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Effects of random deletion and additive noise on bunched and
antibunched photon-counting statistics
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We examine the effect of Bernoulli random deletion and additive independent Poisson noise on photon-counting

statistics. It is shown that under the action of such deletion and/or noise, both bunched and antibunched distribu-

tions move toward the Poisson distribution but never convert from bunched to antibunched or vice versa. Specific

calculations are carried out for a number of examples of importance in optics.

Point processes often undergo random deletion. An
obvious example of importance in optics is the usual
case of photodetection, in which the quantum efficiency
is invariably less than unity. Another case in point is
optical absorption. It has long been known that the
Poisson process, which is probably the most ubiquitous
of all point processes, remains Poisson under the action
of such Bernoulli selection.1

In this Letter, we explicitly consider the effects of
random deletion on the photon-counting statistics for
a number of cases that appear repeatedly in optics. The
doubly stochastic Poisson point process (DSPP), 2 which
always gives rise to a bunched counting distribution
(count variance greater than count mean)3 is treated in
detail. The results for thermal light4 and multiplied-
Poisson light5 are presented as special examples. Since
antibunched light6 -8 appears to be playing an ever-
increasingly important role in optics, we also treat
several cases in which the count variance is less than the
count mean. Finally we study the combined effects of
random deletion and additive independent Poisson-
noise counts.

Bernoulli Deletion

Consider a random number n of events, and let each
event be multiplied by a discrete multiplication or re-
duction factor xk = 0, 1, 2,. .. for k = 1, 2, .. ., n. Then
the total number of multiplied events is

n
m = Xk. (1)

k =1

If the multiplication factors IXk I are statistically inde-
pendent, then the random variable m has a moment-
generating function (mgf) Qm(s) = (exp(-s m)), which
is related to the mgf's of n and x by'

Qm (s) = Qn (-In Qx (s)). (2)

The means and variances are related by

(mi) = (n) (x (3)

and

Var(m) = (x) 2 Var(n) + (n) Var(x). (4)

Equation (4) is known as the Burgess variance theo-
rem.9' 10 When the multiplication factors {xk I are Ber-
noulli distributed, i.e., xk = {1, 0) with probabilities f'q,
1 - X}1,

QX(s) = 1- i + e-s,

(x) = -% Var(x) =q(1 -q).

Substituting Eqs. (5) into Eqs. (2)-(4), we obtain

Qm(s) = Q.(-ln(1 - q + yets)),

(m) = (n),

Var(m) = q2 Var(n) + y(l - a) (n).

(5)

(6)

Equations (6) relate the properties of the number of
counts after Bernoulli deletion to those before Bernoulli
deletion, in terms of the deletion parameter q.

By repeated use of Eqs. (6), it can be easily shown that
successive random deletions, with deletion parameters

72, -2 ., are equivalent to a single process of random
deletion with parameter n = 'q02 * *

Invariance of the Doubly Stochastic Poisson
Point Process Counting Distribution

For a DSPP, the number of counts n, registered in the
time interval [0, T], has a moment-generating func-
tion 3

Q. (s) = (exp[-(1 - es) WI ), (7)

where W is the integrated random rate (or energy)
driving the point process over the interval [0, T]. Using
Eqs. (6), we conclude that, after random deletion, the
number of counts m has a mgf
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Qm (s) = ( expf-(l - e -s)7W] ). (8)
Thus the process m remains a DSPP, but with a reduced
integrated rate y1W. This is what is meant by the in-
variance of the DSPP counting distribution to Bernoulli
selection. It is important to note that the distribution
of m is not necessarily identical with that of n with a
reduced mean. The structure of the relationship be-
tween the variance and the mean is changed, and the
profile of the counting distribution may be significantly
altered. This will be elucidated by a number of exam-
ples.

The negative-binomial distribution, which charac-
terizes the photon-counting statistics of thermal (cha-
otic) light over a broad range of conditions, 4 is described
by

Q0(s) = (+ -( ) ) e - A,

Var(n) = (n + M ' (9)

where M is the degrees-of-freedom parameter.3-5 By
use of Eqs. (6), we obtain

Q,(s) = I+ 11(n) _ (n) esjM,

(m ) =

Var(m) = (mn) +(M)2
M 

(10)

so that the distribution is seen to remain negative bi-
nomial with the same degrees-of-freedom parameter M
but with a reduced overall mean count (m) = 4 (n ).

The Neyman Type-A distribution is a DSPP count-
ing distribution that arises when two Poisson point
processes are multiplied. It provides a useful descrip-
tion for many processes, including cathodoluminescent
emission, scintillation photon counting, radiography,
and human vision at threshold.11-13 It is described
by

Q.(s) = exp (nt) lexp[ade-s - 1)] - I

for shot-noise light.5 The randomly deleted distribu-
tion has the properties

(m) = 71W, Var(m) = (m) (1 + yalit), (14)

i.e., a reduced mean and a reduced multiplication pa-
rameter but an unchanged number of degrees of free-
dom. We note that random deletion of the primary
process (i.e., deletion before multiplication) simply re-
duces the overall mean count, however.

