—-0
T 2
=——————0. (F11)
24 4
Similarly, for B we obtain —7'/2B%+2/B. This yields the following for the Fano factor itself:
2
o 2ABKD) W T 2 T T 2 T2 L hwa+r/a
T(B—AXK) 242 A AL 28> B BL |L? L
T 2 1
+ |~ —=+— |In(1—L/B F12
2L B n( /B) (F12)
f
Finally, we substitute the smaller of B — 4 and T for L to Y y—u, -B
obtain Egs. (33) and (34). f f =T fo (1 u)fx (t"+ut) Pdtdu . (F17)
Approximate expressions for the Fano factor may be = We fix x =0 and use I’'Hopital’s rule to obtain
found for arbitrary S in the following limits: T << A4, y=u, 5 p 1—28
A <<T <<B, and T >>B. Rather than considering limits yllr}r; f (1—u) f (" +ut) Pdt du /y
of the entire Fano factor expression _
=[2(1—2pB)] (F18)
_ 2(K?) o
F=1+ T(K)fﬁtfﬁdt So the Fano factor is given by
L 8 B—u, , B F~1+<—K2—>—(1—_—B)B7/3T (F19)
[T —w [ un Pdrdu (KY(1=28) :

(F13)

we obtain limits for the integrals within the expression.
For T << A, L =T. By using I’'Hopital’s rule twice, we

obtain
B —
u) f P

lim [ (T “(62+ut)Pdt du /T?
T—-0 0

=+ P, (F14

so that for small T,
2y B -2
(K >fAt dtT
B
K t ~Bdt
&) J

For A4 <<T <<B, again we have L =T, but now the
limiting expression depends on . Since in this case

A << B, the integral in the denominator of the Fano fac-
tor expression will tend to a simple limit,

F=1+ (F15)

B'"B/1—pB), B<1
In(B/A4), B=1,

B _
[0 Par— B/A— w (F16)

A4'7P/p—1), B>1.
The double integral in the numerator of Eq. (F13), hence-
forth denoted f f, is more complicated; we consider in
turn five expressions for different ranges of 3. For
0<pB<i,wedefinex=4/Tand y=B/T. Then

If =1, we again fix x =0 and obtain with "'Hopital’s
rule,

lim f (1—u) fyiu(tz-Fut)il/zdt du /ln(y)z% ,

y-—®
(F20)
so that
_ (K?) L
Fr14 50 8B n(B/T)]T (F21)

For 1 <fB<1, we consider the limits where both x —0
and y — . Here the integral in the numerator becomes

ff T3~ 2/)’]‘ (1—u) fo t24ut) " Bdt du

2(1—B)(3—-2B) L) ’
(F22)
so that the Fano factor is given by
2 _ —
1t SEDTA=BTQRB=1) pp120-p) (F23)

(K Y(3—2B)T(j3)
For B=1wedefinex=T/Aand y=T/B. Then
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f1=1)r-
—Tfll

u)fj‘u(tz-’rut)_ldz du

In( l—yu)du—f-Tf “In(1+xu)du.

(F24)
The first term approaches zero as y — 0 since

O>f11

In(1—yu du>f uln(l—y)du

=(T/2)In(1—y) (F25)

and In(1—y)—0 as y —0. For the second term, two ap-
plications of 'Hpital’s rule and some simplification yield

lim f 1n(1+xu )du /ln =1. (F26)
X —> 00
The Fano factor is therefore given by
2(K?) InXT/A)
~ F27
F=1+ (K) In(B/A) (F27)

Finally, for 8> 1 we definex=7/A4 and y=B /T, and

J =472 x—w [ "> +u)Pdtdu . (F28)
0 1
We fix y > 1 and use I’'H6pital’s rule to obtain
I —u) [P 4 unPdr d /
Jim f x u)f1 ( ut) u /[ x
=[2(B—1?]" (F29)
The Fano factor is thus given by
(K?) —
Felt+—o—o——q'7h (F30)
(KXB—1)
For T>B, L=B— A. Using the substitution

v =t +u and interchanging the order of integration in the
numerator yields
J

Pr{&(r,7+AT) and &(0,AT)}

-/ f Pr{&(1,7+AT) and 6(0,AT)|I(0)=x and I(r)=
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2(K?) rB _
F=1+ t P
(K) J

X [ 11+ —v)/Tho ~Pdv de/ [ "+ Pt .
t A

(F31)

In the limit 7 >>B, the (¢t —v) term in the numerator
vanishes so that

F~1 22§)>f [ o ar [ [P

t

=1+ 2<<§)>%[ft ﬁdt] /f t Pt

(K?) rB _
1+WIAZ Bar .

(F32)

APPENDIX G: NORMALIZED COINCIDENCE RATE

The normalized coincidence rate is a measure of the
correlation between events with a specified time delay be-
tween them and is defined as

g?(r)= lim Pr{&(r,7+AT) and 6(0,AT)}
AT—0 Pr{&(7,7+AT)}Pr{E(0,AT)}

For a SNDP, we use stationarity and the definition of a
Poisson process to obtain

Pr{&(r,7+AT)}=Pr{6(0,AT)} =(1),AT=paAT .
(G2)

(G1)

For the joint event we condition on the value of the driv-
ing shot-noise process I (t), yielding

y}Pr{I(0)Edx and I(7)Edy}

=f fz O)AT)(T)AT)Pr{I(0)Edx and I(1)Edy}=(AT)I(0)(r)),
X"y

= zaz(AT)2+,u(AT)2<f © h(K,0h(K,t +T)>dt
Therefore, the coincidence rate is given by

(2) = i
g7 A;w“

- <fj°wh(K,t)h<1<,t +T)>dt :

(G3)

(AT)2+u(AT)2<f7 h(K,)h (K,t +7) d:) ]/,u, (AT)?

(G4)

In the limits 7<< 4 and 4 <<7 << B, the coincidence rate approaches a simpler form which may be found by arguments
similar to those used for the Fano factor, except for the case 4 <<7<<B and 8> 1, where unbounded area near the on-
set of the impulse response function makes the resulting point process intractable. In that case we use 'Hopital’s rule
to obtain

lim fB‘T(t2+Tt)_Bdt/th‘Bdt='r"/3 (G5)
A—-0 A A

Therefore, for > 1 and in the limit 4 <<7 <<B, we have
g —>1+({K?) /ul{K )Y NB—1)AP~ 1776 (G6)
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