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Two descriptions of light passed through a random medium (the turbulent atmosphere), as recently
proposed by Diament and Teich and by Tatarski, are derived from a unified approach based on the
coherent-state technique. The photon counting distributions for both descriptions are numerically
compared for special states of the field (chaotic and coherent radiation and their superposition); it is
found that these distributions lie very close to each other for non-vacuum-states while they precisely

coincide for the Fock states.

I. INTRODUCTION

Recently, two alternate descriptions have been
proposed for the statistics of light passed through
an inhomogeneous random medium and particularly
through the turbulent atmosphere. The first of
these, proposed by Diament and Teich, * uses a
slightly modified form of the standard photodetec-
tion equation in order to determine the photon
counting statistics; this description has been used
for studies of special states of the field, such as
chaotic radiation and coherent radiation, as well as
their superposition, in a number of papers. '™®
The other description has been proposed by Ta-
tarski, ” who has considered second-order correla-
tion effects for fully coherent monochromatic
light (monochromatic coherent state). These re-
strictions have been removed by Pefina, ® and the
Tatarski description has been extended to corre-
lation effects of all orders for light having ar-
bitrary statistical behavior; as a consequence, the
modified photodetection equation for the photon
counting statistics has been obtained.

In this last paper, ® it has been shown that both
the Diament and Teich and the Tatarski descrip-
tions can be considered valid quantum mechanical-
ly; the first is based on the number operator # in
a volume V of the field at time ¢, while the second
is based on the operator v, representing the num-
ber of photons crossing a surface S in the time in-
terval (0, T') (under the assumptions S>> 2% and
T > w™!, where 1 is the wavelength and w is the
frequency of the light). Although there are some
special conditions required for the validity of each
of these descriptions, ® for V= S(c/V€)T (here ¢
is the velocity of light i vacuo and € is the mean
permittivity of the medium) both methods might be
expected to yield similar results. We discuss this
point in greater detail in Sec. II by treating the
propagation of light through a random medium as

KA

a dynamic problem with the help of the coherent-
state technique.®® In Sec. III, we provide a nu-
merical comparison for the photon counting dis-
tributions calculated by means of both of these
descriptions.

II. UNIFIED TREATMENT OF BOTH DESCRIPTIONS

The detailed treatment of the propagation of
light through a random medium will be given else-
where!?, we restrict our discussion here to those
results required for the purpose of comparing the
Diament-Teich and the Tatarski descriptions.

We describe the field through the number opera
tor

) :j Atw). Aw)d> = 2 ala, , (1)
L3 r
where

Aw)= '32 Al (k)a-

i (BoR=rct) (2)

Here, we allow for simplicity that the volume V
coincides with the normalization volume L3 of the
field (this is, at least approximately, the case in
practical realizations); A(x) is the detection op-
erator at the space-time point x = (%, ¢), @, and
a{ are the annihilation and creation operators of
a photon in the mode A= (k s), respectively, k is
the momentum of the photon and s is its polariza-
tion, ¢ is velocity of light in vacuo, and €“’(K) is
the unit polarization vector.

In the Heisenberg picture, the following equa-
tions of motion apply for the time-dependent mode
tield operators a,(t):

da x(t

in =2 < (a0, A1), (3)

where ﬁ(t)is the Hamiltonian of the system. Forthe
usual general types of interaction of the field with

matter, including the interaction of light with a
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random medium, ? these equations may be solved
in the form™

Q) = 20 [un,(t)d, + vy, (t)al], (@)

where the functions u,, (¢) and v,, (f) are obtained
in the process of solving Eq. (3), and &, and al
are the initial values of the annihilation and crea-
tion operators, respectively; these functions obey
the identities

uut-vot=1, (5a)

ub - it =0 (5b)

as a consequence of the validity of the commuta-
tion rules

[3,¢), al ()] = [ay, ale] = by , (62)
[a,), ay ®)] = [a1), a%®)]
= la)" &7&'] = [a'{, a;’] = 0. (Gb)