Sub- Poissonian Distributions

We now consider the effect of random deletion on sev-
eral representative antibunched (sub-Poissonian) dis-
tributions. Consider the counting distribution

p(n) = l1
010

n = N
n #N (15)

associated with the number state (Pock state) IN).15

This corresponds to

UQ(s) = exp(-sN),

(n) = N, Var(n) = 0.

Again using Eqs. (6), we obtain

Qm(s) = (1 - 1) + 4 e8s)N,

( m) = qNT

Var(m) = n(l - 4)N = (m)(1 -),

(16)

(17)

so that the randomly deleted number-state counting
distribution is binomial.' 5 It is clear from Eqs. (16) and
(17) that both the number state and the binomial dis-
tributions are antibunched.

Note that, if a binomial distribution of parameters
(71, N) is further Bernoulli selected with a deletion pa-
rameter q', the resultant distribution remains binomial,
with parameters (r7n', N).

The nonparalyzable dead-time-modified Poisson
counting distribution, which often arises in photon,
nuclear, and neural counting, is sub-Poissonian. It has
a mean and a variance given by"6

Var(n) = (n) (1 + a), (11)

where a is the multiplication parameter. Equations (6)
can be used to show that the Neyman Type-A distri-
bution reemerges on random deletion but with a re-
duced mean j(n) as well as a reduced multiplication
parameter Ba. Thus

(m) = -(n), Var(m) = (m)(1 + nc). (12)

Because Bernoulli selection alters the multiplication
parameter in this case, it changes the overall shape of
the distribution. This is in contrast to the result for the
negative-binomial distribution considered earlier.

A more general distribution in which two Poisson
processes are multiplied arises in the case of the shot-
noise-driven doubly stochastic Poisson point process
(SNDP).14 In this case, random delay accompanies the
multiplication, and

Var(n) = (n) (1 + a/At). (13)

The quantity A is the degrees-of-freedom parameter

(n) = i/A1 + liE), Var(n) = i/(1 + ThE)3 , (18)

where iT is the unmodified mean count and e is the ratio
of the dead time rd to the counting time T. By use of
Eqs. (6), we find that the mean and the variance of the
Bernoulli-selected distribution are

(im) =in/(l + Tc),
Var(m) = [T/(1 + ne)3]

X [1 + (1 - 4 )(2Me + n2 62)]. (19)

It is apparent that random deletion increases the vari-
ance-to-mean ratio, thereby bringing it closer to (but
never permitting it to exceed) the Poisson value of
unity.

Permanence of the State of Bunching under
Bernoulli Deletion and Additive Poisson Noise

The degree of photon bunching is determined by the
Fano factor' 4

Fn = Var(n)/(n). (20)
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If F& > 1, the distribution is said to be bunched, over-
dispersed, or super-Poissonian; if Fn < 1, it is said to be
antibunched, underdispersed, or sub-Poissonian. For
the simple Poisson distribution, F, = 1. Let us rewrite
the Burgess variance formula [Eq. (4)] in the form

Fm = (x )F. + F, (21)

For Bernoulli deletion

Fm = 1 + n(Pn-). (22)
If we define

F, = 1 + A, (23)

then Eq. (22) yields

Fm = Var(m)/(mY = 1 + iA. (24)

We now calculate the bunching properties for a
counting distribution that is both Bernoulli selected,
in the manner described above, and combined with
additive independent Poisson noise counts. Two cases
are considered: (1) when the Bernoulli selection occurs
before the addition and (2) when the Bernoulli selection
occurs after the addition.

Let the Poisson-noise-count mean be (r), in which
case Var(r) = (r). Combining this with Eqs. (6), we
obtain for the signal-plus-noise counting random vari-
able q in case (1)

(q) = q(n) + (r),

Var(q), = i?2 Var(n) + 4(1 - W)(n) + (r).

The overall Fano factor can then be written as

Iq = 1 + y(1 + (r)/4(n))-Y(F. - 1). (26)

Recognizing that (I- (1 + (r)/I (n))-1 is always posi-
tive, and approaches zero as (r} increases, we find that
Eq. (26) becomes

Fq = 1 + tjj3A, (27)

which is similar to Eq. (24) in character.
For case (2) the result is not greatly different; / is

simply replaced by /' (1 + (r)/(n)Y'.
We are now in a position to draw the following con-

clusions:

(1) If n is bunched (A > 0), then, under the action
of Bernoulli selection and/or the addition of Poisson
noise counts, q remains bunched but with a reduced
Fano factor.

(2) If n is antibunched (A < 0), then, under the
action of Bernoulli selection and/or the addition of
Poisson noise counts, q remains antibunched but with
an increased Fano factor.

Thus neither additive independent Poisson noise events
nor Bernoulli random deletion alters the state of
bunching of the light. Indeed, both effects are quite
similar; increasing the amount of either drives the
counting distribution toward Poisson. A moment's
thought provides the reason: The deletion serves to
reduce correlated (or anticorrelated) event occurrences,

thereby bringing the distributions closer to the zero-
memory Poisson distribution.

We refer to this as the permanence of the state of
bunching under Bernoulli deletion and additive inde-
pendent Poisson noise counts. The result is of partic-
ular importance in the current effort to produce anti-
bunched light. It shows that although loss (e.g., low
quantum efficiency) and additive Poisson noise serve
to reduce the observability of the antibunched character
of the light, they do not destroy it.
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