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Photocounting distributions for exponentially
decaying sources

Malvin Carl Teich and Howard C. Card

Columbia Radiation Laboratory, Columbia University, New York, New York 10027

Received September 1, 1978; revised manuscript received February 1, 1979

Exact photocounting distributions are obtained for a pulse of light whose intensity is exponentially decaying in
time, when the underlying photon statistics are Poisson. It is assumed that the starting time for the sampling in-
terval (which is of arbitrary duration) is uniformly distributed. The probability of registering n counts in the fixed
time T is given in terms of the incomplete gamma function for n 2 1 and in terms of the exponential integral for n
= 0. Simple closed-form expressions are obtained for the count mean and variance. The results are expected to
be of interest in certain studies involving spontaneous emission, radiation damage in solids, and nuclear counting.
They will also be useful in neurobiology and psychophysics, since habituation and sensitization processes may
sometimes be characterized by the same stochastic model.

In a variety of optical experiments, a pulse of light is
generated in which the underlying Poisson photon
statistics are modified by an intensity that decays ex-
ponentially in time. In some cases, as when the light
is weak, it may be necessary or desirable to use pho-
ton-counting techniques to detect this signal.

In those situations in which the sampling interval (or
time) T is much greater than the decay time, essentially
all of the light energy is contained in each sampling in-
terval, so that the photocounting distribution will be
Poisson of mean (n) = IT. Here iq is the quantum
efficiency of the detector, I is the time-averaged in-
tensity of the light at the detector, and it is assumed that
spatial effects can be ignored.

In this Letter, we derive the exact photocounting
distribution expected when the sampling interval T is
not necessarily large in comparison with the decay time
T of the light. We also derive closed-form expressions
for the count mean and variance. The results are valid
for the repeated and exhaustive sampling of a single
exponentially decaying light pulse, or for sampling from
an ensemble of such pulses of identical height when the
starting time of the sampling interval is uniformly dis-
tributed.

Figure 1 illustrates a decaying pulse of light and the
times of interest in the present study. The quantity
X(t) = 77I(t) represents the effective intensity of the
light, X0 is the peak value at t = 0, and T is the decay time
(time required to reach Xo/e). The starting time t1 of
the sampling interval (of length T) ranges between t =
0 and t = t2-

For a source of fixed intensity, the probability of
registering n counts in the time interval T, denoted by
p(n,TI W), is given by the simple Poisson distribu-
tion,

p(n,Tj W) = p(nI W) = Wne-W/n!, (1)

where W represents the integrated effective intensity.
When the intensity varies, Eq. (1) must be weighted by
the values assumed by W. The result for the compound

Poisson distribution (doubly stochastic Poisson process)
isl- 3

p(n,T) = (p(njW))w fW vWne-w/n!)P(W)dW,

(2)

where P( W) is the probability density function for the
integrated effective intensity W. With X(t) =
X0 exp(-t/z-), W is

W(t1,T) = ft1+ (t)dtt
Jti+

= No ft+exp(-t'//r)dt'

N 1T - exp(-IT)1 exp(-tl/r)

= Wo exp(-tj/T),

where 0 < tj < t2 and Wo depends on T and r but is
independent oft 1 . After briefly considering the simple
case of a fixed starting time for the sampling interval,
we consider the more interesting case in which the
starting time t 1 is uniformly distributed.

In the case of fixed t1 , Eq. (3) reduces to

W(t1,T) = Wo exp(-tl/r) = W', (4)

so that

P(W) = &(W- W') (5)

and the overall counting distribution p(n,T) remains
a simple Poisson [Eq. (1)], but of mean W'. Two special
cases are of interest: (a) For T/T >> 1,

(6)W = iOT exp-t i/r),

and (b) in the opposite limit, where TIT << 1,

W' N XoT exp(-t /T).

These equations represent the mean count in a decay
time [Eq. (6)] and in a sampling time [Eq. (7)], modified
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(3)

(7)
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X(* t ) eX P (-.t/)

XI
0 t, t,+ T r

(W) = S WP(W)dW

= ± [WO - Wo exp(-t 2 /r)]
t2

= XoT [1 - exp(-T/1-)1 [1 - exp(-t 2/r) 1
= Wo(-r/t2)[1 - exp(-t 2 /r)],

which reduces in four special cases to

(W) = (/t 2 )XOT

= (T/t2 )XoT

= X0 r

= XoT

for t 2 >> r and T >> T

for t 2 >> r and T << r

for t 2 << T and T >> r

for t2 << r and T << r.

(14)

(15)

Fig. 1. Time course of the effective intensity (rate parame-
ter) for an exponentially decaying source of decay time r and
initial value X0. The quantity t 1 represents the starting time
of the counting interval, and T is the duration of the counting
interval. The starting time ti ranges between t = 0 and t =
t2.

by the exponential factor reflecting the loss of photons
as the starting time for counting is delayed beyond the
beginning of the light pulse.