InEqgs. (5), " and v" are the Hermitian conjugates
to the matrices # and v, while # and ¥ are their
transposes. For our purposes it is sufficient to
consider only the diagonal elements of the matrices
u and v, while off-diagonal elements may be ne-
glected!’; we denote u,, = u, and vy, = v,. This
assumption implies that permittivity fluctuations

of the random medium vary slowly with the spatial
variable X. Thus Eq. (5b) reduces to the trivial
identity, and Eq. (5a) yields

a2~ foa]?=1. (7

For the case of radiation transmitted through
the turbulent atmosphere or other random media,
however, we may assume the medium to be passive
and therefore we may neglect the second term in
Eq. (4) and write®!?

a\(t)=u,(t)a, . (8)

This approximation implies that the self-radiation
of the medium is not taken into account, Although
Eq. (8) violates the commutation rules[Egs. (6)] in
the exact sense, we may assume that they are
valid for @,(¢) in the approximate sense.

We define the normal characteristic function
(see, e.g., Ref. 12) by

CcU(B,}, t)=Tr {E(t) I eﬂv?{e-ﬂi‘%}
2

~ ot e
= Tr {p I;I Pt o Bx"l“’} ,  (92)

and the photon-number characteristic function by
C™ (s, t)=Tr{p(t)e* 1= Tr{p '}, (9b)

where B, are complex numbers, s is a parameter,
# is given by Eq. (1), p is the density matrix in-

dependent of ¢ in the Heisenberg picture, and p(t)
is the time-dependent density matrix in the Schro-
dinger picture. Moreover, making use of the
Glauber-Sudarshan diagonal representation for the
density matrix'®

pt) = [oday, &) {ah) at| d¥{a)} (10)

[here 1{@,}) represents a coherent state, while
o({a,}, t) is a weight function], we obtain from Eq.
(92) (see Ref. 14) that

o{ant, ) j Cc By, 1)

X I} exp(- Byat + Bra,) d®p, /7%, . (11)

while the integrated intensity distribution P(W, t)
is given by

P(W, t) I ¢(ayl, t)ﬁ( W-2 Iaxla) a*{ay} .
(12)
Using Egs. (9a) and (8) in Eq. (11), we arrive at

o({e, t)=j TUAR) | EICRPRGUAYLA

-(1 é(al—ux(t)vx)> : (13)
by

where we have used Eq. (10) for £=0; v, is the
eigenvalue of c'z\,t in the coherent state I{')/A}). From
Eq. (13) it is clear that the initially coherent state
remains coherent for all time. Further substitu-
tion of Eq. (13) into Eq. (12) yields the expression

e, t)-(s(w-2 @) ).

We further assume that all u,(¢) are the same, *°
i.e., all mode functions are very closed and vari-
ous modes are specified by the wave vectors k,,
Ky, ..., with Ik, I=1k,1=... . Denoting lu,(t)I?
=K (t), which is the typical fluctuating quantity in
the random medium obeying the log-normal proba-
bility distribution in the turbulent atmosphere, and
also denoting Wo=73, 17,!%, we may rewrite Eq.
(14a) in the form

P (W, t)=(O(W-K({t)W,)) .

(14a)

(14b)

Assuming unity photoefficiency for simplicity,
the photon counting distribution is then given by

p) = pln, 1) = [P(W, t) (W"/nl)e™ aw
= [T [ [ W PE®) oW -KW,)
XW"/nl) e dW,dK dw

= [T POV P )W) n 1 ]e™0 dWodK

- jo“ boln, K(n)) P(K)dK , (15)
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where the additional average over K with the prob-
ability distribution P(K) has been carried out, and

boln, K(m))= [ P(Wo) [(EWo)"/n]e ™ o0dw, .
(16)
Equation (16) represents the counting distribution
for radiation in the absence of atmosphere. In
Eq. (15), the total mean photon number {(#) is as-
sumed to be a stochastic quantity K(n). This is
just the description proposed by Diament and
Teich.! In general, the distribution P(K) depends
on the time f=2/c, where z is the traveled dis-
tance.
We return now to Eq. (9b). Substituting 7(¢)

= $2a](t)a,(t) into Eq. (9b) and using Eqs. (6), we
obtain (see, e.g., Ref. 14) the following photon-
number characteristic function:

Cc ™ (s, t)={explisn(t)]) =(t exp[(e’ - 1) (t)])
= (exple™ - )W) . 17)

Here 9 denotes the normal order of the operator.
Equations (8) and (10) for #=0 have been used, as
has the expression

W(t>=<{ax}iﬁ<t)l{al}>=>; |a,(t) |2= K ()W, .

Note that
K(t)=|uy, ()P,

Wo={{a} 720 [{ay}) = -? [ahlz, o= ZR&;&A .

A Fourier transform of Eq. (17) leads to Eq. (15)
again [under the brackeis in Eqs. (17) and (18) we
understand that the average is also over K.

On the other hand, using Eqs. (6) and (8), we
may write

C™(s, t)=(explisii(t)]) = (explisK(t)n,])
= (expl (€*¥® — 1) Wy]). (18,

A Fourier transform of this quantity yields pre-
cisely the modified photodetection equation ob-
tained in Ref. 8 as a consequence of the Tatarski
description:

P)=p(v, )=po(0) b(v)+ 2 LoIPE/R)
n=1 (19)

We have used v instead of # to point out that n(¢)

in Eq. (18) is not an integer [which is a conse-

quence of the fact that K(f) is not integer J;

8(v) is the Dirac 0 function. It is clear that

Jyp(v)dv=1, and for 0~ 0 [in Eq. (20)] it holds

that p(v)=po(v). For the case of the turbulent at-

mosphere, the probability distribution P(K) is given

by the log-normal distribution!

(- 5 o
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where 0 is the standard deviation of the logarithm
of K.

We see that Eq. (19) represents a generalized
function arising as a result of the rapid growth of
the corresponding sth moment,

w9 = <Ks>:21 a, (Wi (21a)
while from Eq. (15)
ey - ,Zf a K (WY (21b)

where the a; are well-known coefficients (see,

e.g., Ref. 14). Thus, in the Tatarski description,
the influence of the random medium is included in
the photon number v [v(t)=K(¢)n,], while in the
Diament-Teich description, it is included in the
“classical” integrated intensity [W(¢)=K(t) W,]. ®
Consequently, the Tatarski description includes

the physical vacuum of the self-radiation of the
medium, while this radiation is completely neglect-

pe)
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FIG. 1. The photon counting distribution p(v) vs v for
the levels of turbulence o=0 (line a), o=% (curve b), and
=% (curve c) for an incident field in the Fock state 120).
Both the Diament—Teich and the Tatarski descriptions
give the same result.
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FIG. 2. Comparison of the photon counting distributions
calculated from the Diament—Teich result given in Eq.
(15) [dashed curves], and the Tatarski result given in
Eq. (19) [solid curves], for ¢=0 (curve a), o=% (curve
b), and =% (curve c). (a) (n,)=0, {(ng)=20, y=0; ()
(ne) =18, (ny)=2, y=1; (c) {n.)=20, {ng)=0, indepen-
dent of M and y. Where only a solid curve is shown, both
the corresponding dashed and solid curves coincide. In
the Tatarski description, only the weight value p((0) is
shown for v=0.

ed in the Diament-Teich description. This dif-
ference is reflected by the “shot-noise” term
po(0)8(v) in Eq. (19). The precise arguments sup-
porting this, as well as the following discussion,
must be based on the exact photodetection equation
in the presence of a random medium, as obtained
in Ref. 10, That treatment takes into account both
terms in Eq. (4), and therefore contains both of
the above descriptions as useful approximations.
Making use of Eq. (20), we have