The remainder of this Letter is concerned with the
case in which the starting time t 1 has a uniform proba-
bility of being anywhere between t = 0 and t = t2 . This
gives rise to counting distributions that are not simple
Poisson and corresponds to those physical situations of
most interest to us in the present treatment. In this
case,

P(W) = p(ti)Idti/dWI. (8)

From Eq. (3),

(dW/dt1 ) = -(Wo/r) exp(-ti/r),

and, since t1 is assumed to be uniformly distributed,

p(t1 ) = l/t2, 0 < tl < t2- (10)

It is clear that when T << r, the relevant time parameter
is T, whereas when T >> r, it is r. Similarly, when t2 <<
T-, the relevant effective intensity (rate parameter) is the
maximum value Xo, whereas when t 2 >> T, it is the re-
duced value (7-/t 2)X0. The variance of P(W), denoted
by ((AW) 2 ), is

((AW)2 ) = (W2) - (W)2

(t2) W02 1 - + 2t expf t2/T)-(2 + -I exp(-2t2/7-) .
\2 t J 

(16)

In the count number (n) domain, the mean (n) =
! ( W) = (W) if a quantum efficiency 7 of unity is as-
sumed.1-3 Similarly, the variance is ((An)2 ) = 7(W)
+ -q2((AW) 2 ) and, for i7 = 1, the variance becomes (W)
+ ((AW) 2 ) = (n) + ((AW) 2 ). 1-3

The exact counting distribution p (n, T), from Eqs.
(2) and (12), is expressed as

p (n,T) = W In-W -dW
(9) fW'oe-t2/T n!_t jW

I I- b
_t2 n!J Woe- t 2/t=a

Wn-le-WdW n> 1
(17a)

From Eq. (8), using Eqs. (9) and (10),

P(W) = (r/t 2)[Woexp(-tj/r)> 1

(t 2 JW

=0

0 < to < t2

otherwise.

(Ila)

(lib)
W0 e.P

Specifying the region 0 < tl < t2 in terms of W, we ob-
tain the integrated effective intensity distribution

P(W) = I

= O0

WO exp(-t 2 /i-) < W < Wo

otherwise,

as illustrated in Fig. 2. From Eq. (3),

Wo = XoT 1- exp(-T/ij])

(12a)

(12b)

(13)

It is easily verified.that Eq. (12) is properly normal-
ized.

The mean of P(W), denoted by (W), is

P(W)

W0 e.P wo

Fig. 2. Probability density function for the integrated ef-
fective intensity W.

Xe

n = 0.
(17b)

WO= b 1
- e wdW

fW0e-t21-1=a W
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Since S' = l - f, and using Abramowitz and Ste-
gun's4 definition for the incomplete gamma function

P[n,x] = I(n) f Wn-le-WdW (18)

with INn) = (n - 1)! for n integer, we obtain

p(n,T) = (-) P[n,Wo] - P[n,Wo exp(-t2 /r)]}

n > 1. (19)

Also, since fr = f- J, and using Abramowitz and
Stegun's5 definition for the exponential integral

E(x) = Iwte-wdW, (20)

it also follows that

p(OT) = (-it) {El[W0 exp(-t2/r))] -El[Wo]}, (21)

where Wo is given by Eq. (13).
The present results are expected to be of interest in

the interpretation of photon-counting distributions
generated by weak sources of phosphorescence 6 and by
other sources of spontaneous emission. The moments
and photon-counting distribution presented in Eqs.
(14), (16), (19), and (21) may permit a more accurate
comparison of exponential decay theory with sponta-
neous-emission data. This could provide a determi-
nation of the extent to which the exponential sponta-
neous-emission law is violated, as a number of theo-
retical models suggest. 7 One possible way in which such
a spontaneous-emission experiment could be conducted
is the following. A collection of atoms is prepared in the
excited state, for example by irradiation with a brief but
strong excitation pulse at time t = 0-. This has the
effect of fixing the decaying effective intensity of all
excited atoms at the value N0 at time t = 0. The photon
count n from the sample during a fixed time interval T
is then recorded in the time slots [t1, t1 + T] with 0 <
t1 • t 2, taking care to prepare the system again before
each new interval is examined. 7 This provides a uni-
form distribution of starting time on the interval [0, t 2]
and no restriction on T. A histogram of the relative
frequencies of the counts is constructed, the experi-
mental moments are calculated, and a comparison is
effected with the theoretical results described above.
We emphasize, however, that our calculations assume
Poisson photon statistics for the underlying radiation.
For certain sources, the appropriate underlying distri-
bution will differ from Poisson.'- 3 ,8' 9 For chaotic light,
the photon-counting distribution will often be closer to
negative binomial8 than to Poisson; nevertheless, for
situations in which the degeneracy parameters 2 6 << 1,
the underlying photon statistics will indeed be
Poisson.

The analysis presented here also applies to various
nuclear-counting experiments in which radioactive
decay is monitored, since the underlying process is al-
most always Poisson and the mean count rate decreases
exponentially in time in most cases. The model may
also be used for certain problems encountered in low-
level radiation damage in solids in which the counting
takes place spatially rather than temporally. For ex-

ample, a monochromatic x-ray source will create dam-
age that decays exponentially with perpendicular dis-
tance into the solid. The distribution of damage centers
parallel to the surface is Poisson, so that our stochastic
model describes the overall distribution of damage
centers perpendicular to the surface.

In the distinctly different context of neurobiology,
the amplitude of the postsynaptic potential (PSP) for
certain neurons sometimes follows an approximately
exponential time course during habituation and sensi-
tization. This has been discussed by Castellucci et
al. 10-12 for the gill-withdrawal reflex evoked by a weak
tactile stimulation of the siphon skin in the marine
mollusk Aplysia californica. Since the PSP is induced
by the flow of discrete chemical neurotransmitter
packets (quanta) across a synapse, and since the
underlying statistics of the quanta are Poisson at suf-
ficiently low arrival rates,1 3 the mathematical model we
have developed should provide an appropriate de-
scription for quantal arrivals in the presence of habit-
uation and sensitization. We would expect, further-
more, that habituation in neural counting and psycho-
physics may be similarly described.
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