(K'Y = e ©212)i =1 , (22)

which grows rapidly with 0. The rapid growth of
Eq. (21a) with the level of turbulence [compared
to Eq. (21b)] is, in fact, a consequence of the
violated commutation rule for ax(t), which in the
J Tatarski description reads [a,(), al(t)]=|u,(¢)|?
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=K(t)>1 [from Eq. (7)]. However, the commuta-
tor reflects the contribution of the physical vacuum,
and so this leads to an increase of the probability
of observing the vacuum state (v=0), where the
difference between Egs. (21a) and (21b) is cumu-
lated. We see from Eq. (19)that for v =0 only the
first singular term [if p¢(0) #0] is nonzero if P(K)
is given by Eq. (20), while for v >0 the first term
equals zero, and only the second regular term in
Eq. (19) is nonzero. The probability of observing
a nonzero number of photons (photoelectrons) is
altered very little compared to Eq. (15). This is
demonstrated for various states of the field by the
numerical data presented in Sec. III

III. NUMERICAL COMPARISON OF THE TWO
DESCRIPTIONS

First we discuss the Fock state |m) for which
por)=0(m —m); in this case Eq. (19) gives
P(w/m
pW) = Py/m) / )

[po(0)=0 for m >0], while Eq. (15) leads to the same
expression,

pln) = J 6(n -~ Km)P(K)dK = P(”/m),

using the property for the Dirac 6 function ad(ax)
=6(), for @ >0. The corresponding curves are
presented in Fig. 1for 0=0, 3, and 2 (the highest
value corresponds to the very turbulent atmo-
sphere), demonstrating the influence of turbulence
on the photon counting distribution in a “pure”
form.,

Next we have numerically compared the two
prescriptions, Egs. (15) and (19), for incident
chaotic light, coherent light, and their superposi-
tion, For py(2), we have used the physically real-
istic expression!®’16

bofn) = r(n:M) ( 1+ <n°'>)-M ( 1 <1Z>> )
o[- ety | (- o)
(23)

where I'(z) is the gamma function, L¥(z)arethe
Laguerre polynomials, 17 ¢z, and (n.,) are the mean
photon numbers in the coherent and chaotic fields,
respectively, and the degrees-of-freedom param-
eter M is given by'®~20

(ne) +2(n,)

= )y s 20057 (24)
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- po(0) for v=0 [instead of p4(0)5(0)].

1
with
2 (TT | cn 2
yi=T [ L [yt [Patat, (25a)
and
= -2 T T ch c
F1=T2Re [ [ vt 1)y (ty— t,)dt,dt, .
0 "o -
(25b)

Here y° and y™ are the second-order degrees of
coherence for coherent and chaotic fields, re-
spectively. We have performed the calculations
for a Lorentzian spectrum with chaotic light of
mean frequency w, in coincidence with coherent
light of frequency w.® for {(n.)=0, (1) =20 (pure
chaotic light); (n.)=18, (n4) =2 (superposition of
coherent and chaotic light); (n.) =20, (ny) =0 (pure
coherent light); and for y=I'T=0 (0.01), 1, and
100 (T is the half-width of the spectrum), with
0=0, 3, and 3. The data calculated from Eq. (15)
have been discussed in Ref. 6, while those obtained
from Eq. (19) have been calculated using the Co-
lumbia University IBM 360/91 computer. The in-
fluence of the turbulent atmosphere on the photon
counting distribution has been discussed in Refs.
1-3, and for light of arbitrary spectrum in Ref.
6; it has been shown that turbulence leads to shifts
of the maxima of the photon counting distributions
to lower values of v and to a broadening of the
curves (cf. Fig. 1). It also leads to a smoothing
of spectral information (with increasing y=I'T, all
curves tend to peak).

Consequently, we compare only the values ob-

" tained with the help of both methods for 0=0, 3,

and 2 (curves a, b, ¢) and for (#.)=0, {nq) =20,
y=0 [Fig. 2@)l; (n.)=18, (ng)=2, v=1 [P_‘ig.
2(b)]; and ()= 20, (2= 0, independent of M and y
[Fig. 2(c)]. Thesolid curves are calculated after Eq.
(19), while the dashed curves are calculated after
Eq. (15). If only one curve is shown, the corre-
sponding dashed and solid curves coincide. In the
Tatarski description, we show the weight value

As may be
seen from the figures, there is good agreement for
both descriptions when v >0; similar agreement
occurs for all other values of parameters not dis-
played here. Of course, for 0=0, the descriptions
precisely coincide.

Finally, we note that although both descriptions
are identical for the Fock state [m), they differ
from one another for the vacuum state |0), where
P ()=14(0)5(v) in the Tatarski description, and
where p@#)=p4(0) for =0 and p(n)=0 for » >0 in the
Diament- Teich description. Thus the difference
between the descriptions is cumulated in 6(v).
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Continuum theory is used to calculate the molecular alignment and the elastic deformation energy in
a nematic layer containing a circular-loop thread. In agreement with experiment, planar solutions are
found, with the thread being the boundary between regions of different pitch. It is shown that threads
in nematics and Grandjean lines in cholesterics are equivalent-alignment structures and that a thread
located in the midplane of the layer is in equilibrium with respect to displacements normal to the
layer. From an analogy to the case of magnetic fields general conclusions are drawn as to the
alignment near threads of general shape outside the core. A model of a nonsingular core is given for
threads of type |s|=1 and the alignment near point singularities is calculated.

I. INTRODUCTION

Nematic liquid crystals are named after the
threadlike structures often observed in this type
of liquid crystal.1 With some materials, nematic
threads may be generated in plane layers with de-
fined boundary alignment by use of electric fields.?®
Two examples of threaded textures as obtained in
this manner are shown in Figs. 1(a) and 1(b). The
boundary alignment was the same on both surfaces
and perpendicular to the layer normal. Polarized
light was used for observation, the direction of
polarization being perpendicular to the surface
alignment for Fig. 1(a) and parallel for Fig. 1(b).
Two types of threads may be distinguished. The
first type appears as a narrow black line for both
directions of polarization of the incoming light.
The width of the black lines, which may be called
the core diameter of the thread, is of the order
of 1 um and is independent of sample thickness,
as was found for thicknesses ranging from 40 to
250 pm. The black line originates from light scat-
tering at the core. The second type of thread has
a more extended core as seen in Fig. 1(a), with
the core diameter being approximately d/10, where
d is the sample thickness. This type of thread is
surrounded by a dark shadow of width d/2 when ob-
served with light polarized parallel to the surface

alignment [Fig. 1(b)]. The shadow is caused by a
deviation from the planar orientation® that is ob-
served everywhere else in the sample. Another
indication of deviation from planar orientation in
the case of a thick thread is the occurrence of
point singularities,® two of which are seen in Fig.
1(b). While in Fig. 1 threads of the first type
(“thin threads”) separate regions without twist
from twisted regions of pitch | P | =24, threads of
the second type (“thick threads”) separate regions
of pitch P=2d from those of pitch P= —24d.® Thin
threads generally form closed loops whereas thick
threads may be attached by their ends to a thin one.
Threads are mostly located in the midplane of the
sample but deviations from this arrangement are
sometimes observed. A thread may be several
millimeters long and the area surrounded by a
closed thread may have any shape. It is however
often observed that when a closed thread shrinks
it approaches a circular shape [Figs. 2(a) and
2(b)].

In the following, alignment and energy of a sam-
ple containing a single circular-loop thread will
be calculated assuming isotropic elasticity and
planar orientation. In addition, it will be shown
that some general conclusions can be drawn as to
the alignment near threads of more general shape.
Nonplanar solutions of the equilibrium equations



